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Introduction
• Simulations are an indispensable 

tool in climate science!

• It is impossible to resolve all 
dynamically active scales in 
climate simulations!

• Parameterizations are the 
foundation!

• This talk relates to underlying 
assumptions in parameterizations 
of ocean eddies 
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‘Eddies’ (vortices, filaments, fronts, ..) 
are everywhere, ranging in scales 
from ~100km down to 100mcharacteristics (direction and speed) are summarized in Section 7.

This wealth of information about mesoscale eddies deduced from
the 16-year dataset is summarized in Section 8.

2. Feature resolution and automated eddy detection

It is shown in Appendix A.3 that features with wavelength
scales shorter than 3! are attenuated in the SSH fields of the AVISO
Reference Series analyzed in this study. The variance attenuation is
about a factor of 2 at a wavelength of about 2!, which we interpret
as the approximate half-power filter cutoff of the objective analysis
procedure used to construct the AVISO fields. This filter cutoff
wavelength can be expressed in terms of the approximate scales
of the mesoscale features that can be resolved by considering an
idealized eddy that has the form of a two-dimensional axisymmet-
ric Gaussian, which is shown in Section 5 to be a reasonable
approximation on average, at least over the central 2/3 of the ed-
dies, and is adequate for present purposes. A wavelength resolu-
tion of 2! corresponds to a Gaussian eddy with an e-folding
radius of about 0.4! (see Appendix A.3). We thus conclude that
the SSH fields of the AVISO Reference Series have been filtered to
attenuate Gaussian-like features with e-folding radii shorter than

roughly 40 km. It should be kept in mind, however, that only those
features with e-folding radii larger than about 60 km are unatten-
uated by the filtering. (This is the e-folding scale of a Gaussian that
corresponds to the 3! wavelength at which there is no attenuation
of the SSH fields of the AVISO Reference Series.) The amplitudes of
features with smaller e-folding radii are increasingly attenuated
with decreasing scale; the amplitude attenuation (as opposed to
variance attenuation) is about a factor of 2!1/2 at the e-folding ra-
dius of "40 km.

The oceanic mesoscale can be characterized as consisting of var-
iability with radius scales of 10–500 km. The lower end of the
range of spatial scales of mesoscale variability is thus not address-
able from the "40 km feature resolution of the SSH fields analyzed
here. The conclusions of this study are therefore restricted to
mesoscale eddies with relatively large radii.

Evidence is presented in Appendix A.3 that the smoothing in the
objective analysis procedure used to produce the SSH fields of the
AVISO Reference Series (see Appendix A.2) may not be quite suffi-
cient. The SSH variance in these fields is locally higher near the T/P
crossovers where SSH variability is best resolved in the merged
dataset, and lower in the centers of the diamonds formed by the
T/P ground track pattern where SSH observations are limited to

Fig. 1. An example of global maps of SSH on 28 August 1996 constructed from TOPEX/Poseidon (T/P) data only (top) and from the merged T/P and ERS-1 data in the AVISO
Reference Series (middle). The bottom panel is the SSH field from the merged T/P and ERS-1 data after spatially high-pass filtering with half-power filter cutoffs of 20! of
longitude by 10! of latitude. The automated procedure described in Appendix B.2 identifies 3291 eddies in the bottom panel, of which 2398 were trackable as described in
Appendix B.4 for 4 weeks or longer.
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Eddy parameterizations are theories for four-
dimensional eddy fluxes, in the absence of resolved 
eddies!

Most parameterizations assume eddy fluxes are 
functions of local mean flow properties, e.g.!

• Gent & McWilliams 90: Eddy buoyancy flux ~ 
isopycnal gradient, with diffusivity κ!

• Held&Larichev 96, Visbeck etal 97, Cessi etal 08:  
Set κ = ve × le with theories for eddy velocity and 
lengths dependent on local mean flow



• Pavan&Held 96: compared the PV flux diagnosed from 
channel simulations and doubly-periodic simulations.!

The local PV flux 
diagnosed from the 
channel simulations, 
shown as a function of 
the local mean PV 
gradient (dots) matches 
the relationship obtained 
from doubly-periodic 
simulations (solid).!

