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FKPP equation

Concentration 6(x, t) of chemicals or biological species is
governed by the advection—diffusion—reaction equation

O +u-Vo=rA0+r(0),
with diffusivity «.
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FKPP equation

Concentration 6(x, t) of chemicals or biological species is
governed by the advection—diffusion-reaction equation

O +u-Vo=rA0+r(0),
with diffusivity «.
A common type of reaction (autocatalytic reactions, population
dynamics) is logistic:
r(0) =766 1),
leading to the Fisher-Kolmogorov-Petrovsky-Piskunov eqn.

Fork =u=0,0 —1ast — oo.
For u = 0, travelling front:

1 as x — —o©
, with cg =2v/K/7.

0 = f(x — cot), f—>{

0 as x — o©
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FKPP equation
Forx #0,u #0,

00 +u-V0=Pe 'Al(x,t) + Dab(1—0),

where Pe=U//x  flow strength
Da=/¢/Ur reaction strength

For u time-independent, spatially periodic: pulsating front.
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FKPP equation
Forx #0,u #0,

00 +u-V0=Pe 'Al(x,t) + Dab(1—0),

where Pe=U//x  flow strength
Da=/¢/Ur reaction strength

For u time-independent, spatially periodic: pulsating front.
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Theory: Constantin ef al. (2000), Audoly ef al. (2000), Berestycki & Hamel (2002), Novikov and Ryzhik (2007);

Exps: Abel et al. (2002), Vladimirova et al. (2003); Solomon & Gollub (1988), Pocheau & Harambat (2008).
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FKPP equation
Forx #0,u #0,

004+ u-V0 =Pe 'Ab(x,t) + Dab(1—6) ,

where Pe=U{/x  flow strength
Da=//Ur  reaction strength

For u time-independent, spatially periodic: pulsating front.

Question:
What is the front speed ¢ > ¢g as a function of Pe and Da?
(when Pe > 1)

Theory: Constantin ef al. (2000), Audoly ef al. (2000), Berestycki & Hamel (2002), Novikov and Ryzhik (2007);

Exps: Abel et al. (2002), Vladimirova et al. (2003); Solomon & Gollub (1988), Pocheau & Harambat (2008).
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Front and large deviations
Derive the front speed from the linearised FKPP (pulled front).
Without flow, u = 0:

linearise around the tip of the front, § ~ 0,

D0(x,t) = Pe L Ab(x, t) + Da b1/ £ b)/
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Front and large deviations
Derive the front speed from the linearised FKPP (pulled front).
Without flow, u = 0:

linearise around the tip of the front, § ~ 0,
d0(x,t) = Pe ' AO(x,t) + Dad(l/+h)/
For t > 1, Gaussian solution gives

0(x, ) = o—t(Pex?/(41)>~Da)

_ ) for § < 24/Da/Pe
0, for 3 >2y/Da/Pe.
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Front and large deviations
Derive the front speed from the linearised FKPP (pulled front).
Without flow, u = 0:

linearise around the tip of the front, § ~ 0,
D0(x,t) = Pe L Ab(x, t) + Da b1/ £ b)/
For t > 1, Gaussian solution gives
0(x, ) = e—t(PexZ/(4t)2—Da)

_ ) for § < 24/Da/Pe
0, for 3 >2y/Da/Pe.

Front speed controlled by transition between exponential
growth and decay:

¢ =co =2y/Da/Pe = 2./k/T.

e.g. Freidlin (1990)
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Fronts and large deviations

With flow, u = 0:

Same argument: linearise

O0(x,t) +u-VO(x,t) = Pe 1AO(x,t) + Dad(l/+h)/
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Fronts and large deviations

With flow, u = 0:

Same argument: linearise
O0(x,t) +u-VO(x,t) = Pe 1AO(x,t) + Dad(l/+h)/

For t > 1, use large-deviation form of the passive scalar:

0(x,t) = e 8/ with rate function g.

Haynes & Vanneste (2014)



FKPP equation Fronts and large deviations Regimes Conclusions
000 0000 0000000
|

Fronts and large deviations

With flow, u = 0:

Same argument: linearise
O0(x,t) +u-VO(x,t) = Pe 1AO(x,t) + Dad(l/+h)/
For t > 1, use large-deviation form of the passive scalar:
0(x,t) = e 8/ with rate function g.
Haynes & Vanneste (2014)

Q(X, t) ~ e_t(g(x/t)_Da)

_ oo, for ¥ < ¢7!(Da)
0, for%> ¢ !(Da)
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Fronts and large deviations

With flow, u = 0:

Same argument: linearise

O0(x,t) +u-VO(x,t) = Pe 1AO(x,t) + Dad(l/+h)/
For t > 1, use large-deviation form of the passive scalar:
0(x,t) = e 8/ with rate function g.

Q(X, t) =~ e_t(g(x/t)_Da)

_Joo, for
B 0, for

X

t
x
t

Haynes & Vanneste (2014)

< g (Da)
> g '(Da)

The front speed is now given by ¢ = ¢~ !(Da).
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Large deviations
The rare function g(¢), { = x/t, can be obtained by solving an
eigenvalue equation for its Legendre transform f(g):

Pe 'A¢ — (u+2Pe lg%) - Vo + (ug +Pe 1g%)o = f(g)¢. (1)

Gartner & Freidlin (1979), Xin (2000)

Example: Pe = 250

front speed
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For Da < 1, i.e. x/t < 1, homogenization gives g o« v/Pe (x/t).

