
A practical guide to the usage of
scientific software at CEN

Software group

Hamburg, January 27, 2023

1

Contents

1. Introductory notes 3

2. The scientific software tree 4
2.1. The /client/bin location . 4
2.2. The module system . 5
2.3. The /sw structure . 9

3. Building an application 11
3.1. Compilers available . 11

3.1.1. Gnu Compiler Collection . 11
3.1.2. Intel Compilers . 11

3.2. Compiling the source code . 12
3.3. Linking against libraries . 13

3.3.1. Shared libraries . 13
3.3.2. Static libraries . 15

3.4. Developing the application . 16
3.4.1. Multiple source code files . 16
3.4.2. C preprocessing . 17

3.5. Parallelizing the application . 19
3.5.1. OpenMPI . 19
3.5.2. MPICH . 20

3.6. Building the application with a Makefile 22

4. Running the application 26
4.1. Running on a local machine . 26
4.2. Running on a computing cluster . 27

4.2.1. Cluster overview . 27

5. Post processing utilities 29
5.1. Geophysical data processing and visualization software 29
5.2. Accessing the software from outside the Campus 36

A. Example: the ”shallow water” model 37
A.1. Model equations . 37
A.2. Discretization of the equations . 38
A.3. Fortran source code . 38

2

1. Introductory notes

This document is intended for users recently arrived to a CEN (Centrum für Erdsys-
temforschung und Nachhaltigkeit) institute of the University of Hamburg, who are
not familiar with the steps needed to deploy their computing applications (a numer-
ical model, for instance) in the available computing systems. The document covers
topics like source code compilation and linking against libraries, job submission in
the local workstation or in a cluster and output post-processing possibilities. The
brief descriptions of the installed software packages given here are taken from the re-
spective sources, which can be found by following the hyperlinks given throughout
the text.

In this practical guide it is assumed that the user 1) is using either a local Desktop
computer running a Debian Linux distribution or using a local Thin Client terminal
connected to a central server and 2) wants to deploy a computer application either
locally in his/her Linux machine or in the central Linux compute cluster “marin”.

Before moving on to the next chapters, we suggest the new user first reads the mate-
rial included in the CEN-IT web page http://www.cen.uni-hamburg.de/facilities/
cen-it.html containing all necessary basic information for a quick start in the com-
puter environment. Whereas detailed information about the Unix operating system
(GNU/Linux) should be searched elsewhere.

CEN-IT (CEN IT Services) provides IT support to all institutes clustered in CEN. The
support includes hardware procurement and repair, software installation and main-
tenance, mail and websites management and server administration. In case of special
problems and questions, which are not solved after reading this document and the
material found in the CEN-IT web pages, please send an email request to the CEN-IT
Help-Desk using helpdesk.cen@uni-hamburg.de.

Just like the software tree described ahead, this document is also being constantly
updated. The user is therefore asked to search for the newest version of this docu-
ment in the CEN-IT web page or under /data/share/CIS/cen_sw_guide. This
document comes with supplementary material, which can be found under /data/
share/CIS/cen_sw_guide/suppl.

3

http://www.cen.uni-hamburg.de/facilities/cen-it.html
http://www.cen.uni-hamburg.de/facilities/cen-it.html
mailto:helpdesk.cen@uni-hamburg.de

2. The scientific software tree

This first section introduces the user to the ways of accessing the scientific software
packages installed in the central servers. This software tree is automatically mounted
on every workstation or server residing inside the network.

In order to guide the user’s shell to executables located within the software tree, their
locations have to be listed within the user’s PATH environment variable. This is ac-
complished in two ways. In the first case, some paths (/bin, /usr/bin, /usr/
local/bin, /client/bin, etc) are set automatically when the user logs in. In those
folders, executables or symbolic links to executables exist, so that the user can use
these packages at all times without further action. In the second case the paths are
to be set by the ”module” system, what requires special user action in the form of
commands that make the package available. This module system allows the user to
access without much effort specific software packages installed on the central servers
and to set the correct paths to executables and libraries.

2.1. The /client/bin location

In the local folders /bin and /usr/bin the user will find system tools, like editors
and shells and some scientific tools, like the system perl, the system python or the
system C/Fortran compilers. The software packages installed locally are provided
by the operating system distribution and can only be upgraded as part of a general
operating system upgrade (for instance when upgrading from Debian Linux 9 a.k.a
”stretch” to Debian Linux 10 a.k.a ”buster”).

In the case of office-related packages with no need to choose between different ver-
sions and which do not require special environment variable setup, symbolic links
to those package executables, manual pages and info document files are simply cre-
ated in the folder /client, within the appropriate directory (/bin, /sbin, /man or
/share). These directories are appended automatically to the environment variables
in the global shell startup scripts allowing the user to use these packages without any
action. Please note that headers, libraries or data belonging to those packages are not
linked and therefore the user should search for them in the system if needed.

At login time /client/bin is therefore added to the user’s PATH environment vari-
able so that the software in /client/bin can be started from the command line by
just typing the program’s command name. In /client/bin the user will find links
to software administrated by CEN-IT for which only one version is provided and
which do not require special setup. This is the case of email clients, web browsers and
non-scientific office tools. The most relevant packages found under /client/bin
are:

4

• Libreoffice - Open source personal productivity office suite: Writer, Calc, Im-
press, Draw, Math and Base (http://www.libreoffice.org)

• Rdesktop - Open source client for Windows remote desktop services (http:
//www.rdesktop.org)

In /client/bin only the symbolic links to the main commands of each package
listed above exist. The packages themselves are installed in the central software tree,
under /sw/<os-name>, where <os-name> is one of the Linux distributions avail-
able and maintained by CEN-IT (see below).

• buster-x64 (Debian GNU/Linux 10 ”buster”, 64 bits)

• centos7-x64 (CentOS Linux 7, 64 bits)

2.2. The module system

All the scientific software to be used in the Linux-based computers is made available
through modules (http://modules.sourceforge.net/). Each module contains
the information needed to configure the shell for an application by setting the appro-
priate environment variables. To be able to use a certain software package (and with
a specific version), all that is needed to do is to load the corresponding module and
then type the application’s executable name on the command line.

The module system is therefore a command line tool to manage environments of soft-
ware installed in the central software tree. Some key advantages of using the module
system are: (1) each user can immediately view the current software configuration;
(2) it is easy to switch between different software versions; (3) paths and other envi-
ronment variables are automatically set.

The most important commands of the module system are:

• module avail – Displays all modules that are available (but not necessarily
loaded) on the system.

• module list – Displays all modules that are currently loaded.

• module load <module−name> – Loads the module <module−name>. This com-
mand needs to be executed before the software package can be used.

• module unload <module−name> – Unloads the module <module−name>. This
command removes all the changes to the shell environments executed when
loading the module.

• module switch <old−module−name> <new−module−name> – Unloads <old←↩
−module−name> and then loads <new−module−name>. This command can be
used to switch software versions.

5

http://www.libreoffice.org
http://www.rdesktop.org
http://www.rdesktop.org
http://modules.sourceforge.net/

• module show <module−name> – Shows information about the modification/cre-
ation of the PATH, MANPATH or other environment variables.

• module purge – Unloads all default and previously loaded modules.

By convention, module names (as listed by the commands module avail or module←↩
list) have the format <package-name>/<package-version>. If the user wants
to list all versions of a single package that are installed in the software tree, the com-
mand module avail <package−name> can be issued. For only a few packages a
module with name <package-name>/default exists. This corresponds to the
standard version of the package as explicitly defined by CEN-IT. The standard ver-
sion can be in some cases the most recent version or in other cases the most stable
release of the software. To load the standard version it is sufficient to do module←↩
load <package−name>, i.e. without the version specified.

