FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	0000000	

Chemical front propagation in cellular flows

J Vanneste

School of Mathematics and Maxwell Institute University of Edinburgh, UK www.maths.ed.ac.uk/~vanneste

with A Tzella (Birmingham) and P H Haynes (Cambridge)

ション 人口 マイビン イビン トロン

FKPP equation	Fronts and large deviations	Regimes	Conclusions
•00 ⁻	0000	0000000	

FKPP equation

Concentration $\theta(x, t)$ of chemicals or biological species is governed by the advection–diffusion–reaction equation

$$\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \kappa \Delta \theta + r(\theta) ,$$

with diffusivity κ .

A common type of reaction (autocatalytic reactions, population dynamics) is logistic:

$$r(\theta) = \tau^{-1}\theta(\theta - 1) ,$$

leading to the Fisher-Kolmogorov-Petrovsky-Piskunov eqn.

For $\kappa = u = 0, \theta \to 1$ as $t \to \infty$. For u = 0, travelling front:

$$\theta = f(x - c_0 t), \quad f \to \begin{cases} 1 & \text{as } x \to -\infty \\ 0 & \text{as } x \to \infty \end{cases}, \quad \text{with } c_0 = 2\sqrt{\kappa/\gamma}.$$

FKPP equation	Fronts and large deviations	Regimes	Conclusions
•00 ⁻	0000	0000000	

FKPP equation

Concentration $\theta(x, t)$ of chemicals or biological species is governed by the advection–diffusion–reaction equation

$$\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \kappa \Delta \theta + r(\theta) ,$$

with diffusivity κ .

A common type of reaction (autocatalytic reactions, population dynamics) is logistic:

$$r(\theta) = \tau^{-1}\theta(\theta - 1) ,$$

leading to the Fisher-Kolmogorov-Petrovsky-Piskunov eqn.

For $\kappa = u = 0, \theta \to 1$ as $t \to \infty$. For u = 0, travelling front:

$$\theta = f(x - c_0 t), \quad f \to \begin{cases} 1 & \text{as } x \to -\infty \\ 0 & \text{as } x \to \infty \end{cases}, \quad \text{with } c_0 = 2\sqrt{\kappa/\gamma}.$$

FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	0000000	
FKPP equation For $\kappa \neq 0, u \neq d$			

$$\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \mathrm{Pe}^{-1} \Delta \theta(\boldsymbol{x}, t) + \mathrm{Da}\,\theta(1-\theta) \;,$$

where $Pe \equiv U\ell/\kappa$ flow strength $Da \equiv \ell/U\tau$ reaction strength

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For *u* time-independent, spatially periodic: pulsating front.

FKPP equation ○●○	Fronts and large deviation	ns Regimes 0000000	Conclusions
FKPP equation For $\kappa \neq 0$,			
	$\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \mathrm{P}\mathrm{e}^{-1}$	$\Delta \theta(\mathbf{x},t) + \mathrm{Da}\theta(1-\theta)$,	
	where $Pe \equiv U\ell/\kappa$ $Da \equiv \ell/U\tau$	flow strength reaction strength	
For <i>u</i> time	e-independent, spatia	Illy periodic: pulsating front.	
0.05			
Da 0.5	• • •	O	Pe 250
heta(x,t)=Theory: Constant		$ heta({m x},t)=$ restycki & Hamel (2002), Novikov and Ryzhik (2007)	

Exps: Abel et al. (2002), Vladimirova et al. (2003); Solomon & Gollub (1988), Pocheau & Harambat (2008). 🚊 🕨

FKPP equation	Fronts and large deviations	Regimes 000000	Conclusions
FKPP equation For $\kappa \neq 0, u$			

$$\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \mathrm{Pe}^{-1} \Delta \theta(\boldsymbol{x}, t) + \mathrm{Da} \, \theta(1 - \theta) \; ,$$

where $Pe \equiv U\ell/\kappa$ flow strength $Da \equiv \ell/U\tau$ reaction strength

For *u* time-independent, spatially periodic: pulsating front.

