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Introduction
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tool Iin climate science

It is impossible to resolve all
dynamically active scales in
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This talk relates to underlying
assumptions in parameterizations
of ocean eddies
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Eddy parameterizations are theories for four-
dimensional eddy fluxes, in the absence of resolved

eddies

Most parameterizations assume eddy fluxes are
functions of local mean flow properties, e.g.

- Gent & McWilliams 90: Eddy buoyancy flux ~
iIsopycnal gradient, with diffusivity K

- Held&Larichev 96, Visbeck etal 97, Cessi etal 08:
Set K = Ve x le With theories for eddy velocity and
lengths dependent on local mean flow



Periodic QG models often used as parameterization
theories, and sometimes this works:

Pavan&Held 96: compared the PV flux diagnosed from
channel simulations and doubly-periodic simulations.

The local PV flux
diagnosed from the
channel simulations,
shown as a function of
the local mean PV
gradient (dots) matches
the relationship obtained
from doubly-periodic
simulations (solid).




Periodic QG models often used as parameterization

theories, and sometimes this works:

Smith & Marshall 09:
found agreement
between the eddy fluxes
diagnosed from doubly-
periodic simulations
using mean state from
region in SO to those
measured fluxes from
moored array
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But sometimes periodic QG models can achieve
unphysical states or fail to equilibrate

- Thompson & Young 06: f-plane simulations require
excessive drag to equilibrate

- Spall 00, Arbic & Flierl 04, Smith 07:
Non-zonal mean flow leads to shearing
of PV by 3 jets, resulting in excessive
eddy energy & weird states
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Venaille, Vallis & Smith 11: Compared eddy statistics in
regions of eddy-permitting 1/6deg GFDL simulation of
Southern Ocean to local QG simulations: some regions

match up, others don't.
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Venalille, Vallis & Smith 11:

We conjecture that, in regions characterized by
strong and fast instabilities (time scales from days to
weeks), the length scale and the regime of self-organization
can be interpreted with local, nonlinear quasigeostrophic
simulations. However, because the simulations are local,
the propagation of eddies away from the source is ne-
glected, and, because the mean flow 1s imposed, possibly
important interactions between eddies and mean flows
are neglected. In regions characterized by weak, slow in-
stabilities, the dynamics seem to be governed by eddies
coming from more unstable regions. In some regions,
artificially high bottom drag or thermal damping were
necessary to equilibrate quasigeostrophic simulations,
suggesting that the primitive equations are equilibrating
by nonlocal mechanisms (e.g., the advection of the eddy
field away from a region of instability) or possibly through
ageostrophic sources of dissipation.




(a) Lifetimes 2 16 weeks
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coherent vortices
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Locality defined

Eddy energy can be generated (G), dissipated (D), and fluxed
(F) from one place to another:

hE=G+F+D

The eddy energy budget of a region is local if generation
balances dissipation in that region.

Almost all mesoscale eddy parameterizations are local

Eddy energy non-locality would suggest that nonlocal
parameterizations might work better than local ones.



Prognostic eddy energy...

Parameterizations with prognostic eddy energy
equations are common in engineering turbulence
(e.g. K — € models), but not in ocean modeling.

- Eden & Greatbatch 08, Marshall & Adcroft 10:
Propose parameterizations with prognostic eddy

energy equations.

- Grooms, Smith & Majda 12: Derive eddy energy
equation from multiscale model for mesoscale-
gyrescale interaction
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Systematically measure locality in two-layer QG
wind-driven gyre simulations:

Simple setting keeps definitions and analysis
focused on locality

Allows comparison with periodic models using same
dynamics (whereas in VVS, difference could be due
to non-QG dynamics in PE model)



[Alternatives...]

- An alternative way to study the fluxes generated by
mesoscale eddies is to diagnose them directly from
an eddy-resolving data set. Recent examples
include: Abernathey et al.13, Bachman & Fox-
Kemper 13, Mana & Zanna 14 (Apologies to those
neglected!)

+ Once the flux terms are diagnosed, one looks for a
relationship between the fluxes and the local
properties of the mean flow. Bachman & Fox-
Kemper also diagnosed the eddy KE directly, and
found that using it improved the diagnostic
performance of a parameterization.



Simulations

0,9, tV-(uq)+pv, =F, AhV4¢1,

0,y + V- (,0,) + By = =1V, + A, V4,
ql :Vzlpl —l_Fl(ll[z_lpl)_FOll’l, and

g, = Vi, + Fy(f, — ,),

Square domain, 6,144 km wide
Deformation radius 20 km

8 km grid

Layer depths 1 & 4 km

Two different wind stress profiles: zonal and non-zonal
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Non-zonal




The filter defines the eddy

We need a way to separate the data set from our simulations
iInto ‘mean’ and ‘eddy’ components.