A practical example of usage is given next. If the user wants to use the default Intel
Fortran 90 compiler, the usage is:

module load intel

To switch from the default version to some specific version, one needs to do:

module switch intel intel/ 2 0 . 0 . 1

To completely erase the access to the loaded Intel compiler, the syntax is:

module unload intel/ 2 0 . 0 . 1

Note that no modules are loaded by default, so, for frequently used software pack-
ages, the user can add the module load <module−name> instructions to the login
shell script file (.cshrc or .bashrc). If some software version is available only on a
specific platform, the user can load the module only on that platform by nesting the
module load ... command in one platform-specific if block in the login shell script.
An example is given below for the cases

if using tcsh:

6

if (`lsb_release −cs ` == ”buster”) then
module load intel
module load python/2.7−ve6
module load matlab/2016a
endif

or if using bash:

if [”$ (lsb_release −cs) ” == ”buster”] ; then
module load intel
module load python/2.7−ve6
module load matlab/2016a
fi

For the users working on a workstation running the Debian ”buster” distribution, the
following packages are available through the module system. They include compil-
ers, libraries, general-purpose and specific-use geophysical processing packages. The
most relevant packages used for post-processing of model and observational geo-
physical data will be presented in more detail in section 5.

anaconda3/2020.02 hdf5/ 1 . 1 0 . 6 ←↩
matlab/2021b ←↩

openmpi/4.1.4−gccsys
anaconda3/2022.05 idl/8.7 ←↩

matlab/2022a ←↩
openmpi/4.1.4−static−gcc92

atom/ 1 . 4 5 . 0 idl/8.8 ←↩
mbsystem/ 5 . 7 . 5 ←↩

openmpi/4.1.4−static−intel22
cdi/ 1 . 9 . 7 idl/ 8 . 8 . 1 ←↩

mendeley/ 1 . 1 9 . 4 ←↩
openscad/2019.05

cdo/1.9.10−gccsys idl/ 8 . 8 . 2 ←↩
mpich/3.4.1−gccsys ←↩

panoply/ 4 . 1 1 . 1
cdo/ 1 . 9 . 9rc2−gccsys intel/ 1 9 . 0 . 4 ←↩

mpich/3.4.1−static−gcc92 ←↩
paraview/ 5 . 7 . 0

cgribex/ 1 . 9 . 4 intel/ 2 0 . 0 . 1 ←↩
mpich/3.4.1−static−intel19 ←↩

paraview/ 5 . 8 . 0
cmake/ 3 . 1 6 . 4 intel/ 2 1 . 4 . 0 ←↩

mpich/3.4.1−static−intel20 ←↩
paraview/ 5 . 9 . 0

cmake/ 3 . 2 4 . 1 intel/ 2 2 . 1 . 0 ←↩
mpich/3.4.1−static−intel21 ←↩

pycharm/ 2 0 2 0 . 3 . 4
comsol/5.2a intel/ 2 2 . 2 . 1 ←↩

mpich/3.4.1−static−intel22 ←↩
pycharm/ 2 0 2 2 . 2 . 3

dealii/ 9 . 4 . 0 intel_inspector/2019 ←↩
mpich/4.0.3−gccsys python3←↩

/ 3 . 8 . 2
default intel_inspector/2020 ←↩

mpich/4.0.3−static−gcc92 qgis/ 3 . 1 4 . 0

7

eccodes/ 2 . 1 7 . 0 intel_inspector/2021 ←↩
mpich/4.0.3−static−intel22 qgis/ 3 . 8 . 0

eclipse/2022−09 intel_inspector/2022 ←↩
ncl/6.3.0−nodap−precompiled r/ 3 . 6 . 3

ferret/ 7 . 6 . 0 intel_mpi/2019 ←↩
ncl/ 6 . 6 . 2 r←↩

/ 4 . 2 . 2
ffmpeg/ 4 . 2 . 2 intel_mpi/2021 ←↩

nco/ 4 . 9 . 2 reveal←↩
/4.1

filezilla/ 3 . 4 8 . 0 intel_vtune/2019 ←↩
ncview/ 2 . 1 . 7 reveal←↩

/5.0
filezilla/ 3 . 6 2 . 2 intel_vtune/2020 ←↩

netcdf/c−4.7.4−fortran−4.5.2−cxx4−4.3.1−cxx−4.2 rstudio←↩
/1.2.5042−precompiled

flow3d/11.2 intel_vtune/2021 ←↩
netlogo/ 6 . 2 . 2 rstudio←↩

/2022.07
flow3d/12.0 intel_vtune/2022 ←↩

norsar/3d−2019 ruby←↩
/ 2 . 7 . 1

flow3d/2022.1 isl/ 4 . 4 . 2 0 1 1 . 9 ←↩
norsar/3d−2020 scilab←↩

/ 6 . 1 . 1
gcc/ 1 2 . 1 . 0 jdk/ 1 . 8 . 0_144 ←↩

norsar/3d−2020.1 ←↩
seadas/ 7 . 5 . 3

gcc/ 9 . 2 . 0 julia/ 1 . 4 . 1 ←↩
norsar/3d−2021.1 ←↩

seismicunix/ 4 . 4 .r11−gccsys
gdal/ 3 . 0 . 4 julia/ 1 . 5 . 1 ←↩

norsar/3d−2021.3 ←↩
seismicunix/ 4 . 4 .r11−noxdr−gccsys

geopsypack/ 3 . 2 . 2 mambaforge/ 4 . 1 3 . 0 ←↩
norsar/3d−2022.0 ←↩

seismicunix/default
geopsypack/ 3 . 4 . 2 maple/2019 ←↩

octave/ 5 . 2 . 0 ←↩
smartgit/ 2 1 . 1 . 2

gifmerge/1.33 maple/2020 ←↩
odv/ 4 . 7 . 1 0 ←↩

sublime_text/4113
git/ 2 . 2 6 . 2 maple/2021 ←↩

opencv/ 4 . 3 . 0 ←↩
swig/ 4 . 0 . 1

gitkraken/ 5 . 0 . 4 maple/2022 ←↩
openmpi/2.0.0−gccsys ←↩

teams/ 1 . 3 . 0
gitkraken/ 8 . 0 . 1 master−pdf−editor/ 5 . 4 . 3 8 ←↩

openmpi/2.0.0−static−gcc92 teleport/ 1 1 . 1 . 2
gmt/ 4 . 5 . 1 4 mathematica/ 1 1 . 3 . 0 ←↩

openmpi/2.0.0−static−intel19 texmaker←↩
/ 5 . 0 . 4

gmt/ 4 . 5 . 1 8 mathematica/ 1 2 . 0 . 0 ←↩
openmpi/2.0.0−static−intel20 udunits←↩

/ 2 . 2 . 2 6
gmt/ 6 . 0 . 0 mathematica/ 1 2 . 1 . 1 ←↩

openmpi/2.0.0−static−intel21 wgrib←↩
/ 1 . 8 . 1 . 2a

gnuplot/5.2.8−gccsys mathematica/ 1 2 . 3 . 0 ←↩
openmpi/2.0.0−static−intel22 wgrib2←↩

/ 2 . 0 . 1
google_earth/7.3 mathematica/ 1 3 . 0 . 1 ←↩

openmpi/4.1.0−gccsys whirlgif←↩
/3.04

8

grads/ 2 . 2 . 1 mathematica/ 1 3 . 1 . 0 ←↩
openmpi/4.1.0−static−gcc92 xanim←↩

/ 2 . 8 0 . 1
grass/ 7 . 8 . 6 matlab/2019b ←↩

openmpi/4.1.0−static−intel19 xv←↩
/3.10a

grass8/ 8 . 2 . 0 matlab/2020a ←↩
openmpi/4.1.0−static−intel20

grib_api/ 1 . 2 8 . 0 matlab/2020b ←↩
openmpi/4.1.0−static−intel21

hdf/ 4 . 2 . 1 5 matlab/2021a ←↩
openmpi/4.1.0−static−intel22

2.3. The /sw structure

As previously stated, scientific software packages not provided by the vendor of the
operating system are served by a central server and (always) available via the di-
rectory /sw, which is a link to /opt/cen/sw. The command df −h /sw shows the
filesystem (“nfs4.isi.cen.uni-hamburg.de”:/ifs/cen/sw) serving the /opt/cen/sw
mount.

The software installation system enforces a consistent naming scheme for each pack-
age installation directory. The general form is /sw/<os-name>/<package-name>
-<package-version>-<special-feature>-<compiler>

where

• <os-name> is the operating system name;

• <package-name> is the software package name;

• <package-version> is the software package version;

• <special-feature>, if present, might be:

– precompiled, if the installation was not performed from source code;

– static, if the installation does not contain shared libraries;

– openmpi, to indicate the message passing interface (MPI) implementation
the package has been linked against;

• <compiler>, if present, indicates that the package can only be used with a
certain compiler.

Static versions of central software packages are installed in order for the user to avoid
problems arising from the usage of libraries that are not on the linker’s path. For some
packages, shared versions are also available. More on static and shared libraries will
be given in the next chapter. The user is here just warned to the existence of both
types of installed libraries in the software tree.

9

The <compiler> tag can be, for instance, gcc92 or intel22 and reflects the com-
piler used during installation. More on the available compilers is also given in the
next chapter.

10

3. Building an application

In this section a practical example is used to demonstrate the resources available to
build a user application.

Creating an executable of a computer application is a process that can be divided
into two components: first the ”compilation” and second the ”linking”. The term
”building” can be used to refer to the whole process of going from the source code to
the executable, thus encompassing both steps.

During the compilation phase, the source code files written either in C, Fortran or
other language (the .c, .f, .f90, ... files) are interpreted by the compiler to produce
machine language instructions corresponding to the source code lines. The output of
compilation alone are ”object” files (.o files) which can not be executed. The linking
phase, on the other hand, uses the object files and creates one executable file.

3.1. Compilers available

A brief description of the four C/Fortran compilers available for the Linux platforms
is given next together with the way to access them with the ”module” system. Please
note that the compiler versions given below correspond to the most recent version
installed at the date of writing of this document. The software tree has, however,
earlier versions which are kept for a certain period of time to insure usage consistency
for a specific task (a research project, a Ph.D. or M.Sc. work, etc).