Childress (1979), Shraiman (1987), Soward (1987)
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Large deviations
Solve e’value problem for Pe < 1. Haynes & Vanneste (2014)
Non-uniformity in g, equivalent to x/t or Da.

0

3 distinguished regimes:
I. g = O(Pe~'/*): non-trivial concentration in cells +
boundary layers,

f(q) = Pe 'F(Pe'/*|q]?).
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Large deviations
Solve e’value problem for Pe < 1. Haynes & Vanneste (2014)
Non-uniformity in g, equivalent to x/t or Da.

0

3 distinguished regimes:
I. g = O(Pe~'/*): non-trivial concentration in cells +
boundary layers,

f(q) = Pe 'F(Pe'/*|q]?).

II. |g| = O(1): empty cells, boundary layers with crucial
corners,

f(q) = O(1/ logPe).
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Large deviations
Solve e’value problem for Pe < 1. Haynes & Vanneste (2014)
Non-uniformity in g, equivalent to x/t or Da.

0

3 distinguished regimes:
I. g = O(Pe~'/*): non-trivial concentration in cells +
boundary layers,

f(q) = Pe 'F(Pe'/*|q]?).

II. |g| = O(1): empty cells, boundary layers with crucial
corners,
f(q) = O(1/log Pe).
III. |q| = O(Pe): f and g controlled by a single trajectory
(Friedlin—-Wentzell),

f(q) = O(Pe).
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Regime I
Da=O(Pe™!),c= Pe iC; (PeDa)
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Zoom near the origin

Da=O(Pe™!),c= Pe iC; (PeDa)
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+ Homogenization theory is only valid for Da < Pe™!!
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Regime II
Da = O((logPe)!), c = (log Pe)~!C;(Dalog Pe)

Pe=250
1 —Pe=125
| —Pe=50
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Dalog16Pe
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Regime III
Da = O(Pe), c = C3(Da/Pe)

Freidlin-Wentzell
theory: control by
action-minimizing
—Pe=50 instantons
—Pe=125
Pe=250
—Pe=500
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Regime III

Large deviation for t > 1 meets large deviation for Pe > 1.
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Regime III

Large deviation for ¢ > 1 meets large deviation for Pe > 1.

Freidlin-Wentzel small noise theory:

g(x/t) = hm — inf / X — u(X)[*ds,

t—oo 4t X(t)=

can be periodised to

(c) = Pe inf ” cX — u(X)|*ds = Da
8 8T X(t)=2m 0 N ’

This is easily solved (i) numerically, using an optimisation
routine; (ii) asymptotically to obtain

c = C3(Da/Pe).

Tzella and Vanneste 2014
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Regime III

uy

Instantons for
c=05,1,5

T
Explicit asymptotics results:

16Da

™ 71'

W(8Pe/Da) - log Pe

P
c ~ co<1—|—3e—|—--~> for Da > Pe,

c for Da « Pe.




FKPP equation Fronts and large deviations Regimes Conclusions

000 0000 0000080
:

Regime III
In this regime, ¢ can alternatively be written as
c=2n/T,,

with T, shortest time to join x = 0 to x = 27 subject to
T. 7 [y X —u(X)Pds =c3.
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Regime III

In this regime, ¢ can alternatively be written as
c=2n/T,,
with T, shortest time to join x = 0 to x = 27 subject to

T. 7 [y X —u(X)Pds =c3.

Cf. G-equation, giving front as level set of solution of the
eikonal equation

G +u-VG=c|VG|.

For this T, is shortest time subject to
X —u(X)?=cj.



FKPP equation Fronts and large deviations Regimes Conclusions
000 0000 0O00000e
:

The three regimes together
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The three regimes together
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Conclusions
» Large-deviation theory to obtain the front speed:
0 < exp[—t(g(x/t) — Da)] gives:
c=g"'(Da),

where the rate function g is calculated by solving an
eigenvalue problem.
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» Large-deviation theory to obtain the front speed:
0 < exp[—t(g(x/t) — Da)] gives:

c =g '(Da),

where the rate function g is calculated by solving an
eigenvalue problem.

» For cellular flow, we have identified three regimes for
Pe > 1.
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» Large-deviation theory to obtain the front speed:
0 < exp[—t(g(x/t) — Da)] gives:

c =g '(Da),

where the rate function g is calculated by solving an
eigenvalue problem.

» For cellular flow, we have identified three regimes for
Pe > 1.

» Extensions: towards turbulent flows,

» time-periodic flows,
» random flows.
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Conclusions

» Large-deviation theory to obtain the front speed:
0 < exp[—t(g(x/t) — Da)] gives:

c =g '(Da),

where the rate function g is calculated by solving an
eigenvalue problem.
» For cellular flow, we have identified three regimes for
Pe > 1.
» Extensions: towards turbulent flows,
» time-periodic flows,
» random flows.

» Applications to urban pollution.
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