Time and/or zonal averages are often used to define the ‘mean’
component. However, both methods fail to separate by spatial
scale, so that the ‘mean’ has a small-scale part and the ‘eddies’
have a large-scale part.

Time mean also implies no energy transfer due to topography,
but topography does transfer energy between scales.

You can use a Fourier series truncation to define large- and
small-scale parts, even in an enclosed domain, but this is
nonlocal because the basis functions have global support. It's
useful for global statistics (e.g. Nadiga & Straub 2010), but not
for regional investigations.



We choose to define the large-scale mean using a spatial filter
defined by the following elliptic inversion

y o [consider Fourier
(1-LFV7)Ai=ai  case...]

with boundary condition q; = 0. The small-scale eddy part is
g; = q; — gi- We’'ll use Ls = 180 km in analysis of simulations.

As with any spatial filter in an enclosed domain, it does not
commute with differentiation

Vg # Vaq.

For convenience we define the ‘eddy’ streamfunction ; by
performing the PV inversion using q;, and define eddy velocities
using ) i

Ui = —0yvj, Vi = Oxi);.



Eddy equations

We apply the (high-pass) spatial filter to the QGPV equations to
arrive at

d.q7= -V (lllql)’r — Bo, + F,, + A;1V41L1 + Error,

! _ / ~ ~ 47
04> =—V-(u,q,) —pv, —ro, + A, V', + Error,
The “Error;” result from formally commuting the spatial filter with
derivatives. We track these errors in the code, and they are

confined to a thin layer near the boundaries.



Local eddy energy budget

We derive the eddy energy equation by multiplying the eddy
QGPV equations by v); and performing some simplifications.
The result is

HE=G+F+D+y

» E = eddy energy (kinetic plus potential)

» (G = ‘generation’ through interaction with the large-scale
mean (can be negative, indicating upscale transfer)

» F = all nonlocal terms, defined as the divergence of a flux
» D = net dissipation due to Ekman drag and viscosity

» y = terms resulting from commuting the filter with
derivatives




The generation term has the form
G=p, > {H][i 17 N — p H, b, F
— Py <& {H[u;(vq,) —v,(u;q,)']} — poH i F,,
[
The dissipation term has the form
o ~ (2 ~2
D = —pyrt,|u,| _P{'JAhZH.f“-’.E
[

The nonlocal flux-divergence term has the form

h

F= v-{rHZv(” )+ A F
Py T W, ht A

— ZHE[JIEQIVILI. + Jlf(lquf)! - Bi@?&]} .



Diagnosis of energy budget

The next slide shows the four terms in the eddy energy budget,
averaged over 10 years.

The budget is well-defined instantaneously; a time average
simply smoothes out the results.

There is a very large variation in the size of the terms in the
budget across the domain. To improve clarity we show the
terms in the budget scaled by the eddy energy, e.g.

~

G/E.

Errors Xare small everywhere except near boundaries
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Coarse-grained non-locality

[Average budget over 384km boxes]
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FIG. 5. Basin nonlocality. The ratio of coarse-grained nonlocal terms (F), to local dissipation (D), shown as
a percentage for the (left) zonal-wind and (right) nonzonal-wind cases. Regions where the nonlinear energy transfer
is upscale (negative generation (G),) are indicated by horizontal lines. Regions where the coarse-grained energy
density (E ), is less than 10° kg s~ are indicated by vertical lines. Coarse-graining is performed by averaging over 16 X 16
square regions of width 384 km, and (-), denotes a 10-yr average.




Linear stability of time-mean
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Growth rate of baroclinic instability based on large-scale mean
shear and PV gradient.

As conjectured by VVS, regions of fast growth rates are
localish...



Comparison to periodic runs

There is a plausible correlation between the performance of
periodic simulations and the strength of instability.

Our doubly-periodic simulations are most accurate in the
regions of local energetics, which are also regions of strong
instabllity.

Our doubly-periodic simulations are least accurate where the
energetics are nonlocal, and where the mean shear is
strongly meridional.

Our results demonstrate that doubly-periodic simulations with
meridional shear do not approximate mid-ocean flows with
meridional shear.



Conclusions

Eddy energy budget is nonlocal over a wide region of our
idealized model.

Mesoscale eddy parameterizations might benefit from
prognostic models of eddy energy.

Doubly-periodic simulations do not accurately model
regions with nonlocal energetics or nonzonal shear, e.g. on
the eastern side of wind-driven gyres. This might be
iImproved by using a time-dependent large-scale flow,
instead of the time-mean large-scale flow (e.g. Poulin
2010; Poulin et al. 2010).

Nonlocal energetics and weak instability are correlated Iin
our simulations, providing support for the conjecture of
Venallle et al. (2011) that regions with weak instability are
susceptible to nonlocal effects.