3.1.1. Gnu Compiler Collection

The GNU Compiler Collection (http://gcc.gnu.org) includes front-ends for C,
C++, Objective-C, Fortran, Java, Ada, and Go, as well as libraries for these languages
(libstdc++, libgcj,...).

access : module load gcc/ 1 2 . 1 . 0
commands : gcc , c++ , cpp , g++ , gcov , gfortran , . . .

3.1.2. Intel Compilers

The Intel Composer XE product family (http://software.intel.com/en-us/
articles/intel-composer-xe) offers C++ and Fortran compilers combined with
the performance-oriented Intel Math Kernel Library, Intel Integrated Performance
Primitives and Intel Threading Building Blocks.

11

http://gcc.gnu.org
http://software.intel.com/en-us/articles/intel-composer-xe
http://software.intel.com/en-us/articles/intel-composer-xe

access : module load intel/ 2 2 . 2 . 1
commands : icc , ifort , . . .

3.2. Compiling the source code

In order to illustrate the use of the above tools to develop a user application, we are
going to make use of the Fortran source code described in Appendix A. The Fortran
program numerically solves the shallow water equations, a set of coupled partial dif-
ferential equations widely used in Geophysical appplications. The reader interested
in more details about the model, namely the approximations it encloses and the way
to discretize and solve the set of equations, should at this point consult the appendix.
The source code in its simplest form can be found there. The respective file is in the
folder /data/share/CIS/cen sw guide/suppl/case1. Several modifications of that
original source code will be developed throughout this section; the respective files
can be found in /data/share/CIS/cen sw guide/suppl/case[2-5]. In order to try out
the code and follow the steps described in this guide, the user is asked to first copy the
contents of folder /data/share/CIS/cen sw guide into a directory of his/her choice,
either in the home directory or under /scratch.

The Fortran source code in folder ”case1” is composed of a single file, containing a
main program and a subroutine. Throughout the whole guide the GNU compiler
”gfortran” will be used. In principle, building this single source code would simply
be:

gfortran −o sw model .f

The flag -o allows the user to specify the name of the output executable. For other
compiler flags, the user should consult the respective manual page by issuing (in this
particular case of the GNU compiler) ”man gfortran”.

The above compilation command can in fact be split into two steps:

gfortran −c model .f
gfortran −o sw model .o

which are the two phases of first compiling the source code into an object and then
linking the object and called libraries into an executable. The compiler also serves as
linker but in reality it is calling the command ”ld” with some options.

12

The subroutine present in the source code is called to perform the model output
in NetCDF (Network Common Data Format - http://www.unidata.ucar.edu/
software/netcdf) and, to that end, it uses functions from the NetCDF Fortran li-
brary and includes a special header file (the ”netcdf.inc”). So, a dependency is built
in the subroutine to functions external to it. So, in reality, the compilation and linking
steps above will fail since the NetCDF-related functions are unknown to the com-
piler. The correct way is 1) to include the NetCDF headers at compilation time using
flag ”-I” and 2) to link against the library containing the netCDF functions using flag
”-L”.

gfortran −c model .f −I<netcdf−include−dir>
gfortran −o sw model .o −L<netcdf−library−dir> −lnetcdff

The NetCDF package is installed in the software tree and is compiled separately for
all the available compilers. The proper way to compile and link against libraries is
explored next.

3.3. Linking against libraries

There are two types of libraries: the static and the shared libraries. Linkers give
preference to shared over static libraries if both are found in the location given by the
”-L” flag. This can lead to problems when executing the application since at runtime
it might be that the shared libraries are not found. In this case, users have to set
the variable LD LIBRARY PATH to point to the shared library location or encode the
runtime library search path into their executables.

3.3.1. Shared libraries

Shared libraries have the extension *.so. The main difference between these and the
static is that the libraries are not included at linking time, but only at run time. At link-
ing time only information is retained in the generated program about which libraries
are to be used at run time. The runtime linker then looks at the start of a program
for the required libraries, loads all in memory and only fills the placeholders for the
function addresses.

There are some advantages to the use of shared libraries:

• Less storage, since there is no copy of the library in the executable.

• Libraries can be easily replaced without re-compilation.

13

http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf

• Programs can also load shared libraries with certain operating system functions
(e.g., plugins).

• Shared libraries will find further dependencies. The user must only indicate the
direct dependencies.

The correct compilation and linking of the ”case1” code against the shared version of
the netCDF library is:

gfortran −c model .f −I/sw/buster−x64/netcdf_fortran−4.5.2−gccsys/include

gfortran −o sw model .o −L/sw/buster−x64/netcdf_fortran−4.5.2−gccsys/lib −lnetcdff

or (equivalent) :

gfortran −o sw model .o /sw/buster−x64/netcdf_fortran−4.5.2−gccsys/lib/libnetcdff .so

The runtime linker will try to find the shared library ”libnetcdff.so” in the following
places:

• If set, in the list of paths in $LD LIBRARY PATH, the analog of $PATH for li-
braries;

• In the system standard places like /lib, /usr/lib and /usr/local/lib.

• In the list encoded in the program, passed with the flag ”-L”;

Encoding a list in the executable is done with flag ”-L” as above. However, it will
not suffice in this case since a shared version of the library is also found in /usr/lib,
what is given preference. So, additionally, one must add the flag ”-rpath <path to
library>” in the linking step. Because this option must be passed from the compiler
to the linker, the syntax is not obvious:

gfortran −o sw model .o −L/sw/buster−x64/netcdf_fortran−4.5.2−gccsys/lib −Wl,−rpath −Wl ,/sw/←↩
buster−x64/netcdf_fortran−4.5.2−gccsys/lib −lnetcdff

As the RPATH is now explicitly encoded in the executable, the program will take
exactly the shared library residing in /sw/buster-x64/netcdf fortran-4.5.2-gccsys/lib
and not the one in /usr/lib. There are some commands the user can use to check
which paths for shared libraries are encoded:

• ”ldd <executable>” Lists which shared libraries are loaded and where.

• ”readelf -a <executable> | grep RPATH” : Lists the list of rpaths encoded in the
binary.

14

• ”nm -D <executable>” : Lists which functions are used/provided by a shared
library.

3.3.2. Static libraries

To avoid problems at run time, the software tree also offers static versions of certain
packages (those with the tag ”static” under /sw/<os-name>)

The static libraries are simply archives (similar to tar archives) with extension *.a that
contain object files (*.o). Instead of a collection of object files, the *.a static library file
can be directly given to the linker. In principle, building the application with static
libraries could simply be:

gfortran −c model .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include
gfortran −o sw model .o −L/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib −lnetcdff

or (equivalent) :

gfortran −o sw model .o /sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib/libnetcdff .a

However the above leads to ”undefined reference” errors, i.e., additional function de-
pendencies that arise since the static version of the netCDF library was linked with
other static libraries (like the HDF5, SZIP, CURL, etc). All direct and indirect depen-
dencies must be specified, otherwise there will be an error. The order of the paths and
libraries given by the ”-L” flag is also important since the linker searches only in the
subsequent libraries for suitable functions.

So, linking against a static library is not so straightforward but has the advantage
that all needed libraries will be integrated into the executable (the latter becomes,
of course, larger) and therefore there are no problems during run time. To ease
the process of static linking there is in every netCDF installation (under /sw/<os-
name>/netcdf fortran-<version>-static-<compiler>/bin) one script named ”nf-config”
which tells the user the exact syntax:

/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/bin/nf−config −−flibs

which gives

−L/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib −lnetcdff −L/sw/buster−x64/libaec←↩
−1.0.4−gccsys/lib −L/sw/buster−x64/hdf5−1.10.6−static−gccsys/lib −L/sw/buster−x64/←↩
netcdf_c−4.7.4−static−gccsys/lib −lnetcdf −lnetcdf −lm −lhdf5_hl −lhdf5 −lsz −lz −lm −←↩
ldl

The user only has to copy the output of ”nf-config –flibs” to his/her linking com-
mand. The final correct static building sequence of the source code in ”case1” is:

15

gfortran −c model .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc62/include
gfortran −o sw model .o −L/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib −lnetcdff −L/←↩

sw/buster−x64/libaec−1.0.4−gccsys/lib −L/sw/buster−x64/hdf5−1.10.6−static−gccsys/lib −L←↩
/sw/buster−x64/netcdf_c−4.7.4−static−gccsys/lib −lnetcdf −lnetcdf −lm −lhdf5_hl −lhdf5 ←↩
−lsz −lz −lm −ldl

The choice of which netCDF library to use from those in /sw should obey the follow-
ing:

1. First of all, of course, use one that resides in the folder of the target operating
system, e.g., /sw/buster-x64;

2. Use one of those with ”static” in their name to avoid problems with ”rpath”;

3. Use the one corresponding to the compiler that has been used to compile the
source code, e.g., netcdf fortran-4.5.2-static-gcc92, if the compiler of choice is
the GNU compiler version 9.2.*;

Several other numeric libraries are installed in the software tree. They can be found
under /sw/<os-name>/<package-name>. The complete list is given below:

arpack−2.1
atlas_lapack−3.10 .3
fftw−3.3 .8
igraph−0.7 .1
mpiblacs−1.1−p3
netlib_lapack−3.9 .0
parmetis−4.0 .3
petsc−3.5 .1
plapack−3.2
qhull−2012.1
qrupdate−1.1 .2
scalapack−2.0 .2
suitesparse−4.3 .1

3.4. Developing the application

3.4.1. Multiple source code files

When the source code becomes very large it is of good practice to divide it into sep-
arate more easily-manageable files. It is natural to do a separation into subroutines
that deal with a certain aspect of the application. This is exemplified in /data/share/-
CIS/cen sw guide/suppl/case2, where the initial source code is split into a main
program file and subroutine files:

16

main .f − calls the subroutines and contains the main loop
initial .f − generates the initial conditions
loop_u .f − steps forward the x−momentum equation
loop_v .f − steps forward the y−momentum equation
loop_eta .f − steps forward the continuity equation
bound .f − applies the boundary conditions
out_cdf .f − outputs the model results in NetCDF format

Note as well that a header file (”param.h”) is now included in the main program and
in all subroutines with the line:

include 'param .h '

It contains the variable declarations and some definitions of constants. This way,
these declarations have to be done only at one place and the user can very easily
change their values.