Periodic QG models often used as parameterization 
theories, and sometimes this works:



• Smith & Marshall 09: 
found agreement 
between the eddy fluxes 
diagnosed from doubly-
periodic simulations 
using mean state from 
region in SO to those 
measured fluxes from 
moored array !

the flow is horizontally homogeneous—no jets form—
consistent with a drag-based cascade-halting mecha-
nism (Smith et al. 2002).

4. Simulated versus observed eddy stress and
diffusivity

The usefulness of this type of process model is as a
tool by which to measure the eddy statistics and fluxes
that result from the local instability of the mean state.
Here we review some fundamentals of eddy-driven cir-
culation and compare our results from the equilibrated
model state with the measurements of PR00.

a. Eddy form stress

Eddies influence the interior circulation of the ACC
through form stress, which transfers horizontal momen-
tum vertically. This is most apparent in the residual
mean framework, as discussed in Marshall and Radko
(2003) and Ferreira et al. (2005). Summarizing, the
steady-state, mean cross-stream momentum equation
in residual form is

!f n " ures 5
1

r0

›ts
wind

›z
1 n " u9q9; ð4:1Þ

where ts
wind is the along-stream wind stress at the surface

and n " !ures 5 n " !u! ›z u9b9=Bz

! "# $
is the residual mean

cross-stream velocity. The cross-stream PV flux can be
expressed as the vertical divergence of an eddy stress,
neglecting the contribution of horizontal eddy momen-
tum fluxes (which are small in the ocean and by con-
struction vanish in our model):

n " u9q9 5
1

r0

›ts
eddy

›z
;

where

ts
eddy 5 r0f

n " u9b9
Bz

5 r0f kbn " S ð4:2Þ

is the interfacial form stress; kb is an eddy buoyancy
diffusivity defined by the relation u9b9 5 !kb$B: This is
essentially (3.2) applied to the residual mean framework.

Observed estimates of the eddy form stress (4.2) at
the target location are plotted in Fig. 10. The simulated
result (the solid line) indicates that the peak stress is
near the 1-km depth found in the linear and observa-
tional analyses, but it is significant over depths ranging
from 1 to 3 km. Also shown are two intermediate esti-
mates: the second term in (4.2) assuming a constant

FIG. 10. The eddy stress (N m22) for the central simulation (solid line) and from the
band-passed, shear-coordinate, South Station measurements of PR00 (crosses). Also plotted
are estimates of eddy stress using the second term in (4.2) with a constant diffusivity kb 5 1000
m2 s21 (dashed line) as well as an estimate using the fastest-growing linear mode (dashed–
dotted line). The thin vertical line indicates a typical value of the surface wind stress.
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Periodic QG models often used as parameterization 
theories, and sometimes this works:



• Spall 00, Arbic & Flierl 04, Smith 07: 
Non-zonal mean flow leads to shearing 
of PV by β jets, resulting in excessive 
eddy energy & weird states
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FIG. 2. (a) Maximum linear growth rate for PS 5 6, throughput 5
3.33 experiments with parameters otherwise fixed, but with varying
angle of shear flow. (b) Eddy energy in the equilibrated fully nonlinear
simulations. Note that top-layer eddy kinetic energy is averaged over
the upper layer only, while total eddy energy is averaged over the
entire model depth. With these definitions top-layer eddy kinetic en-
ergy exceeds total eddy energy in some of the experiments.

longer), equilibration was judged to have been achieved.
Except where noted, all of the results represent domain-
and time-averages of equilibrated simulations with 256
squared resolution, using an exponential cutoff wave-
number filter for ssd.
LaCasce (1996) performed experiments with the same

numerical model, initialized with a barotropic modon.
Under hyperviscosity, the dipole loses energy fairly
quickly and undergoes a distortion in shape. Under the
wavenumber filter, energy decays slowly and distortions
are minimal, more in line with inviscid analytical so-
lutions. Our preference therefore is to use the wave-
number filter for ssd. In much of the parameter space
explored in Arbic (2000), results do not strongly depend
on whether a wavenumber filter or hyperviscosity is
used for ssd. The vortex regime described in the current
paper is sensitive to ssd and in vortex simulations we
generally use hyperviscosity, at 128 squared resolution.
Our numerical implementations of both types of ssd are
described in the appendix.

