Pathways of self-aggregation in atmospheric convection

Jost von Hardenberg - ISAC-CNR Torino

Joint work with: A. Provenzale, A. Parodi, A. B. Pieri

Self-aggregation of convective plumes

- Intense convection is dominated by the action of plumes, coherent structures which mix the fluid and are responsible for a large fraction of the vertical heat transport in the bulk of the fluid
- There is a wide range of cases where convective plumes are found to cluster together in large-scale structures, while mantaining their identity: in laboratory exps, numerical exps and observed in natural systems (e.g. mesoscale clusters in rain storms, large-scale cloud structures, solar convection)

L.P. Kadanoff, *Physics Today* 2001

Clustering of plumes in Rayleigh-Bénard Convection

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + T\hat{\mathbf{z}} + \left(\frac{\sigma}{R}\right)^{1/2} \nabla^2 \mathbf{u},$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \frac{1}{(\sigma R)^{1/2}} \nabla^2 T,$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\nabla \cdot \mathbf{u} = 0$$

$$r_{T=0, z=1}$$
von Hardenberg J, Parodi, Passoni,
Provenzale, Spiegel, Large-scale patterns in
Rayleigh-Bénard convection, PLA (2007)
Parodi, A., von Hardenberg, Passoni,
Provenzale, Spiegel, Clustering of Plumes in
Turbulent Convection, PRL (2004)

х

Ρ

R

Ρ

Ρ

$R = 10^7$ Temperature sections

Х

z=0.5

y

0.7
0.65
 0.6
0.55
 0.5
 0.45
0.4
0.35
0.3

Evolution of horizontal sections of temperature

0.8

0.6

0.4

0.2

0

z=0.02 2π 0.8 0.6 0.4 0.2 0 2π 2π

 2π

0

z=0.5

t=13

Plume statistics

- We identify plumes by detecting local maxima in the turbulent heat transport $w\theta'$ on the midplane, keeping connected regions with heat flux larger than $4 < w\theta' >$
- Plumes occupy 8% of the area of the midplane.
- Plumes carry about 50% of the total heat transported.
- The number of plumes N_p and their average area A_p remain approximately constant over time!

Power spectra and evolution of scales

Dependency on domain size

Dependency on the Rayleigh number

Causes of the clustering process ?

- Divergence of the horizontal velocity field caused by impinging plumes → strong feedbacks
- The clustering process seems to be a result of the interaction between the two BLs, through the action of the plumes traversing the fluid.
- Is there a saturation scale for the clusters?

Other interpretations:

- 1) T. Elperin, N. Kleeorin, I. Rogachevskii, *Phys. Rev. E* **66**, 066305 (2002)
- 2) T. Hartlep, A. Tilgner and F. Busse, *Phys. Rev. Lett.* **91** (6), 064501 (2003)

What happens in more realistic models?

- RB is up-down simmetric, fixed temperature BC
- The real atmosphere: moist, precipitating, with radiative effects, non Boussinesq...

A slightly richer model: including a constant radiative cooling and an adiabatic lapse rate

$$\frac{D\mathbf{u}}{Dt} = -\nabla p + T\hat{\mathbf{z}} + \frac{\tau_c}{\tau_e} \nabla^2 \mathbf{u}, \qquad \tau_c = (\alpha T_0 g/H)^{-1/2} \\
\nabla \cdot \mathbf{u} = 0, \qquad \tau_e = H^2/K_e \\
\frac{DT}{Dt} + \gamma w = -\frac{\tau_c}{\tau_{rad}} + \frac{\tau_c}{\tau_e} \nabla^2 T. \qquad \gamma = \Gamma H/T_0 \qquad Ra = \tau_e^2/\tau_c^2 = Re^2$$

$$\frac{\partial T}{\partial z} = 0 \quad \text{(top)} \\
-K_e \frac{\partial T}{\partial z} = c(T - T_{ground}) \qquad \text{(bottom)}$$

- Berlengiero, M, Provenzale A, Emanuel K A, E A Spiegel, A Minimal Model of Atmospheric Convection, NPG (2005) $\tau_c = \tau_{rad} \longrightarrow T_0 = \left[HJ_0^2/(g\alpha\rho^2c_p^2)\right]^{1/3}$
- Berlengiero M, K A Emanuel, von Hardenberg J, Provenzale A, E A Spiegel, Internally cooled convection, Commun Nonlin Sci Numer Sim, (2012)

A slightly richer model: including a constant radiative cooling and an adiabatic lapse rate

т

- Berlengiero, M, Provenzale A, Emanuel K A, E A Spiegel, A Minimal Model of Atmospheric Convection, NPG (2005)
- Berlengiero M, K A Emanuel, von Hardenberg J, Provenzale A, E A Spiegel, Internally cooled convection, Commun Nonlin Sci Numer Sim, (2012)

 $\gamma = 1/3$

0

-0.01

-0.02

-0.03

0.03

0.03

0.02

0.01

10

-0.01

-0.02

-0.03

 $\gamma = 0$

-0.08

0.03

0.02

 $\gamma = 0$

Moist Rayleigh-Bénard convection

(from: Pauluis and Schumacher 2011)

Olivier Pauluis^{a,1} and Jörg Schumacher^b

Oscillations in open cellular cloud fields (from: Feingold et al. 2010)

Precipitation-generated oscillations in open cellular cloud fields

Graham Feingold¹, Ilan Koren², Hailong Wang³, Huiwen Xue⁴ & Wm. Alan Brewer¹

Vol 466 12 August 2010 doi:10.1038/nature09314

Idealized experiments with a realistic model (WRF)

- Numerical simulations are done using the fully 3D, compressible, non-hydrostatic Weather Research and Forecast (WRF) model
- Different microphysics schemes (Thompson, Morrison, WSM6). All consider vapor, rain, snow, ice, graupel.
- Convective-radiative equilibrium experiments, using a constant cooling Q=-4K/day
- Constant surface T=300K
- Homogeneous bottom surface, periodic boundaries and no external large-scale flow
- Doubly periodic, square domain 400km × 400km × 20km Horizontal resolution 500m. Vertical resolution : 60 pressure levels.

Clustering

Oscillations

Temporal autocorrelation of the columnar water vapor content

Dependence on resolution and on domain size

No dependence of period on resolution

Period depends on domain size

Self-aggregation in radiative-convective experiments with a full interactive radiation scheme

- Bretherton et al., An energy balance analysis of deep convective self-aggregation above uniform SS, JAS (2005)
- Muller & Held, Detailed investigation of the selfaggregation of convection in cloud resolving simulations, JAS (2012)

- We explore this problem with WRF, WSM6, square, periodic domain 400km x 400km, 2km resolution.
- Surface T=300K
- RRTM radiation

Evolution of the integral length scale

Frozen Moist Static Energy

Conclusions

- We have found that the self-aggregation or clustering of convective plumes is a common phenomenon in very different models of atmospheric convection, from RB convection to a full non-hydrostatic model.
- Of course different mechanisms at work in all these cases, but the study of these structures and of their formation may be crucial since they may affect significantly the flow dynamics (see also the salt fingering talk of yesterday)
- Some of these structures may not be robust under realistic conditions (e.g. long formation times under undisturbed conditions)