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Outline 

o  High performance computing in the next decade 

o  Implications for physics with oscillatory stiffness  
  (including numerical models of weather and climate) 

o  The time barrier  
 (back to Leith, Lorenz, Charney?) 

o  The influence of fast waves and fluctuations of the evolution of the
 slow dynamics in the Boussinesq system – three distinguished
 limits 

o  Summary 

o  Some interesting problems 



For new computing architectures power is limiting factor 

20 MW 
goal 

usual
 scaling 

2005                                      2010                                     2015                                      2020 

A US city of 80,000 people is estimated to be 45 MW.
 The state of New York 140 GW. Exascale design for 1
 exaflop to be 20 MW instead of 200MW. 

200 MW 



Example of the CPU + GPU configuration 

CPU 

Chipset 

DRAM 

GPU 

DRAM 

PCIexpress bus 
HOST DEVICE 

Data parallel pieces of an algorithm are executed on
 the device as KERNELS that are executed as many
 THREADS grouped together in BLOCKS. BLOCKS
 grouped together in GRIDS. Each concept has
 hardware meaning. 



Data parallel  

o  The key to getting performance through the use of co-processors 
(such as the GPU) is the idea of Data-Parallel Computing 

o  Identical operations executed on many data elements in parallel 
(simplified flow control allows increased ratio of compute logic to 
control logic) 

a = 2 * pi + x 
b = y * z 

a = 2 * pi + x 
b = y * a 

DATA INDEPENDENT DATA DEPENDENT 



Implications of changing computing architectures on physics of
 climate and weather models 

o  The speed of computer processors is not going to increase as fast
 as they used to. But there will be a lot more of them and they will
 have unprecedented (billion-way) parallelism. 

o  Because current algorithms need to reduce their maximum time
 step as the number of grid points increases (due to the oscillatory
 stiffness), these new machines may not reduce wall clock time . You
 may be able to have a higher resolution grid but you will wait longer
 for a simulation to complete. 

o  From a wall-clock-time point of view, current models may appear to
 dissipate into the machine – this is the time barrier 

o  Fault tolerance/resistance (large numbers of processors) 

o  Asynchronous algorithms – wasting time waiting for one time step
 to finish? 



Algorithms and new computing architectures 

o  Fixed grid on N processors 

  For a fixed grid you may have an optimal distribution of the grid on N
 processors, then the only dimension left available for parallelization is time. 

o  Grid refinement (we’ll still have to wait for each time step) 
 Because current algorithms need to reduce their maximum time step as
 the number of grid points increases, these new machines may not
 significantly reduce wall clock time . You may be able to have a higher
 resolution grid but you will still wait a longer time for each time step to
 complete.  

 From a wall-clock-time point of view, current models may appear to
 dissipate into the machine. 

o  Fault tolerance/resistance (large numbers of processors) 

o  Asynchronous algorithms – wasting time waiting for one time step
 to finish? 



The time barrier – parallel-in-time (or Parareal) 

o  The numerics community is pretty good at doing parallelism in space
 (domain decomposition) and will get even better 

o  Nievergelt  (1964)  

o  Lions, Maday, Turinici, (2001)  ‘Parareal’, it has been successful for
 problems with dissipative stiffness 

o  A good introduction to these ideas can be found on the Newton
 Institute web site by Jean Côté under the AMM program in
 September 2012 



Stiffness in Parareal – many successes with dissipative stiffness but
 not oscillatory stiffness 



The early days of computational science 

Slow Dynamics 
L.F. Richardson in (1922) -  using ‘computers’ (us) 

Charney (1948) and Charney (1950)  - derived ‘slow’
 or Quasi-Geostrophic (QG) equations 

Charney and Phillips (1953) – the first realistic
 numerical weather prediction using the QG eqs 

L.F. Richardson 

J. Charney J. von Neumann 
Chaney, Phillips, Lewis, Gilbarg &
 Platzman in front of the ‘MANIAC I’ 



An asymptotic parareal method was successful in 2013 

o  With oscillatory stiffness making a good approximation for large
 time steps is difficult. 

o  Using a reduced equation for a ‘slow’ guess was mentioned early in
 the parareal literature but hasn’t been very successful for
 oscillatory stiffness.  

“An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs”, T. Haut, B. Wingate,  
to appear in SIAM Journal of Scientific Computing, 2014 



Why does the method work? Continued 

Slow Manifolds (center manifolds, dynamical systems, etc) 

Leith, Nonlinear Normal Mode Initialization and Quasi
-Geostrophic Theory (1980) 

Lorenz, On the Existence of a Slow Manifold (1986) 

Lorenz and Krishnamurthy, On the non-Existence of the Slow
 Manifold (1987) 

Lorenz, The Slow Manifold – what is it? (1991) 

  (….so far the answer is ‘it is a fuzzy manifold’.) 