The two steps taken above for compiling and linking are similar; only that now the
compiler will have to generate object files for each of the source code files. The *.o
files are then statically linked together (and with all the dependent libraries: netcdf,
hdf, etc) at the linking stage to create one executable program.

gfortran −c main .f
gfortran −c initial .f
gfortran −c loop_u .f
gfortran −c loop_v .f
gfortran −c loop_eta .f
gfortran −c bound .f
gfortran −c out_cdf .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include
gfortran −o sw main .o initial .o loop_u .o loop_v .o loop_eta .o bound .o out_cdf .o −L/sw/buster←↩

−x64/netcdf_fortran−4.5.2−static−gcc92/lib −lnetcdff −L/sw/buster−x64/libaec−1.0.4−←↩
gccsys/lib −L/sw/buster−x64/hdf5−1.10.6−static−gccsys/lib −L/sw/buster−x64/netcdf_c←↩
−4.7.4−static−gccsys/lib −lnetcdf −lnetcdf −lm −lhdf5_hl −lhdf5 −lsz −lz −lm −ldl

3.4.2. C preprocessing

The C preprocessor implements the macro language used to transform C, Fortran,
etc programs before they are compiled. It is useful, for instance, to activate/deacti-
vate parts of the source code, thus allowing to include some optional features in the
application. More detailed information about C preprocessing can be found under
http://gcc.gnu.org/onlinedocs/cpp.

Under /data/share/CIS/cen sw guide/suppl/case3 the reader can find a modifica-
tion of the ”case2” source code that exemplifies the use of C preprocessing to generate

17

http://gcc.gnu.org/onlinedocs/cpp

optional features. The main program (”main.F”) has now one option and the ”ini-
tial.F” subroutine has now three options. At the very beginning of these two source
code files there is now a file (cppdefs.h) being included. The syntax is (e.g., for the
main program):

program main

#include ”cppdefs .h”

Fortran code here

#ifdef OPTION1
Fortran code here

#endif

Fortran code here

#ifdef OPTION2
Fortran code here

#endif

Fortran code here

end

In file cppdefs.h there is simply a list of options that are either defined or undefined,
as follows:

#define OPTION1
#undef OPTION2

Building the application needs now a step before compilation. The source code has
to be run first through the C preprocessor (”cpp”). The source code files, that now
have the extension *.F (to denote that it has C directives inside), will be interpreted
at the light of the options defined in cppdefs.h and will then be written to files with
extension *.f, which can be further compiled and linked as before.

cpp −P −traditional main .F > main .f
cpp −P −traditional initial .F > initial .f
cpp −P −traditional loop_u .F > loop_u .f
cpp −P −traditional loop_v .F > loop_v .f
cpp −P −traditional loop_eta .F > loop_eta .f
cpp −P −traditional bound .F > bound .f
cpp −P −traditional out_cdf .F > out_cdf .f
gfortran −O3 −c main .f
gfortran −O3 −c initial .f
gfortran −O3 −c loop_u .f
gfortran −O3 −c loop_v .f
gfortran −O3 −c loop_eta .f
gfortran −O3 −c bound .f
gfortran −O3 −w −c out_cdf .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc62/include

18

gfortran −O3 −o sw main .o initial .o loop_u .o loop_v .o loop_eta .o bound .o out_cdf .o −L/sw/←↩
buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib −lnetcdff −L/sw/buster−x64/libaec←↩
−1.0.4−gccsys/lib −L/sw/buster−x64/hdf5−1.10.6−static−gccsys/lib −L/sw/buster−x64/←↩
netcdf_c−4.7.4−static−gccsys/lib −lnetcdf −lnetcdf −lm −lhdf5_hl −lhdf5 −lsz −lz −lm −←↩
ldl

3.5. Parallelizing the application

When the application becomes too large a problem to be solved by one single proces-
sor, maybe because of lack of memory or the computation takes too long to complete,
the only way is to distribute the task among several processors which then run the
job in parallel. There are two main ways of parallelizing a source code, depend-
ing if the target is a shared-memory system or a distributed-memory system. In the
first case the system is composed of several processors (called threads) sharing the
same memory (e.g., a dual- or quad-core machine) and in the second case is a system
of several processors (called nodes) each having its own memory (e.g., a cluster of
single-processor machines connected by a fast interconnect). In practice, the nowa-
days systems are a mixture of both (i.e., clusters of multiple-core machines).

There are, accordingly, two parallel programing modes, one designed for share-memory
systems, the OpenMP (Open Multi-Processing - http://openmp.org), and another
initially designed for distributed memory machines but that nowadays also support
shared-memory, the MPI (Message Passing Interface). MPI is a widely accepted stan-
dard for communication among nodes that run a parallel program on a distributed-
memory system. The interface is a library of routines that can be called from C
or Fortran programs to pass messages between processes on the same computer or
on different computers. Therefore, MPI can be used to program shared-memory or
distributed-memory applications. There are two important open-source implemen-
tations of MPI: OpenMPI and MVAPICH2, both are installed in the software tree.

3.5.1. OpenMPI

The Open MPI Project (http://www.open-mpi.org) is an open source implemen-
tation of the Message Passing Interface standard that is developed and maintained
by a consortium of academic, research, and industry partners.

access : module load openmpi/4.1.4−static−<compiler>

where <compiler> can be one of the above : gcc92 , intel22

commands : mpicc , mpic++ , mpiCC , mpif77 , mpif90 , mpirun , . . .

19

http://openmp.org
http://www.open-mpi.org

3.5.2. MPICH

MPICH (http://www.mpich.org/) is a high-performance and widely portable
implementation of the Message Passing Interface standard.

access : module load mpich/4.0.3−static−<compiler>

where <compiler> can be one of the above : gcc92 , intel22

commands : mpicc , mpic++ , mpiCC , mpif77 , mpif90 , mpirun , . . .

The complexity of programming with MPI depends on the type of parallelization en-
visaged (fine or coarse grained parallelization) and might or not require a different
restructuring of the source code. In any case it involves the inclusion of calls to MPI
subroutines. To keep the example simple in this guide, the parallelization here con-
ducted is a domain decomposition, i.e., the model grid is horizontally split into tiles
and each tile is given to a single processor, which advances the calculation in its do-
main and sends/receives data to/from the adjacent tiles. Here, modifications to the
code involve not just calls to MPI subroutines but also splitting the ”do-loops” into
tiles.

In folder /data/share/CIS/cen sw guide/suppl/case4 the user can find the paral-
lelized version of ”case3”. The important changes are in ”main.F” and in the ”loop *.F”
subroutines. The main program has, as a first thing to do, to initialize the MPI envi-
ronment and, as a last step, to finalize the MPI environment (see below). In-between
these two calls, all instructions will be executed by every process except otherwise
stated. One way of making only a dedicated process execute part of the calculations
is to explicitly associate part of the code with a certain process by stating its rank
(variable ”myrank” below), which is given by the ”call MPI COMM RANK”. This is
done in the loop *.F subroutines, where chunks of the ”do-loops” are given to specific
ranks with an ”if-statement”.

program main

include 'mpif .h '

! initialize distributed−memory MPI
CALL MPI_INIT (ierr)

! get number of process in the group associated with the communicator
CALL MPI_COMM_SIZE (MPI_COMM_WORLD ,nprocs ,ierr)

! get rank of the local process in the group associated with the communicator
CALL MPI_COMM_RANK (MPI_COMM_WORLD ,myrank ,ierr)

Fortran code here

! finalize distributed−memory MPI
CALL MPI_FINALIZE (ierr)

20

http://www.mpich.org/

end

But now the program is being effectively split into a number of processes (variable
nprocs above), so that the information each one has at each instant is different. So, a
communication between all processes is needed to exchange the information. There
are a few ways of doing that, either by calls to MPI SEND and MPI RECV or, as cho-
sen here, by calls to MPI GATHER and MPI SCATTER. ”case4” is simple since it has
only 2 processes (ranks 0 and 1) and the only task needed is to gather all information
in each of them. In subroutines ”loop *.F” there are now calls to MPI GATHER:

! gather from all processes the u variable from the local ul variable
CALL MPI_GATHER (ul ,size_ul ,MPI_REAL ,u ,size_ul ,MPI_REAL , 0 ,MPI_COMM_WORLD ,ierr)
CALL MPI_GATHER (ul ,size_ul ,MPI_REAL ,u ,size_ul ,MPI_REAL , 1 ,MPI_COMM_WORLD ,ierr)

The program then proceeds to the next subroutine and is executed by the 2 processes.
Please note that the MPI usage in this example is very simplified. The user should
consult a manual on MPI programming since it is not the scope of the present guide.
The objective is to have a source code that can be executed in parallel so that the
building process is mentioned as well as, further ahead in section 4, the procedure to
run a parallel job.