3. Dependence of eddy energy on direction of
mean shear flow

We define

P 5 b/upper-layer shear gradientS

2 2 25 b(1 1 d)L /œ(u 2 u ) 1 (y 2 y ) .d 1 2 1 2

In this section b 5 2 3 10211 m21 s21, a typical mid-
latitude value, which implies that PS 5 6. Our initial
hypothesis therefore is that b dominates midocean mean
PV gradients, and zonal flows are subcritical. Figure 2
plots maximum linear growth rates and equilibrated
eddy energies versus angle of mean shear flow. Our
convention is that 1808(2708/3608) represents westward
(southward/eastward) shear. There is an asymmetry be-
tween the westward and eastward cases—see Riviere
and Klein (1997) and references therein for a discussion.
Due to frictional destabilization (Holopainen 1961) lin-
ear growth rates for purely zonal flows are nonzero.
Both linear growth rates and equilibrated energies in the
nonlinear problem are strong functions of angle. In the
2708 experiment eddy energies are much higher than in
observations. Researcher R. L. Panetta has performed
similar calculations—see Panetta (1997) for preliminary
results. Energies in the 1908 and 1858 experiments de-
pend on initial condition. They are greater when spun
up from the 1958 experiment rather than from a random
field. This is reminiscent of the hysteresis documented
by Lee and Held (1991) in experiments with zonal mean
flows. Zonal motions dominate in the experiments of
this section because they are able to tap into available
potential energy arising from meridional shears without
crossing lines of constant PV. Snapshots of zonally av-
eraged c1 in four of the southeastward shear experiments
are shown in Fig. 3. The large jump in energy seen in

Fig. 2b between the 3508 and 3458 experiments is ac-
companied by a change from a wave to a jet regime.

4. Dependence of eddy isotropy on angle between
layer mean PV gradients
In the preceding section, b dominates mean PV gra-

dients. Eddies are anisotropic, consistent with earlier
work linking b and anisotropy (Rhines 1975; Vallis and
Maltrud 1993). Maps of midocean PV (Keffer 1985;
O’Dwyer and Williams 1997) indicate that mean PV
gradients often turn by order 908 in the thermocline.
This implies that planetary and shear-induced mean PV
gradients are of the same order, which contradicts our
earlier inclinations. The discrepancy may be due to the
fact that there is considerable shear within the ther-
mocline. A two-layer model underestimates shear-in-
duced gradients, even if given realistic mean flow val-
ues. For simplicity, we retain the two-layer model and
our prescribed mean flow values, and examine the effect
of varying b on eddy isotropy. In one set of experiments
the shear flow angle is 3308 (308 south of east), while
in another set it is 2108 (308 south of west). When b
greatly exceeds shear-induced gradients, the angle be-
tween layer mean PV gradients is nearly zero. The angle

But sometimes periodic QG models can achieve 
unphysical states or fail to equilibrate
• Thompson & Young 06: f-plane simulations require 

excessive drag to equilibrate! JANUARY 2004 83A R B I C A N D F L I E R L

FIG. 7. As in Fig. 6 but with direction of shear held fixed at 2108
and varying beta.

FIG. 8. As in Fig. 7 but small-scale dissipation is accomplished by
hyperviscosity and resolution is 128 squared.

domain, and c2 and π2c1 are nearly zero so that q1 is
also linear. Total upper-layer PV is homogenized. Thus,
as b increases, so must eddy amplitudes, consistent with
the previously noted increase in eddy energy with b in
the jet regime. In order to cancel b, c1 rises from south
to north over most of the domain in all jet solutions we
have found. Double periodicity implies that c1 cannot
rise linearly throughout the entire domain. In the jet
region it falls rapidly from south to north. Jet amplitude
and structure change with throughput (not shown). For
large throughput the jets widen, consistent with the fa-
miliar inverse cascade to larger scales (Batchelor 1953;
Fjortoft 1953). For all throughput values, π2c1 is nearly
zero, however, c2 is sizable for large throughput. Small
throughput solutions are wavelike rather than jetlike.
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FIG. 7. As in Fig. 6 but with direction of shear held fixed at 2108
and varying beta.