   

Ed Lorenz 
Chuck Leith 



Example of the solution in time: epsilon=.01, Delta T = .3 



Relative L∞  errors for epsilon=10^{-1} , using the asymptotic based parallel
-in-time integrator and taking Delta T=3/10  and Delta t=1/500 . Each graph
 is for fixed a iteration k  (1,3,5 ), and the errors are plotted as a function of
 the time n Delta T , n=1..N . The errors are shown on a log10  scale. 



Nonlocal form  
in a Hilbert Space 

Embid and Majda, 1996, 1997 

Schochet, 1994 

Klainerman and Majda 1981 

Hilbert Space X of vector fields u in L  that are
 divergence free and equipped with the L  norm. 

2 

2 



Oscillatory Stiffness in the PDE 

•  The          operator results in temporal oscillations on a time 
scale of  

•  Standard numerical time-stepping methods must use time 
steps 

•  Interesting things happen to with nonlinearity and slow/fast 
time scales  



One way to view the problem (also used for exponential integrators) 

v varies slower than u, but v still has some oscillations 



Method of Multiple Scales 

To avoid secularity the second order term must be smaller than
 the leading order term. 



An asymptotic method-of-multiple scales in time (another way to
 derive Quasi Geostrophy is a singular perturbation in time): 

Asymptotic solution looks like: 

Embid and Majda, 1996, 1998, Majda and Embid, 1998, Schochet, 1994,
 Klainerman and Majda 1981, Wingate,  Embid,, Cerfon-Holme Taylor,
 2011 



The role of near-resonances 

o  In the Asymptotic Parallel-in-time method we are nearly resolving
 the near-resonances. This is the reason the method is converging
 for parallel-in-time 

o  Can we get any insight into the physics of what is happening when
 the small parameters are not so small? 



Derive the equation for the slow dynamics 

Knowing the slow dynamics evolves independently of the fast we can find the
 equations for the slow dynamics by projecting the solution and the
 equations onto the null space of the fast operator            . Then one can
 derive the equation for the slow dynamics  



Separation of Time Scales and slow equations 

Quasi Geostrophy Strong Stratification Strong Rotation 

Two kinds of frequencies: 1) zero frequency for all k which contribute to 
the potential vorticity and 2) dispersive waves with zero pv  



Projection operators for the 3 limits 

Quasi Geostrophy 

Strong Stratification 

Strong Rotation 



The new slow equations challenge our ideas of fast and 
slow dynamics in the ocean. They are nonhydrostatic. 

2-D 

2-D 

3-D 

2-D 

“Low Rossby limiting dynamics for stably 
stratified flows”, B. Wingate, P. Embid, M. 
Holmes-Cerfon, M. Taylor, Journal of Fluid 
Mechanics, 2011  

Also found nonhydrostatic slow equations: 
“Generalized Quasi-Geostrophy for spatially 
anisotropic rotationally constrained flows”, K. 
Julien, E. Knoblocch R. Millif, J. Werne, Journal 
of Fluid Mechanics, 2006 



Dependence on Rotation Rate – wave number 3 white 
noise forcing – triply periodic box 



Rewrite the full Boussinesq Equations (three times) using 

Strong Rotation 



For strong rotation we get the following volume averaged energy
 equation: 



…And for QG 



Numerical simulations - 5123 

Gaussian forcing spectrum: 



Fast rotation limit (the flow makes columns) 



Fast rotation limit (the flow makes columns) 



Strong stratification limit (the flow makes sheets) 



Strong stratification limit (the flow makes columns) 



The QG limit –dashed is the full system, solid is slow 

Despite the fact that the forcing is directly on the buoyancy equation it is 
the slow horizontal kinetic energy that continues to grow, the potential 
energy reaches a maximum half way through the simulation. 



QG limit continued – slow  PE to slow KE 



QG limit continued – fluctuations on the slow kinetic energy 

The conversion of slow potential to kinetic is larger by far than any of these terms 
in the equations. And as the parameters get smaller it makes more sense to study 
the evolution of the potential enstrophy and it’s fluctuations. 



Transfer of energy from the fluctuation components of the flow to
 the slow potential energy 



Summary 

o  For all three limits the non-slow part of the flow served to move
 energy to and from the slow manifold. 

o  For Bu = 1 Quasi-Geostrophic flows  
1.  most of the transfer was accomplished via slow-to-slow transfers 

2.  the non-slow part of the buoyancy dynamics was still responsible for
 moving energy from potential to slow-kinetic 

3.  The non-slow momentum acts as a sink for the slow potential energy 

4.  The slow potential energy not only get converted to slow kinetic but can
 also shed off of the slow part of the dynamics as non-slow kinetic
 energy 

o  What about potential enstrophy transfers? 