Question:

What is the front speed $c > c_0$ as a function of Pe and Da? (when Pe $\gg 1$)

Theory: Constantin et al. (2000), Audoly et al. (2000), Berestycki & Hamel (2002), Novikov and Ryzhik (2007);

Exps: Abel et al. (2002), Vladimirova et al. (2003); Solomon & Gollub (1988), Pocheau & Harambat (2008). =

FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	000000	

Derive the front speed from the linearised FKPP (pulled front). Without flow, u = 0:

linearise around the tip of the front, $\theta \approx 0$,

$$\partial_t \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t)$$

For $t \gg 1$, Gaussian solution gives

$$\begin{aligned} \theta(x,t) &\asymp e^{-t \left(\operatorname{Pe} x^2 / (4t)^2 - \operatorname{Da} \right)} \\ &= \begin{cases} \infty, & \text{for } \frac{x}{t} < 2\sqrt{\operatorname{Da/Pe}} \\ 0, & \text{for } \frac{x}{t} > 2\sqrt{\operatorname{Da/Pe}}. \end{cases} \end{aligned}$$

Front speed controlled by transition between exponential growth and decay:

$$c = c_0 = 2\sqrt{\mathrm{Da/Pe}} = 2\sqrt{\kappa/ au}.$$

FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	000000	

Derive the front speed from the linearised FKPP (pulled front). Without flow, u = 0:

linearise around the tip of the front, $\theta \approx 0$,

$$\partial_t \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t)$$

For $t \gg 1$, Gaussian solution gives

$$\begin{aligned} \theta(x,t) &\asymp e^{-t \left(\operatorname{Pe} x^2 / (4t)^2 - \operatorname{Da} \right)} \\ &= \begin{cases} \infty, & \text{for } \frac{x}{t} < 2\sqrt{\operatorname{Da/Pe}} \\ 0, & \text{for } \frac{x}{t} > 2\sqrt{\operatorname{Da/Pe}} \end{cases} \end{aligned}$$

Front speed controlled by transition between exponential growth and decay:

$$c = c_0 = 2\sqrt{\mathrm{Da/Pe}} = 2\sqrt{\kappa/ au}.$$

Image: A contraction (1990)

FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	●000	0000000	

Derive the front speed from the linearised FKPP (pulled front). Without flow, u = 0:

linearise around the tip of the front, $\theta \approx 0$,

$$\partial_t \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t)$$

For $t \gg 1$, Gaussian solution gives

$$\begin{aligned} \theta(x,t) &\asymp e^{-t \left(\operatorname{Pe} x^2 / (4t)^2 - \operatorname{Da} \right)} \\ &= \begin{cases} \infty, & \text{for } \frac{x}{t} < 2\sqrt{\operatorname{Da/Pe}} \\ 0, & \text{for } \frac{x}{t} > 2\sqrt{\operatorname{Da/Pe}} \end{cases} \end{aligned}$$

Front speed controlled by transition between exponential growth and decay:

$$c = c_0 = 2\sqrt{\mathrm{Da/Pe}} = 2\sqrt{\kappa/\tau}.$$

e.g. Freidlin (1990)

FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	000000	

With flow, u = 0:

Same argument: linearise

 $\partial_t \theta(\mathbf{x}, t) + \mathbf{u} \cdot \nabla \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da}$

For $t \gg 1$, use large-deviation form of the passive scalar:

 $\theta(x,t) \asymp e^{-tg(x/t)}$, with rate function *g*.

Haynes & Vanneste (2014)

ション 人口 マイビン イビン トロン

 $\begin{aligned} \theta(x,t) &\asymp e^{-t(g(x/t) - \mathsf{Da})} \\ &= \begin{cases} \infty, & \text{for } \frac{x}{t} < g^{-1}(\mathsf{D}) \\ 0, & \text{for } \frac{x}{t} > g^{-1}(\mathsf{D}) \end{cases} \end{aligned}$

The front speed is now given by $c = g^{-1}(Da)$.

FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	0000000	

With flow, u = 0:

Same argument: linearise

 $\partial_t \theta(\mathbf{x}, t) + \mathbf{u} \cdot \nabla \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t)$

For $t \gg 1$, use large-deviation form of the passive scalar:

 $\theta(x,t) \simeq e^{-tg(x/t)}$, with rate function *g*.

Haynes & Vanneste (2014)

 $\theta(x,t) \approx e^{-t(g(x/t) - \mathrm{Da})}$ $= \begin{cases} \infty, & \text{for } \frac{x}{t} < g^{-1}(\mathrm{D}) \\ 0, & \text{for } \frac{x}{t} > g^{-1}(\mathrm{D}) \end{cases}$

The front speed is now given by $c = g^{-1}(Da)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	0000000	

With flow, u = 0:

Same argument: linearise

$$\partial_t \theta(\mathbf{x}, t) + \mathbf{u} \cdot \nabla \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da}$$

For $t \gg 1$, use large-deviation form of the passive scalar:

 $\theta(x,t) \simeq e^{-tg(x/t)}$, with rate function *g*.

