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Motivation

Experiment

Eddy formation

Near-inertial waves

The interaction between near-inertial wave propagation and geostrophic flow was already investiga-
ted by Kunze (1985). Anticyclones can trap and enhance downward propagation of near-inertial 
wave energy. A critical-layer can be formed below these eddies where the associated vorticity ano-
maly vanishes. Several recent model studies point out the importance of this eddy near-inertial wave 
interaction for the downward transport of near-inertial energy into the deeper ocean. There it could 
provide an energy source for small scale dissipation. However, observations of critical layer trapping 
are rare.

A multi-platform observational study based on several gliders, moorings and shipboard measure-
ments was carried out off Peru in January / February 2013 to investigate the interaction between 
mesoscale eddies and near-inertial waves.

A coherent anticyclone formed in the study area allowing detailed investigation of its impact on the 
near-inertial energy distribution.

Figure 1:  Mean sea surface temperature in Jan/Feb 2013 off Peru from MODIS in color (left). On the right: water depth (grey con-
tours, 200 m interval), glider tracks (colored lines), CTD stations (black circles) and the two mooring positions (blue squares).

Figure 2: Left column: depth-averaged horizontal circulation for eight periods based on vmADCP (blue), moored ADCP (red) and glider drift-inferred 
velocities (black). The middle and right column show the temporal evolution of the along- and cross-shore velocity components (vmADCP) respec-
tively along the grey transects (left column). Isopycnals (25.6, 26.2 and 26.4) in grey.
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Eddy generation mechanism
Marshall and Tansley [2001] propose that the separation of a barotropic boundary current at a verti-
cal sidewall takes place when r < L = (U/β)^1/2. Using a modified condition for flow separation of a 
boundary current accounting for topographic beta, it is shown that the conditions for flow separation 
is indeed fulfilled.

Discussion
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Figure 3: Left: bottom slope in color and depth (grey). The radius of the topographic curvature and the 400 m isobath are shown in 
black. The three black crosses indicate the position of the eddy centre at three different time periods (Jan. 22 - 27, Jan. 28 - Feb. 3 
and Feb. 7 - 11). The right panel shows the effective beta (β eff) (black) and the resulting length scale L =(U/β_eff)^1/2 (red) along 
the 400 m isobath.
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Figure 5 - Cross-shore velocity component from moored ADCP measurements bet-
ween 50 - 300m (a)  low passed (6 days), (b) NIW bandpassed (1.5-3 days) and RCM 
measurements at (c) 407 m and (d) 703m both NIW bandpassed.

Figure 4: Along-shore velocity (upper panel) and cross-shore velocities (lower panel) through 
the eddy observed by vessel mounted ADCPs. Te middle panel show the position of the tran-
sects and the depth averaged near-surface velocity.

Enhanced near-inertial energy (NIE) is found at the eddy base possiibly due to downward propagati-
on of NIE within the anticyclone and NIW accumulation at a critical layer below.

What are the sinks of NIE at the critical depth ? Kunze et al. (1995) suggest three possible pathways: 
into (1) mean flow, (2) untrapped waves or (3) dissipation
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