Building the application is exactly as before, except with ”gfortran” simply replaced
by the MPI wrapper to the compiler, the ”mpif90”.

cpp −P −traditional main .F > main .f
cpp −P −traditional initial .F > initial .f
cpp −P −traditional loop_u .F > loop_u .f
cpp −P −traditional loop_v .F > loop_v .f
cpp −P −traditional loop_eta .F > loop_eta .f
cpp −P −traditional bound .F > bound .f
cpp −P −traditional out_cdf .F > out_cdf .f
mpif90 −O3 −c main .f
mpif90 −O3 −c initial .f
mpif90 −O3 −c loop_u .f
mpif90 −O3 −c loop_v .f
mpif90 −O3 −c loop_eta .f
mpif90 −O3 −c bound .f
mpif90 −O3 −w −c out_cdf .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include
mpif90 −O3 −o sw main .o initial .o loop_u .o loop_v .o loop_eta .o bound .o out_cdf .o −L/sw/←↩

buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib −lnetcdff −L/sw/buster−x64/libaec←↩
−1.0.4−gccsys/lib −L/sw/buster−x64/hdf5−1.10.6−static−gccsys/lib −L/sw/buster−x64/←↩
netcdf_c−4.7.4−static−gccsys/lib −lnetcdf −lnetcdf −lm −lhdf5_hl −lhdf5 −lsz −lz −lm −←↩
ldl

21

3.6. Building the application with a Makefile

This section describes the usage of the ”make” program and the contents of the file
it uses to automatically build a user application, the so-called ”Makefile”. That file
contains the relationships between the source, object and executable files and allows
the user to easily manage the source code from large applications. Instead of typing
the compiling and linking commands manually for every source code file and every
time something is changed in the code, the ”make” utility can be issued and perform
this task with absolutely no effort. Furthermore, the make program keeps track of
which part of the source code has changed since last compilation, so that only those
parts are re-compiled.

Command ”make” works according to file dependencies; for instance, it knows that
in order to create an object file at least one *.f or *.c file is needed. All these dependen-
cies can be specified in the Makefile, which should reside in the same directory as the
source files. The ”make” utility also checks modification times of the files and if one
of the source code files is modified it will run again its compilation.

The most basic form of a ”Makefile” is as follows:

target : source file (s)
command (must be preceded by a tab)

A target given in the ”Makefile” is a file which will be created or updated when any
of its source files are modified. There is a default target for makefiles called ”all”.
The ”make” utility will first execute this target or, in its absence, the first target, if no
specific one is specified. The commands given in the subsequent lines are executed
in order to create the target file.

In our ”case1” the process is divided into two steps, corresponding again to the com-
pilation and linking phases:

sw : model .o
gfortran −O3 −o sw model .o −L/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib −←↩

lnetcdff −L/sw/buster−x64/libaec−1.0.4−gccsys/lib −L/sw/buster−x64/hdf5−1.10.6−←↩
static−gccsys/lib −L/sw/buster−x64/netcdf_c−4.7.4−static−gccsys/lib −lnetcdf −←↩
lnetcdf −lm −lhdf5_hl −lhdf5 −lsz −lz −lm −ldl

model .o :
gfortran −c model .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

In the above ”Makefile”, the first target is the name of the application executable
”sw”. In order to ”make” it the Makefile is saying that an object ”model.o” is needed
(i.e., a dependency exists), and therefore a compilation of the source code ”model.f”
is required. This automatically will execute the second target (and that will occur

22

before the first target). The second target performs the usual compilation. After that,
the command of the first target, the linking phase, is executed.

Once the ”Makefile” is created, the ”make” command can be run by simply typing
the following in the command line:

make −f <make−filename>

If the <make-filename> is simply called ”Makefile” or ”makefile” than typing ”make”
suffices. Specific targets listed in the ”Makefile” can also be specified; this way only
that target (and its corresponding source files) will be executed.

The ”make” program allows the use of macros to store names of files, similarly to
environment variables. The syntax can be as follows:

OBJECTS = main .o bound .o initial .o

Command ”make” will then use this definition in other parts of the ”Makefile”; the
user simply needs to type $(OBJECTS).

Here is a ”Makefile” for ”case2” using a macro.

OBJECTS = main .o bound .o initial .o loop_eta .o loop_u .o loop_v .o out_cdf .o

sw : $ (OBJECTS)
gfortran −O3 −o sw $ (OBJECTS) −L/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib −←↩

lnetcdff −L/sw/buster−x64/libaec−1.0.4−gccsys/lib −L/sw/buster−x64/hdf5−1.10.6−←↩
static−gccsys/lib −L/sw/buster−x64/netcdf_c−4.7.4−static−gccsys/lib −lnetcdf −←↩
lnetcdf −lm −lhdf5_hl −lhdf5 −lsz −lz −lm −ldl

main .o :
gfortran −c main .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

bound .o :
gfortran −c bound .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

initial .o :
gfortran −c initial .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

loop_u .o :
gfortran −c loop_u .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

loop_v .o :
gfortran −c loop_v .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

loop_eta .o :
gfortran −c loop_eta .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

out_cdf .o :
gfortran −c out_cdf .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

A macro value can also be specified when running make. This is useful when the user
wants to specify, for instance, different compiler flags. If the ”Makefile” is:

23

FFLAGS=−O2

OBJECTS = main .o bound .o initial .o loop_eta .o loop_u .o loop_v .o out_cdf .o

sw : $ (OBJECTS)
gfortran $ (FFLAGS) −o sw $ (OBJECTS) −L/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/←↩

lib −lnetcdff −L/sw/buster−x64/libaec−1.0.4−gccsys/lib −L/sw/buster−x64/hdf5←↩
−1.10.6−static−gccsys/lib −L/sw/buster−x64/netcdf_c−4.7.4−static−gccsys/lib −←↩
lnetcdf −lnetcdf −lm −lhdf5_hl −lhdf5 −lsz −lz −lm −ldl

main .o :
gfortran $ (FFLAGS) −c main .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include

bound .o :
gfortran $ (FFLAGS) −c bound .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/←↩

include
initial .o :

gfortran $ (FFLAGS) −c initial .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/←↩
include

loop_u .o :
gfortran $ (FFLAGS) −c loop_u .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/←↩

include
loop_v .o :

gfortran $ (FFLAGS) −c loop_v .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/←↩
include

loop_eta .o :
gfortran $ (FFLAGS) −c loop_eta .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/←↩

include
out_cdf .o :

gfortran $ (FFLAGS) −c out_cdf .f −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/←↩
include

then the following will override the value of FFLAGS in the ”Makefile” and build the
code with the newly defined compiler flags:

make 'FFLAGS=−O3 '

There are some important macros used internally by the ”make” program.

$@ Full name of the current target .
$< The source file of the current dependency .
\$? A list of files for current dependency which are out−of−date .

The way macros are evaluated can also be manipulated. Assuming that a macro is
defined as ”SOURCES = main.F initial.F” than using ”$(SOURCES:.F=.o)” within the
”Makefile” substitutes ”.F” at the end with ”.o”, allowing to have a new list but this
time of objects.

By itself, ”make” knows already that in order to create a ”.o” file, it must use ”gfor-
tran -c” on the corresponding ”.f” file. These rules are built into make, but they can be
customized and other can be specified. Below is the ”Makefile” to be used with the

24

source code under /data/share/CIS/cen sw guide/suppl/case5. It starts by defin-
ing how to treat each file type (according to its extension). For instance the rule ”.F.o”
tells ”make” how to treat the ”.F” files and generate an object file out of them. In
particular it says the ”*.F” files have to be run through the C preprocessor defined by
macro $(CPP) and only afterwards they can be compiled by $(FC) to produce the ob-
ject file. In the second part, some macros are defined, like the compiler and respective
flags, paths for the includes and libraries are given and the list of source files is writ-
ten. At the end, there are two targets; the first builds the executable and the second
cleans the intermediate and not further needed files.