Haynes & Vanneste (2014)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\theta(x,t) \asymp e^{-t(g(x/t) - Da)}$$
$$= \begin{cases} \infty, & \text{for } \frac{x}{t} < g^{-1}(Da) \\ 0, & \text{for } \frac{x}{t} > g^{-1}(Da) \end{cases}$$

The front speed is now given by $c = g^{-1}(Da)$.

FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	0000000	

With flow, u = 0:

Same argument: linearise

$$\partial_t \theta(\mathbf{x}, t) + \mathbf{u} \cdot \nabla \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(\mathbf{x}, t) + \mathrm{Da}$$

For $t \gg 1$, use large-deviation form of the passive scalar:

 $\theta(x,t) \asymp e^{-tg(x/t)}$, with rate function *g*.

Haynes & Vanneste (2014)

$$\theta(x,t) \asymp e^{-t(g(x/t) - Da)}$$
$$= \begin{cases} \infty, & \text{for } \frac{x}{t} < g^{-1}(Da) \\ 0, & \text{for } \frac{x}{t} > g^{-1}(Da) \end{cases}$$

The front speed is now given by $c = g^{-1}(Da)$.

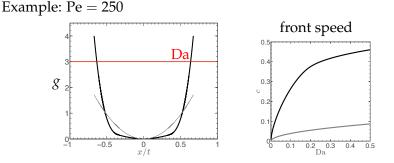
FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	0000000	

Large deviations

The rare function $g(\xi)$, $\xi = x/t$, can be obtained by solving an eigenvalue equation for its Legendre transform f(q):

$$\operatorname{Pe}^{-1}\Delta\phi - (\boldsymbol{u} + 2\operatorname{Pe}^{-1}q\hat{\boldsymbol{x}}) \cdot \nabla\phi + (\boldsymbol{u}q + \operatorname{Pe}^{-1}q^2)\phi = f(q)\phi.$$
(1)

Gartner & Freidlin (1979), Xin (2000)



For Da \ll 1, i.e. $x/t \ll$ 1, homogenization gives $g \propto \sqrt{\text{Pe}} (x/t)^2$.

Childress (1979), Shraiman (1987), Soward (1987)

FKPP equation 000	Fronts and large deviations	Regimes 000000	Conclusions
	ations lue problem for Pe $\ll 1$. prmity in <i>q</i> , equivalent to <i>x/t</i> of	Haynes & Var Dr Da.	nneste (2014)

3 distinguished regimes:

I. $q = O(Pe^{-1/4})$: non-trivial concentration in cells + boundary layers,

$$f(q) = \operatorname{Pe}^{-1} F(\operatorname{Pe}^{1/4} |\boldsymbol{q}|^2).$$

II. |q| = O(1): empty cells, boundary layers with crucial corners,

$$f(q) = O(1/\log \operatorname{Pe}).$$

III. |q| = O(Pe): *f* and *g* controlled by a single trajectory (Friedlin–Wentzell),

$$f(q) = O(\operatorname{Pe}).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FKPP equation	Fronts and large deviations	Regimes 0000000	Conclusions
Large devi Solve e'va		Haynes & Var	nneste (2014)

3 distinguished regimes:

I. $q = O(Pe^{-1/4})$: non-trivial concentration in cells + boundary layers,

$$f(q) = \operatorname{Pe}^{-1}F(\operatorname{Pe}^{1/4}|q|^2).$$

II. |q| = O(1): empty cells, boundary layers with crucial corners,

$$f(q) = O(1/\log \operatorname{Pe}).$$

III. |q| = O(Pe): *f* and *g* controlled by a single trajectory (Friedlin–Wentzell),

$$f(q) = O(\operatorname{Pe}).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FKPP equation 000	Fronts and large deviations	Regimes 0000000	Conclusions
	ations lue problem for Pe $\ll 1$. prmity in <i>q</i> , equivalent to <i>x/t</i> of	Haynes & Var Dr Da.	ineste (2014)

3 distinguished regimes:

I. $q = O(Pe^{-1/4})$: non-trivial concentration in cells + boundary layers,

$$f(q) = \operatorname{Pe}^{-1}F(\operatorname{Pe}^{1/4}|q|^2).$$

II. |q| = O(1): empty cells, boundary layers with crucial corners,

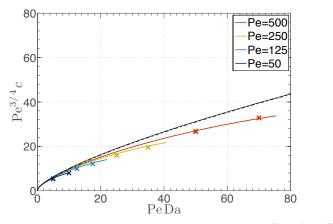
$$f(q) = O(1/\log \operatorname{Pe}).$$

III. |q| = O(Pe): *f* and *g* controlled by a single trajectory (Friedlin–Wentzell),

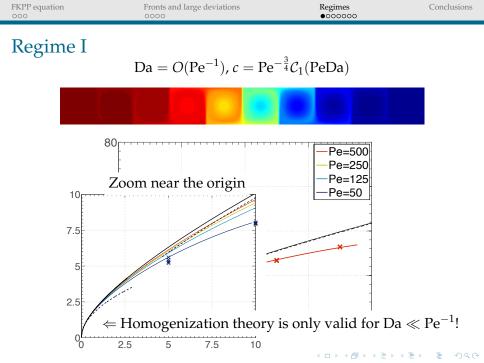
$$f(q) = O(\mathrm{Pe}).$$

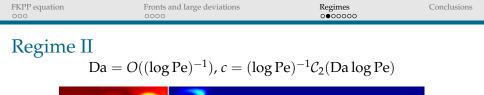
< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

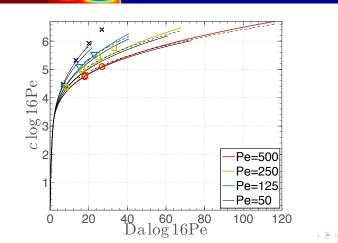
FKPP equation 000	Fronts and large deviations	Regimes •000000	Conclusions
Regime I	$\mathrm{Da} = O(\mathrm{Pe}^{-1}), c = \mathrm{Pe}^{-1}$	$^{-rac{3}{4}}\mathcal{C}_1(ext{PeDa})$	



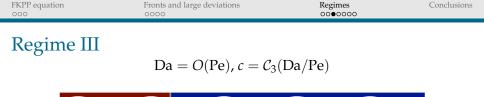
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

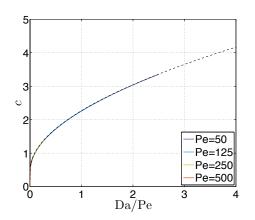






ト 王 のへの





Freidlin–Wentzell theory: control by action-minimizing instantons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

FKPP equation	Fronts and large deviations 0000	Regimes 000●000	Conclusions

Large deviation for $t \gg 1$ meets large deviation for Pe $\gg 1$.

Freidlin–Wentzel small noise theory:

$$g(x/t) = \lim_{t \to \infty} \frac{\operatorname{Pe}}{4t} \inf_{\mathbf{X}(t) = \mathbf{x}} \int_0^t |\dot{\mathbf{X}} - \mathbf{u}(\mathbf{X})|^2 \mathrm{d}s,$$

can be periodised to

$$g(c) = \frac{\operatorname{Pe}}{8\pi} \inf_{X(t)=2\pi} \int_0^{2\pi} |c\dot{X} - u(X)|^2 \mathrm{d}s = \operatorname{Da}.$$

This is easily solved (i) numerically, using an optimisation routine; (ii) asymptotically to obtain

$$c = C_3(\text{Da}/\text{Pe}).$$

Tzella and Vanneste 2014 ▲ロ▶▲舂▶▲壹▶▲壹▶ 壹 のへで

FKPP equation 000	Fronts and large deviations 0000	Regimes 000●000	Conclusions

Large deviation for $t \gg 1$ meets large deviation for Pe $\gg 1$. Freidlin–Wentzel small noise theory:

$$g(x/t) = \lim_{t \to \infty} \frac{\operatorname{Pe}}{4t} \inf_{X(t)=x} \int_0^t |\dot{X} - u(X)|^2 \mathrm{d}s,$$

can be periodised to

$$g(c) = rac{ ext{Pe}}{8\pi} \inf_{X(t)=2\pi} \int_0^{2\pi} |c\dot{X} - u(X)|^2 \mathrm{d}s = ext{Da} \; .$$

This is easily solved (i) numerically, using an optimisation routine; (ii) asymptotically to obtain

$$c = C_3(\text{Da}/\text{Pe}).$$

Tzella and Vanneste 2014

FKPP equation 000	Fronts and large deviations 0000	Regimes 0000●00	Conclusions
Regime III			
y y 0 $-\pi$ Explicit asy	$\int_{0}^{0} \int_{x}^{0} \pi$	Instantons for $c = 0.5, 1, 5$	
c c	$\sim c_0 \left(1 + \frac{3\text{Pe}}{16\text{Da}} + \cdots \right)$ $\sim \frac{\pi}{W(8\text{Pe}/\text{Da})} \sim \frac{\pi}{\log \text{Pe}}$	for $Da \gg Pe$, for $Da \ll Pe$.	

