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FKPP equation
Concentration θ(x, t) of chemicals or biological species is
governed by the advection–diffusion–reaction equation

∂tθ + u · ∇θ = κ∆θ + r(θ) ,

with diffusivity κ.
A common type of reaction (autocatalytic reactions, population
dynamics) is logistic:

r(θ) = τ−1θ(θ − 1) ,

leading to the Fisher-Kolmogorov-Petrovsky-Piskunov eqn.

For κ = u = 0, θ → 1 as t→∞.
For u = 0, travelling front:

θ = f (x− c0t), f →
{

1 as x→ −∞
0 as x→∞

, with c0 = 2
√
κ/γ.
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FKPP equation
For κ 6= 0, u 6= 0,

∂tθ + u · ∇θ = Pe−1∆θ(x, t) + Da θ(1− θ) ,

where Pe ≡ U`/κ flow strength
Da ≡ `/Uτ reaction strength

For u time-independent, spatially periodic: pulsating front.

 

 

Tuesday, 14 May 13

θ(x, t) = 0θ(x, t) = 1

Pe
250D

a
5

0.
5

0.
05

Theory: Constantin et al. (2000), Audoly et al. (2000), Berestycki & Hamel (2002), Novikov and Ryzhik (2007);

Exps: Abel et al. (2002), Vladimirova et al. (2003); Solomon & Gollub (1988), Pocheau & Harambat (2008).
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For κ 6= 0, u 6= 0,

∂tθ + u · ∇θ = Pe−1∆θ(x, t) + Da θ(1− θ) ,

where Pe ≡ U`/κ flow strength
Da ≡ `/Uτ reaction strength

For u time-independent, spatially periodic: pulsating front.

Question:
What is the front speed c > c0 as a function of Pe and Da?

(when Pe� 1)

Theory: Constantin et al. (2000), Audoly et al. (2000), Berestycki & Hamel (2002), Novikov and Ryzhik (2007);

Exps: Abel et al. (2002), Vladimirova et al. (2003); Solomon & Gollub (1988), Pocheau & Harambat (2008).
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Front and large deviations
Derive the front speed from the linearised FKPP (pulled front).
Without flow, u = 0:
linearise around the tip of the front, θ ≈ 0,

∂tθ(x, t) = Pe−1∆θ(x, t) + Da θ//////(1− θ).

For t� 1, Gaussian solution gives

θ(x, t) � e−t(Pe x2/(4t)2−Da )

=

{
∞, for x

t < 2
√

Da/Pe
0, for x

t > 2
√

Da/Pe.

Front speed controlled by transition between exponential
growth and decay:

c = c0 = 2
√

Da/Pe = 2
√
κ/τ .

e.g. Freidlin (1990)



FKPP equation Fronts and large deviations Regimes Conclusions

Front and large deviations
Derive the front speed from the linearised FKPP (pulled front).
Without flow, u = 0:
linearise around the tip of the front, θ ≈ 0,

∂tθ(x, t) = Pe−1∆θ(x, t) + Da θ//////(1− θ).

For t� 1, Gaussian solution gives

θ(x, t) � e−t(Pe x2/(4t)2−Da )

=

{
∞, for x

t < 2
√

Da/Pe
0, for x

t > 2
√

Da/Pe.

Front speed controlled by transition between exponential
growth and decay:

c = c0 = 2
√

Da/Pe = 2
√
κ/τ .

e.g. Freidlin (1990)



FKPP equation Fronts and large deviations Regimes Conclusions

Front and large deviations
Derive the front speed from the linearised FKPP (pulled front).
Without flow, u = 0:
linearise around the tip of the front, θ ≈ 0,

∂tθ(x, t) = Pe−1∆θ(x, t) + Da θ//////(1− θ).

For t� 1, Gaussian solution gives

θ(x, t) � e−t(Pe x2/(4t)2−Da )

=

{
∞, for x

t < 2
√

Da/Pe
0, for x

t > 2
√

Da/Pe.

