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Introduction
Submesoscale dynamics resulting from the in-
stability of a mixed layer (ML) front gen-
erate intensified vertical velocities that are
at least an order of magnitude higher than
their mesoscale counterparts. The dynam-
ics are also characterised by Rossby numbers,
Ro ≥ 1 [1]. Thus, at these scales the
ocean dynamics are relatively 3 dimensional.
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The submesoscale dynamics create spatially
small scale localised regions (filaments) along
which the relative vorticity and vertical veloci-
ties are highly intensified. Along these filaments,
the vertical stretching of tracer patches becomes
important. An extension from 2D to 3D FTLEs
in order to identify possible barriers to mixing
introduced by this vertical stretching is thus re-
quired.

Methodology
The MITgcm is initialised with a ML front over-
lying an initially motionless pycnocline. The ML
front undergoes ageostrophic baroclinic instabil-
ity. Particles are deployed on a regular grid and
are advected with the resultant flow. The posi-
tions of the particles are identified for a specific
interval of time (t2−t1). The integration is done
so as to obtain both forward and backward Fi-
nite Time Lyapunov Exponents (FTLEs) [2].
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where D is the three dimension Cauchy-Green
deformation tensor. λmax is the maximum of the
eigenvalues of the matrix (D∗D). Local extrema
of the FTLE field map the Lagrangian Coherent
structures (LCS).
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• ML instabilities that are generated by
mixed layer fronts at sub-mesoscales pen-
etrate into the ocean interior as observed
from the high values of FTLEs even in
deeper layers [3].

• LCSs computed from from 3D FTLEs re-
veal more features compared to their 2D
counterparts and thus the extension to 3D
is deemed more appropriate for obtaining
LCSs at submesoscales. Thus, the LCSs
in this case are 2D surfaces extending to
the ocean interior and can be barriers to
horizontal mixing.

• The FTLE technique provides more fea-
tures about the flow dynamics as compared
to the Eulerian Okubo-Weiss parameter
which reveals less features.

• The PDFs of 3D FTLEs are observed to
be bimodal due to stickiness of certain re-
gions that trap fluid particle trajectories
for longer times. These regions may corre-
spond to regions where the stable and un-
stable manifolds correspond.