Makefile :

.SUFFIXES : .o .f .F

.F .o :
$ (CPP) $ (CPPFLAGS) $ * . F > $ * . f
$ (FC) −c $ (FFLAGS) $ (LDFLAGS) $ * . f

.f .o :
$ (FC) −c $ (FFLAGS) $ (LDFLAGS) $<

.F :
$ (FC) −o $@ $ (FFLAGS) $ (LDFLAGS) $<

.f :
$ (FC) −o $@ $ (FFLAGS) $ (LDFLAGS) $<

CPP = cpp
CPPFLAGS = −P −traditional
FC = mpif90
FFLAGS = −O3
LIBS = −L/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/lib −lnetcdff −L/sw/buster−x64/←↩

libaec−1.0.4−gccsys/lib −L/sw/buster−x64/hdf5−1.10.6−static−gccsys/lib −L/sw/buster−x64←↩
/netcdf_c−4.7.4−static−gccsys/lib −lnetcdf −lnetcdf −lm −lhdf5_hl −lhdf5 −lsz −lz −lm −←↩
ldl

INCLUDES = −I/sw/buster−x64/netcdf_fortran−4.5.2−static−gcc92/include
LDR = mpif90
LDFLAGS = $ (INCLUDES)
CC = cc
SHELL = /bin/sh

BIN = sw

SOURCES = main .F initial .F loop_u .F loop_v .F loop_eta .F bound .F out_cdf .F

OBJECTS = $ (SOURCES : . F=.o)

$ (BIN) : $ (OBJECTS)
$ (LDR) $ (FFLAGS) $ (LDFLAGS) −o $ (BIN) $ (OBJECTS) $ (LIBS)

clean :
rm −rf * . o * . f

25

4. Running the application

In this section the users will find information on how to run their applications, either
locally in their own workstation or remotely on a central compute server.

4.1. Running on a local machine

Recently acquired workstations have more than one CPU cores and thus have multi-
processing capabilities. The user can therefore use the MPI and OMP paradigms to
parallelize their codes and link their applications against the openMPI and MPICH
libraries (like it was performed in section 3). After loading the respective MPI module
(openmpi in the example below), running the application can be done by using the
command ”mpirun”:

module load openmpi/4.1.4−static−<compiler>

mpirun −np <number of processes> /<path−name>/<executable−name>

which in the ”case5/parallel” of the shallow water model is :

module load openmpi/4.1.4−static−gcc92

mpirun −np 2 ./sw

Note that when deploying the job across different workstations the flag ”-machinefile
<hostsfile>” is needed together with the flag ”-prefix < /sw/<os-name>/mpi/openmpi-
<version>-static-<compiler> >”, the latter telling the remote machines where to
find the ”mpirun” command.

The application produces, of course, results. In terms of data storage, the Unix/Linux
users have available:

• home directory disk space. Data can be stored permanently there (/home/zmaw/<user-
id>) up to the amount of 20GB. The disk space is backed up, so, in case of an
emergency, old versions of files can be restored.

• workstation local disk space. If the user works on a dedicated Linux work-
station there will generally be disk space under /scratch/local1. There is no
backup of data under /scratch, so data is lost in case of hard disk failures or
accidental deletion of files.

• central server disk space. From a local workstation, the user is also connected
to central server disk space, which resides under /data (either /data/cen or
/data/share). When in Cluster ”marin” (see below), the user has also central
server disk space available under /scratch. Those disk spaces belong, however,

26

to dedicated projects or groups, so the user can only store data in the project/-
group he/she belongs to.

4.2. Running on a computing cluster

The German Climate Compute Center - DKRZ (http://www.dkrz.de) provides
the CEN users with High Performance Computing (HPC) capabilities, namely the
Bull/Atos HLRE-4 ”levante”. Details about that system can be found in the DKRZ
web page. CEN-IT maintains also one compute cluster, which CEN users can use to
execute smaller dimension applications.

4.2.1. Cluster overview

The currently available system is the computer cluster ”marin”. It is accessible to all
CEN users, although parts of it are (or will be) reserved to specific working groups
from the University of Hamburg. Cluster ”marin” consists of several login nodes for
interactive login and work connected to a large filesystem:

• Login node ”marin02”:

– Processors: Intel Xeon E7-8837: 45 cores per socket x 2 sockets (90 CPUs in
total), 3.0 GHz

– Memory: 640 GB RAM

• Login node ”marin03”:

– Processors: Intel Xeon E5-2697A: 30 cores per socket x 2 sockets (60 CPUs
in total), 2.6 GHz

– Memory: 900 GB RAM

• Login node ”marin04”:

– Processors: Intel Xeon E5-2697A: 30 cores per socket x 2 sockets (60 CPUs
in total), 2.6 GHz

– Memory: 900 GB RAM

The ”marin” storage provides central disk space in a CEPH Filesystem (https:
//www.ceph.com) running on 8 Softiron HD11120 nodes. These nodes are invisi-
ble to users, who only see the file systems the storage nodes provide for the head
nodes. Depending on the group/project they belong to, ”marin” users can store data
in /scratch/<project>. There are directory quotas on the project folders, so that
all data below a project folder counts to this quota, independent of the owner or the

27

http://www.dkrz.de
https://www.ceph.com
https://www.ceph.com

group the file belongs to. Once the quota is reached, no data can be further stored and
the members of the project will have to remove some data. No automated backup is
made of the data stored under /scratch.

Project subfolders have to be created by CEN-IT. Users should look in /scratch if
there is already a project they belong to. If the user does not find his/her project, the
respective project/group leader and/or the master user should be contacted in order
to tell CEN-IT to create the project folder.

28

5. Post processing utilities

In this last section, the users are introduced to the most relevant scientific software
packages suitable for the advanced processing and visualization of geophysical ob-
servational or model data.

5.1. Geophysical data processing and visualization software

There is a large number of programs and libraries available in the /sw tree, as de-
scribed in section 2, and the user can always issue the command ”module avail” from
the command line to check all previously and newly installed software. An overview
of the most relevant software packages is here given.

CDO - Climate Data Operators

CDO (https://code.mpimet.mpg.de/projects/cdo) is a collection of com-
mand line operators to manipulate and analyze Climate data files. Supported file
formats are GRIB, netCDF, SERVICE and EXTRA. There are more than 250 operators
available.

access : module load cdo/1.9.10−gccsys
command : cdo

COMSOL Multiphysics

The COMSOL Multiphysics (http://www.comsol.com/products/multiphysics)
is a commercial engineering simulation software environment that helps in all steps
of the modeling process, like defining geometry, meshing, specifying physics, solving
and then visualizing results.

access : module load comsol/5.2a
command : comsol

29

https://code.mpimet.mpg.de/projects/cdo
http://www.comsol.com/products/multiphysics

Ferret - Data visualization and Analysis

Ferret (http://ferret.wrc.noaa.gov/Ferret/) is an interactive computer vi-
sualization and analysis environment designed to meet the needs of oceanographers
and meteorologists analyzing large and complex gridded data sets.

access : module load ferret/ 7 . 6 . 0
command : ferret

FLOW-3D

FLOW-3D (http://www.flow3d.com) is a commercial software providing flow
simulation solutions for engineer investigations on the dynamic behavior of liquids
and gases, in particular, on the solution of time-dependent (transient), free-surface
problems in one, two and three dimensions, and models confined flows and steady-
state problems.

access : module load flow3d/12.0
command : flow3d

GMT - Generic Mapping Tools

GMT (http://gmt.soest.hawaii.edu/) is an open source collection of UNIX
tools allowing to manipulate data sets (including filtering, trend fitting, gridding, pro-
jecting, etc.) and produce data illustrations. GMT supports common map projections
and comes with support data such as coastlines, rivers, and political boundaries.

access : module load gmt/ 6 . 0 . 0
Commands : GMT , plus all executables under /sw/<os−name>/gmt−<version>−gccsys/bin .

GrADS - Grid Analysis and Display System

The Grid Analysis and Display System (GrADS - http://grads.iges.org/grads/)
is an interactive desktop tool used for easy access, manipulation, and visualization of
earth science data. The data format can be binary, GRIB, NetCDF or HDF-SDS.