Front speed controlled by transition between exponential
growth and decay:

c = c0 = 2
√

Da/Pe = 2
√
κ/τ .

e.g. Freidlin (1990)



FKPP equation Fronts and large deviations Regimes Conclusions

Fronts and large deviations

With flow, u = 0:
Same argument: linearise

∂tθ(x, t) + u · ∇θ(x, t) = Pe−1∆θ(x, t) + Da θ//////(1− θ).

For t� 1, use large-deviation form of the passive scalar:

θ(x, t) � e−tg(x/t) , with rate function g.
Haynes & Vanneste (2014)

θ(x, t) � e−t(g(x/t)−Da )

=

{
∞, for x

t < g−1(Da)

0, for x
t > g−1(Da)

The front speed is now given by c = g−1(Da).
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Large deviations
The rare function g(ξ), ξ = x/t, can be obtained by solving an
eigenvalue equation for its Legendre transform f (q):

Pe−1∆φ− (u + 2Pe−1qx̂) · ∇φ+ (uq + Pe−1q2)φ = f (q)φ. (1)

Gartner & Freidlin (1979), Xin (2000)

Example: Pe = 250
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For Da� 1, i.e. x/t� 1, homogenization gives g ∝
√

Pe (x/t)2.
Childress (1979), Shraiman (1987), Soward (1987)
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Large deviations
Solve e’value problem for Pe� 1. Haynes & Vanneste (2014)

Non-uniformity in q, equivalent to x/t or Da.

3 distinguished regimes:
I. q = O(Pe−1/4): non-trivial concentration in cells +

boundary layers,

f (q) = Pe−1F(Pe1/4|q|2).

II. |q| = O(1): empty cells, boundary layers with crucial
corners,

f (q) = O(1/ log Pe).

III. |q| = O(Pe): f and g controlled by a single trajectory
(Friedlin–Wentzell),

f (q) = O(Pe).
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Regime I
Da = O(Pe−1), c = Pe−

3
4C1(PeDa)
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⇐ Homogenization theory is only valid for Da� Pe−1!

Zoom near the origin
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Regime II
Da = O((log Pe)−1), c = (log Pe)−1C2(Da log Pe)
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Regime III
Da = O(Pe), c = C3(Da/Pe)

Saturday, 18 May 13
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theory: control by
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Regime III

Large deviation for t� 1 meets large deviation for Pe� 1.
Freidlin–Wentzel small noise theory:

g(x/t) = lim
t→∞

Pe
4t

inf
X(t)=x

∫ t

0
|Ẋ − u(X)|2ds,

can be periodised to

g(c) =
Pe
8π

inf
X(t)=2π

∫ 2π

0
|cẊ − u(X)|2ds = Da .

This is easily solved (i) numerically, using an optimisation
routine; (ii) asymptotically to obtain

c = C3(Da/Pe).
Tzella and Vanneste 2014
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Regime III

0

π

−π 0 π
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c = 0.5, 1, 5

Explicit asymptotics results:

c ∼ c0

(
1 +

3Pe
16Da

+ · · ·
)

for Da� Pe,

c ∼ π

W(8Pe/Da)
∼ π

log Pe
for Da� Pe.
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Regime III

In this regime, c can alternatively be written as

c = 2π/T∗,

with T∗ shortest time to join x = 0 to x = 2π subject to

T∗−1 ∫ T∗
0 |Ẋ − u(X)|2ds = c2

0 .

Cf. G-equation, giving front as level set of solution of the
eikonal equation

∂tG + u · ∇G = c0|∇G|.

For this T∗ is shortest time subject to

|Ẋ − u(X)|2 = c2
0 .
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The three regimes together
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Conclusions

I Large-deviation theory to obtain the front speed:
θ � exp[−t(g(x/t)−Da)] gives:

c = g−1(Da),

where the rate function g is calculated by solving an
eigenvalue problem.

I For cellular flow, we have identified three regimes for
Pe� 1.

I Extensions: towards turbulent flows,
I time-periodic flows,
I random flows.

I Applications to urban pollution.
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