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A Search for Chaotic Behavior in Stratospheric Variability  

Daniela I. V. Domeisen1 and Gualtiero Badin1 

Abstract 
 
Stratospheric extratropical variability in both the 
Southern and Northern Hemisphere is investigated 
with respect to chaotic behavior using time series 
from three different variables (zonal mean zonal wind, 
temperature and geopotential height) extracted from 
four different reanalysis products. The time series 
show red spectra at all frequencies and the 
probability distribution functions show persistent 
deviations from a Gaussian distribution, which is 
found to be due to the transition between summer 
and winter variability. 
To search for the presence of a chaotic attractor the 
correlation dimension and entropy, the Lyapunov 
spectrum, and the associated Kaplan–Yorke 
dimension are estimated. A finite value of the 
dimensions can be computed for each variable and 
data product, with a larger spread for the Southern 
Hemisphere as compared to the Northern 
Hemisphere.  
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Reanalysis data 
 
The following reanalysis datasets are used for the 
analysis:  
•  ERAInterim (Dee et al. 2011):  

•  1 January 1980 to 31 December 2011 
•  total of 11 688 daily data points 

•  ERA40 (Uppala et al. 2005):  
•  1 January 1958 to 31 December 2001 
•  total of 16 071 data points 

•  NCEP (Kalnay et al. 1996):  
•  1 January 1948 to 31 December 2012 
•  total of 23742 points 

•  NCEP2 (Kanamitsu et al. 2002):  
•  1 January 1979 to 31 December 2012 
•  total of 12 419 data points 

 
The seasonal cycle has been removed from each 
reanalysis time series. 

Figure 2: (a) Probability density functions (PDFs) of the zonal mean zonal wind for ERAinterim for the full time series. (b) Frequency 
spectra for zonal mean zonal wind at 60◦S and 10hPa for ERAinterim for the full time series. (c) Summary of the correlation dimension 
(D2) and the Kaplan-Yorke dimension (DKY) found in the re-analyses for all three variables.  
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where Dλ is the number of positive Lyapunov exponents.  
 

a cuto↵ frequency of about 2⇥ 10�2 cycles/day and a white spectrum for lower frequencies,149

implying a summer variability at low and high frequencies which is comparable to the NH,150

as expected, since Rossby waves are not able to propagate into the stratosphere for both the151

NH and SH during summer. The SH summer PDF (Figs. 2c) also shows less energy than152

the winter PDF, as implied by the greater variability during winter.153

d. Dimension of the attractor154

The dimension of the attractor is calculated following the theory of Grassberger and155

Procaccia (1983a,b) as in Badin and Domeisen (2014), to which the reader is referred for a156

description of the theory and of the methods. Only a brief summary will be reported here.157

The time series are first embedded in a M -dimensional space using a delay time ⌧ . The158

resulting vectors take the form159

~x(t) = {x(t), x(t+ ⌧), ..., x [t+ (M � 1)⌧ ]}. (1)

Di↵erent choices for the embedding dimension and the time delay can be made. For a160

summary of the possible choices see e.g. Tsonis et al. (1993). In this study, the maximum161

embedding dimension will be defined following Ruelle (1990) as M = 2 log10 N , where N is162

the number of data points in each time series. Given the length of the time series considered163

in this analysis, the value of M = 8 will be used throughout the study. The delay time ⌧ will164

instead be evaluated as the first minimum of the mutual information (Fraser and Swinney165

1986) or as the time required to the autocorrelation function to reach the value of 1/e. The166

values of ⌧ used for the di↵erent variables and datasets are reported in Table 1, column 1.167

Results show that the delay time varies between ⌧ = 34 and ⌧ = 196, with larger values168

associated with the first minimum of the mutual information and smaller values for the first169

zero of the autocorrelation function. The correlation dimension D2 is then calculated as170

D2 = �@ lnC2 (✏)
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The Lyapunov exponents are calculated following the 
algorithm of Sano and Sawada (1985). The number of 
Lyapunov exponents is the same as the dimension of 
the embedding phase space, while the ordered 
Lyapunov spectra λ1 ≥ ... ≥ λM define the Kaplan-
Yorke dimension  
 

where C2(m, ε) is the correlation between the points 
obtained from (1) within a ball of radius ε. For 
deterministic chaos, D2 must converge to a value for a 
large enough interval of ε.  
 

While the existence of a strange attractor for climate has 
been proven difficult and limited by a number of factors,  
Lorenz (1991) showed that the dimension of the attractor 
determined from the analysis of time series depends on 
the chosen variable, and he proposed that the finite 
attractor dimensions found by some of the earlier studies 
might correspond to the dimension of a subsystem. In this 
study we again raise the question of the existence of a 
finite attractor, but guided by the studies described above 
we restrict our attention to a climate subsystem, 
represented by the NH extratropical stratosphere.  
The goal is to study the dependence of the dimension of 
the attractor on the choice of the variable to be analyzed, 
using four different reanalyses.  
Results show that the analysis of the time series exhibits a 
convergence to finite dimensions for all the different 
variables and data sets, though with a large range of 
results for the same analysis evaluated in different data 
sets, or for different variables within the same data set. 
The different measurements of the dimension of the 
attractor show a smaller spread for the SH than for the NH.  
 
Note that both in the SH and in the NH the values of D2 
change not only in different data sets but also between 
variables. The obtained values must be considered with 
caution, due to the large difference between different 
dimensions obtained using the same variable, which is a 
signature of large intermittency in the system. It is 
therefore not clear if the different dimensions are given by 
the different results for different variables (Lorenz, 1991) 
although they are dynamically related, or if it arises from 
inconsistency between the data sets or methodology. The 
results obtained in this study question thus the 
characteristics or the very existence of a strange attractor 
for stratospheric variability, leaving open the question if the 
climate system can be modeled as a stochastic system 
(Hasselmann 1976). Further work is required to determine 
the correct statistical representation of the variability.  

NH 

SH 

Figure 1: ERAinterim zonal mean zonal wind timeseries 
with the seasonal cycle removed for (top) the NH and 
(bottom) the SH.  
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