30

http://ferret.wrc.noaa.gov/Ferret/
http://www.flow3d.com
http://gmt.soest.hawaii.edu/
http://grads.iges.org/grads/

access : module load grads/ 2 . 2 . 1
command : bufrscan , grads , grib2scan , gribmap , gribscan , gxeps , gxps , gxtran , stnmap , wgrib

GRASS

GRASS (http://grass.fbk.eu) is a free Geographic Information System (GIS)
software used for geo-spatial data management and analysis, image processing, graph-
ics/maps production, spatial modeling, and visualization.

access : module load grass/ 7 . 8 . 6
command : grass

IDL - Interactive Data Language

The Interactive Data Language (IDL - http://www.rsinc.com/idl/ or www.ittvis.
com) is a commercial software for data analysis, visualization, and cross-platform ap-
plication development.

access : module load idl/ 8 . 8 . 2
command : idl , idlde

Mathematica

Mathematica (http://www.wolfram.com/mathematica) is a commercial com-
putational software program used in scientific, engineering, and mathematical fields
and other areas of technical computing.

access : module load mathematica/ 1 3 . 1 . 0
command : mathematica

31

http://grass.fbk.eu
http://www.rsinc.com/idl/
www.ittvis.com
www.ittvis.com
http://www.wolfram.com/mathematica

MATLAB - Matrix Laboratory

MATLAB (http://www.mathworks.com/products/matlab/) is a commercial
software that integrates mathematical methods, visualization and a flexible environ-
ment for technical computing and to explore data, create algorithms, and create cus-
tom tools.

access : module load matlab/2022a
command : matlab

NCL - NCAR Command Language

The NCAR Command Language (NCL - http://www.ncl.ucar.edu), a prod-
uct developed at the National Center for Atmospheric Research (NCAR), is an in-
terpreted language designed specifically for scientific data processing and visualiza-
tion.

access : module load ncl/ 6 . 6 . 2
command : ncl , ncargcc , ncargf77 , ncargf90 and many others under /sw/<os−name>/ncl−<version←↩

>−precompiled/bin

Ncview

Ncview (http://meteora.ucsd.edu/˜pierce/ncview_home_page.html) dis-
plays the content of netCDF files using the X Window System graphical user interface.
All variables in the file can be examined in 1D or 2D and animated in time.

access : module load ncview/ 2 . 1 . 7
command : ncview

NCO - NetCDF Operators

The netCDF Operators (NCO - http://nco.sourceforge.net/) are a suite of
programs that facilitate manipulation (e.g., averaging, hyper-slabbing, attribute edit-
ing) and analysis of data stored in the netCDF or HDF formats.

32

http://www.mathworks.com/products/matlab/
http://www.ncl.ucar.edu
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://nco.sourceforge.net/

access : module load nco/ 4 . 9 . 2
command : ncap2 , ncatted , ncbo , ncea , ncecat , ncflint , ncks , ncpdq , ncra , ncrcat , ncrename , ←↩

ncwa

Paraview

ParaView (http://www.paraview.org) is an open-source data analysis and visu-
alization application that can analyze data qualitative and quantitatively interactively
in 3D or using batch processing capabilities.

access : module load paraview/ 5 . 9 . 8
command : paraview

Python

Python (http://www.python.org) is an object-oriented, interpreted, and interac-
tive programming language. It serves also as basis for other software packages. The
Anaconda python distribution is currently supported:

access : module load anaconda3/2020.02
command : python , ipython , spyder , pip , conda

Many Python modules are installed in the software tree (see below) and more can be
installed upon request.

basemap
cython
ffnet
foolscap
genshi
httplib2
igraph
ipython
matplotlib
mpi4py
netcdf4
networkx
nose
numexpr
numpy
pandas
parallel_python
paramiko
paste

33

http://www.paraview.org
http://www.python.org

pastedeploy
pastescript
pexpect
pil
pip
progressbar
pupynere
pycairo
pycrypto
pydap
pygobject
pygtk
pyhdf
pyngl
pynio
pyopenssl
pyqt
pysparse
python_dateutil
rpy2
scikits .image
scikits .statsmodels
scipy
seawater
setuptools
sip
sympy
tables
twisted
virtualenv
wxpython
xlrd
zope_interface
. . .

Octave

GNU Octave (http://www.gnu.org/software/octave) is a high-level interpreted
language, similar (and compatible) to MATLAB, intended for numerical computa-
tions. It provides capabilities for the numerical solution of linear and nonlinear prob-
lems, and for performing other numerical experiments. It also provides extensive
graphics capabilities for data visualization and manipulation.

access : module load octave/ 5 . 2 . 0
command : octave

R

The R Project for Statistical Computing (http://www.r-project.org) is a free
software environment for statistical computing and graphics.

34

http://www.gnu.org/software/octave
http://www.r-project.org

access : module load r/ 4 . 2 . 2
command : R

Almost all R packages are installed in the software tree (see below for examples) and
more can be installed upon request.

extremes
fields
foreign
gdata
gstat
gtools
ismev
lattice
lmoments
mapdata
mapproj
maps
maptools
narray
ncdf
ncdf4
proj4
rcolorbrewer
rgdal
rmatlab
rnetcdf
ruby
ruby−netcdf
rworldmap
sp
spacetime
spam
teachingdemos
xts
zoo
. . .

Scilab

Scilab (http://www.scilab.org) is free open source software for numerical com-
putation providing a powerful computing environment for engineering and scientific
applications.

access : module load scilab/ 6 . 1 . 1
command : scilab

35

http://www.scilab.org

5.2. Accessing the software from outside the Campus

Within the private network, software licenses are hosted on the server ”license.cen.uni-
hamburg.de” and tools like ”matlab”, ”idl” or several compilers need them. The user
can use the licenses from home if the corresponding environment variable is set cor-
rectly:

LM_LICENSE_FILE=1704@matlab .rrz .uni−hamburg .de : 1700@lizenzsrv8 .rrz .uni−hamburg .de : 1955←↩
@license .cen .uni−hamburg .de

The license server ”license.cen.uni-hamburg.de” is not available outside the private
network and external access is blocked from a firewall. To be able to use software
requesting a license on that server, the user has to first establish a tunnel through a
secure shell (”ssh”) connection and only then issue the software command.

for matlab access :
ssh −L 1704 :matlab .rrz .uni−hamburg .de : 1702 <username>@login .cen .uni−hamburg .de

for idl or mathematica access :
ssh −L 1700 :lizenzsrv8 .rrz .uni−hamburg .de : 1701 <username>@login .cen .uni−hamburg .de

for intel compiler access :
ssh −L 1955 :license .cen .uni−hamburg .de : 1955 −L 1962 :license .cen .uni−hamburg .de : 1962 <←↩

username>@login .cen .uni−hamburg .de

36

A. Example: the ”shallow water” model

This section describes the numerical model used throughout this document to ex-
emplify the procedures of compiling and linking, running the application and post-
processing the model output.

A.1. Model equations

The shallow water equations model the propagation of disturbances in incompress-
ible fluids (like water) resulting from gravitational or rotational accelerations. In this
model’s framework it is assumed that the depth of the fluid is small compared to the
wave length of the disturbance. The shallow water approximation therefore provides
a reasonable model for the propagation of tsunamis in the ocean, since tsunamis are
very long waves (with hundreds of km wavelength) that propagate over depths of a
few km.

The partial differential equations, enclosing the principles of conservation of mass
and momentum, can be seen below. Time, t, and the two horizontal spatial dimen-
sions, x, y are the independent variables and the perturbed fluid elevation, η, and the
two-dimensional fluid velocity, u, v are the dependent variables. The force acting on
the fluid is gravity, g, and earth rotation effects are contained in the terms including
the planetary vorticity, f , also termed the Coriolis parameter. The total water depth
at rest is H.

∂u
∂t
− f v = −g

∂η

∂x
(1)

∂v
∂t

+ f u = −g
∂η

∂y
(2)

∂η

∂t
+

∂(Hu)
∂x

+
∂(Hv)

∂y
= 0 (3)

The expressions above are a simplification of the more complete Navier-Stokes equa-
tions under the assumptions: the fluid being of uniform density and in hydrostatic
balance; the fluid flowing over a horizontal flat surface (so that the elevation of the
surface is also the layer thickness); the slope of the surface elevation being small; the
horizontal scale of the flow being large compared to the fluid depth; the flow velocity
being independent of depth and the friction with the bottom surface being negligi-
ble.

37

A.2. Discretization of the equations

To keep the resulting source code simple the equations are discretized and integrated
with an explicit FTCS (”forward in time centered in space”) scheme, which is con-
ditionally stable depending on the CFL condition ∆t

2∆x , where ∆t is the time step of
integration and ∆x is the horizontal spacing of the discretization. So, if all the partial
derivatives are approximated by finite differences:

∂u
∂t

=
u(t + ∆t)− u(t)

∆t
(4)

∂η

∂x
=

η(x + ∆x)− η(x− ∆x)
2∆x

(5)

the shallow water equations (1-3) can be rewritten (with the spatial discretization
x = i∆x and y = j∆y):

u(i, j) = ub(i, j) + f ∆tvb(i, j)− g
∆t

2∆x
[ηb(i + 1, j)− ηb(i− 1, j)] (6)

v(i, j) = vb(i, j) + f ∆tu(i, j)− g
∆t

2∆y
[ηb(i, j + 1)− ηb(i, j + 1)] (7)

η(i, j) = ηb(i, j)− H(i, j)
∆t

2∆y
[u(i + 1, j)− u(i− 1, j)]−

− H(i, j)
∆t

2∆y
[v(i, j + 1)− v(i, j− 1)] (8)

Note that in the above discretized equations the variables at time step t are called ub,
vb and ηb and at time step t + ∆t are called u, v and η.