FKPP equation	Fronts and large deviations 0000	Regimes 00000●0	Conclusions

In this regime, *c* can alternatively be written as

$$c=2\pi/T_*,$$

with T_* shortest time to join x = 0 to $x = 2\pi$ subject to $T_*^{-1} \int_0^{T_*} |\dot{X} - u(X)|^2 ds = c_0^2.$

Cf. *G*-equation, giving front as level set of solution of the eikonal equation

$$\partial_t G + \boldsymbol{u} \cdot \nabla G = c_0 |\nabla G|.$$

For this T_* is shortest time subject to

$$|\dot{\boldsymbol{X}} - \boldsymbol{u}(\boldsymbol{X})|^2 = c_0^2 \; .$$

ション 人口 マイビン イビン トロン

FKPP equation 000	Fronts and large deviations 0000	Regimes 00000●0	Conclusions

In this regime, c can alternatively be written as

$$c=2\pi/T_*,$$

with T_* shortest time to join x = 0 to $x = 2\pi$ subject to

$$T_*^{-1} \int_0^{T_*} |\dot{X} - u(X)|^2 ds = c_0^2.$$

Cf. *G*-equation, giving front as level set of solution of the eikonal equation

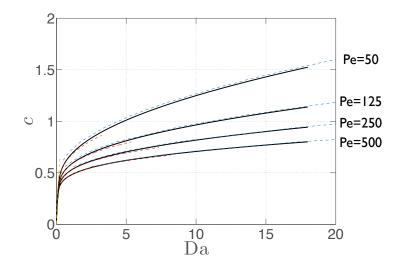
$$\partial_t G + \boldsymbol{u} \cdot \nabla G = c_0 |\nabla G|.$$

For this T_* is shortest time subject to

$$|\dot{X} - u(X)|^2 = c_0^2$$
.

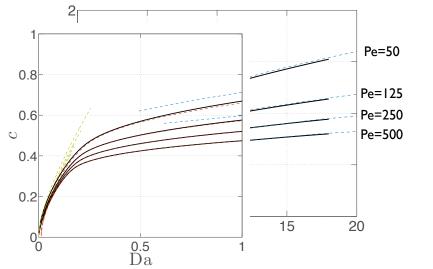
FKPP equation	Fronts and large deviations	Regimes	Conclusions
000	0000	000000	

The three regimes together



▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

The three regimes together



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

FKPP equation	Fronts and large deviations	Regimes 000000	Conclusions

► Large-deviation theory to obtain the front speed: $\theta \asymp \exp[-t(g(x/t) - Da)]$ gives:

$$c = g^{-1}(\mathrm{Da}),$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- For cellular flow, we have identified three regimes for $Pe \gg 1$.
- Extensions: towards turbulent flows,
 - time-periodic flows,
 - random flows.
- Applications to urban pollution.

FKPP equation	Fronts and large deviations	Regimes 000000	Conclusions

► Large-deviation theory to obtain the front speed: $\theta \asymp \exp[-t(g(x/t) - Da)]$ gives:

$$c = g^{-1}(\mathrm{Da}),$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- For cellular flow, we have identified three regimes for $Pe \gg 1$.
- Extensions: towards turbulent flows,
 - time-periodic flows,
 - random flows.
- Applications to urban pollution.

FKPP equation	Fronts and large deviations	Regimes 0000000	Conclusions

► Large-deviation theory to obtain the front speed: $\theta \asymp \exp[-t(g(x/t) - Da)]$ gives:

$$c = g^{-1}(\mathrm{Da}),$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- For cellular flow, we have identified three regimes for $Pe \gg 1$.
- Extensions: towards turbulent flows,
 - time-periodic flows,
 - random flows.
- Applications to urban pollution.

FKPP equation	Fronts and large deviations	Regimes 0000000	Conclusions

► Large-deviation theory to obtain the front speed: $\theta \asymp \exp[-t(g(x/t) - Da)]$ gives:

$$c = g^{-1}(\mathrm{Da}),$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- For cellular flow, we have identified three regimes for $Pe \gg 1$.
- Extensions: towards turbulent flows,
 - time-periodic flows,
 - random flows.
- Applications to urban pollution.