This set of discretized equations, subject to initial and boundary conditions, are the
base for the source code used in section 3. All source code files can be found under
/data/share/CIS/cen_sw_guide/suppl. The simplest version of the program,
corresponding to an initial Gaussian perturbation propagating over a flat bottom in
the f-plane subject to bi-periodic open boundary conditions, is presented next.

A.3. Fortran source code

program main

! Solves the shallow water equations
!
! nuno .serra@uni−hamburg .de

38

implicit none

! variable definitions
integer , parameter : : nx=100 ,ny=100
real , dimension (nx ,ny) : : u ,ub ,v ,vb ,eta ,etab ,f ,h
integer : : i ,j ,n
real : : dx ,dy ,dt ,nt ,dump ,g ,pi
real : : lx ,ly ,kx ,ky ,rx ,ry

! constants
nt=86400.
dump=60.
dx=1000.
dy=1000.
dt=1.
g=9.8
pi=acos (−1.)

! parameters
lx=nx*dx
ly=ny*dy
kx=(3/lx) * 2 *pi
ky=(3/ly) * 2 *pi
rx=dt/(2*dx)
ry=dt/(2*dy)

! 2D initial conditions
do j=1 ,ny
do i=1 ,nx

! flat bottom topography
h (i ,j) =1000.

! constant coriolis parameter
f (i ,j) =0.8e−4

! initial gaussian perturbation
u (i ,j) =0 .
ub (i ,j) =u (i ,j)
v (i ,j) =0 .
vb (i ,j) =v (i ,j)
eta (i ,j) = 0 . 1 *exp(− ((kx * (i−50) *dx) * * 2 + (ky * (j−50) *dy) * * 2))
etab (i ,j) =eta (i ,j)

enddo
enddo

! start main loop
do n=1 ,int (nt/dt)

do j=2 ,ny−1
do i=2 ,nx−1

! x−momentum equation
u (i ,j) =ub (i ,j) +f (i ,j) *dt*vb (i ,j)

& −g*rx * (etab (i+1 ,j)−etab (i−1,j))
enddo
enddo

do j=2 ,ny−1
do i=2 ,nx−1

! y−momentum equation
v (i ,j) =vb (i ,j)−f (i ,j) *dt*u (i ,j)

& −g*ry * (etab (i ,j+1)−etab (i ,j−1))
enddo
enddo

39

do j=2 ,ny−1
do i=2 ,nx−1

! continuity equation
eta (i ,j) =etab (i ,j)

& −h (i ,j) *rx * (u (i+1 ,j)−u (i−1,j))
& −h (i ,j) *ry * (v (i ,j+1)−v (i ,j−1))
enddo
enddo

! bi−periodic boundary conditions

! east and west
do j=1 ,ny
u (nx ,j) =u (2 ,j)
u (1 ,j) =u (nx−1,j)
v (nx ,j) =v (2 ,j)
v (1 ,j) =v (nx−1,j)
eta (nx ,j) =eta (2 ,j)
eta (1 ,j) =eta (nx−1,j)
enddo

! north and south
do i=1 ,nx
u (i ,ny) =u (i , 2)
u (i , 1) =u (i ,ny−1)
v (i ,ny) =v (i , 2)
v (i , 1) =v (i ,ny−1)
eta (i ,ny) =eta (i , 2)
eta (i , 1) =eta (i ,ny−1)
enddo

! pass information to previous time step
do j=1 ,ny
do i=1 ,nx
ub (i ,j) =(u (i ,j) +ub (i ,j)) /2
vb (i ,j) =(v (i ,j) +vb (i ,j)) /2
etab (i ,j) =(eta (i ,j) +etab (i ,j)) /2
enddo
enddo

! output in netcdf format
if (mod ((n−1) *dt ,dump) .eq . 0) then
call out_cdf (etab ,ub ,vb ,h)
endif

! end main loop
enddo

end

subroutine out_cdf (etab ,ub ,vb ,h)

implicit none
include 'netcdf .inc '

integer , parameter : : nx=100 ,ny=100
real , parameter : : dump=60.
real , dimension (nx ,ny) : : etab ,ub ,vb ,h
integer : : icdf ,iret ,cdfid ,ifill
integer : : xposdim ,yposdim ,timedim
integer : : tid ,eta_id ,u_id ,v_id ,h_id
integer , dimension (3) : : base_date
integer , dimension (3) : : dims
integer , dimension (3) : : corner ,edges
data icdf /0/
save

40

if (icdf .eq . 0) then

! enter define mode
cdfid = nccre ('sw .cdf ' , ncclob ,iret)
ifill = ncsfil (cdfid ,ncnofill ,iret)

! define dimensions
xposdim = ncddef (cdfid , ' xpos ' , nx ,iret)
yposdim = ncddef (cdfid , ' ypos ' , ny ,iret)
timedim = ncddef (cdfid , ' time ' , ncunlim ,iret)

! define variables and attributes

! 1d vars
dims (1) = timedim

! time
tid = ncvdef (cdfid , ' time ' , ncfloat , 1 ,dims ,iret)
call ncaptc (cdfid ,tid , ' long_name ' , ncchar , 4 , 'time ' , iret)
call ncaptc (cdfid ,tid , ' units ' , ncchar , 3 3 ,

& 'seconds since 2000−01−01 0 0 : 0 0 : 0 0 ' ,iret)

! 2d vars
dims (2) = yposdim
dims (1) = xposdim

! h
h_id = ncvdef (cdfid , ' h ' , ncfloat , 2 ,dims ,iret)
call ncaptc (cdfid ,h_id , ' long_name ' , ncchar , 1 , 'h ' , iret)
call ncaptc (cdfid ,h_id , ' units ' , ncchar , 1 , 'm ' , iret)

! 3d vars
dims (3) = timedim
dims (2) = yposdim
dims (1) = xposdim

! u
u_id = ncvdef (cdfid , ' u ' , ncfloat , 3 ,dims ,iret)
call ncaptc (cdfid ,u_id , ' long_name ' , ncchar , 1 , 'u ' , iret)
call ncaptc (cdfid ,u_id , ' units ' , ncchar , 3 , 'm/s ' , iret)

! v
v_id = ncvdef (cdfid , ' v ' , ncfloat , 3 ,dims ,iret)
call ncaptc (cdfid ,v_id , ' long_name ' , ncchar , 1 , 'v ' , iret)
call ncaptc (cdfid ,v_id , ' units ' , ncchar , 3 , 'm/s ' , iret)

! eta
eta_id = ncvdef (cdfid , ' eta ' , ncfloat , 3 ,dims ,iret)
call ncaptc (cdfid ,eta_id , ' long_name ' , ncchar , 3 , 'eta ' , iret)
call ncaptc (cdfid ,eta_id , ' units ' , ncchar , 1 , 'm ' , iret)

! global attributes
call ncaptc (cdfid ,ncglobal , ' experiment ' , ncchar , 8 0 ,

& 'sw model ' , iret)

base_date (1) = 1900
base_date (2) = 1
base_date (3) = 1

call ncapt (cdfid ,ncglobal , ' base_date ' , nclong , 3 ,base_date ,iret)
call ncendf (cdfid ,iret)

else

cdfid = ncopn ('sw .cdf ' , ncwrite ,iret)
ifill = ncsfil (cdfid ,ncnofill ,iret)

41

endif

! end of define mode and start of store mode

icdf = icdf + 1

! store 1d variables
corner (1) = icdf

! time
tid = ncvid (cdfid , ' time ' , iret)
call ncvpt1 (cdfid ,tid ,corner ,float (icdf−1) *dump ,iret)

! store 2d variables
corner (1) = 1
corner (2) = 1
edges (1) = nx
edges (2) = ny

! h
h_id = ncvid (cdfid , ' h ' , iret)
call ncvpt (cdfid ,h_id ,corner ,edges ,h ,iret)

! store 3d variables
corner (1) = 1
corner (2) = 1
corner (3) = icdf
edges (1) = nx
edges (2) = ny
edges (3) = 1

! u
u_id = ncvid (cdfid , ' u ' , iret)
call ncvpt (cdfid ,u_id ,corner ,edges ,ub ,iret)

! v
v_id = ncvid (cdfid , ' v ' , iret)
call ncvpt (cdfid ,v_id ,corner ,edges ,vb ,iret)

! eta
eta_id = ncvid (cdfid , ' eta ' , iret)
call ncvpt (cdfid ,eta_id ,corner ,edges ,etab ,iret)

call ncclos (cdfid ,iret)

end

42

	Introductory notes
	The scientific software tree
	The /client/bin location
	The module system
	The /sw structure

	Building an application
	Compilers available
	Gnu Compiler Collection
	Intel Compilers

	Compiling the source code
	Linking against libraries
	Shared libraries
	Static libraries

	Developing the application
	Multiple source code files
	C preprocessing

	Parallelizing the application
	OpenMPI
	MPICH

	Building the application with a Makefile

	Running the application
	Running on a local machine
	Running on a computing cluster
	Cluster overview

	Post processing utilities
	Geophysical data processing and visualization software
	Accessing the software from outside the Campus

	Example: the "shallow water" model
	Model equations
	Discretization of the equations
	Fortran source code