FIG. 8. As in Fig. 7 but small-scale dissipation is accomplished by
hyperviscosity and resolution is 128 squared.

domain, and c2 and π2c1 are nearly zero so that q1 is
also linear. Total upper-layer PV is homogenized. Thus,
as b increases, so must eddy amplitudes, consistent with
the previously noted increase in eddy energy with b in
the jet regime. In order to cancel b, c1 rises from south
to north over most of the domain in all jet solutions we
have found. Double periodicity implies that c1 cannot
rise linearly throughout the entire domain. In the jet
region it falls rapidly from south to north. Jet amplitude
and structure change with throughput (not shown). For
large throughput the jets widen, consistent with the fa-
miliar inverse cascade to larger scales (Batchelor 1953;
Fjortoft 1953). For all throughput values, π2c1 is nearly
zero, however, c2 is sizable for large throughput. Small
throughput solutions are wavelike rather than jetlike.



Venaille, Vallis & Smith 11: Compared eddy statistics in 
regions of eddy-permitting 1/6deg GFDL simulation of 
Southern Ocean to local QG simulations:  some regions 
match up, others don’t. 

Spectra of barotropic and first baroclinic KE and the
APE are plotted in Figs. 10 and 11 (bottom). These
spectra support the idea that there is a moderate inverse
cascade for both barotropic and first baroclinic modes:
the energy peak is generally larger than the instability
wavelength, but only by a factor of a few. The equivalent
barotropic nature of the flow is noticeable in these cases:

the first baroclinic and barotropic kinetic energy spectra
have roughly the same shape. It is also apparent that the
total energy is dominated by the available potential
energy, which is always at scales larger than the in-
stability wavelength, consistent with a moderate inverse
cascade for the available potential energy in the quasi-
geostrophic simulations.

FIG. 10. Snapshots of surface speed (m s21) in (top) MESO and (bottom) the corresponding QG simulations. At
a given location, the domain length is the same for the MESO and QG snapshots: namely, L 5 64R1. (bottom) Energy
spectra from the MESO simulation. Also shown are the relevant length scales (and corresponding wavenumbers),
including the linear instability wavelength Linst (the prime denotes a secondary peak in the growth rate), the Rhines
scale 2p(V/b)1/2, and the first baroclinic wavelength 2pR1 (wavenumber k1 ’ 10 on the spectrum). The QG runs
presented are the one with high bottom friction (r 5 100rcontrol) for point 348S, 308E and the one with thermal
damping for point 348S, 808E; see Table 2 for more details.
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In regions where b is sufficiently large and where
energy levels are sufficiently low, strong eastward jets
form and separate regions of homogenized potential
vorticity in the upper layers, as in Fig. 10 (right). This is
of course consistent with the familiar notion that the
beta effect leads to anisotropic flows (Rhines 1975;
Vallis and Maltrud 1993). However, the Rhines scale
itself (LRh [ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
yrms/b

p
) does not manifest itself un-

ambiguously in the simulations: one might expect to see
a footprint of this length scale in the horizontal dy-
namics if the flow were fully barotropic, but, perhaps
because there is no clear separation between the in-
stability scale and the scale of the eddies, this is not

always the case. Point 608S, 808E is an exception, as il-
lustrated in Fig. 11: here, the peak in the kinetic energy
spectrum occurs at the Rhines scale and corresponds to
the zonal jet width in physical space (these zonal jets
have a negligible contribution to the instantaneous
surface velocity but do appear on a snapshot of the
barotropic velocity). This peak is not related to the in-
jection mechanism, because the instability wavelength
is at much shorter scale (and corresponds to the size of
the surface-intensified coherent rings in physical space).
In that case, there is effectively a clear inverse cascade
for the barotropic mode, with a cascade arrest at about
the Rhines scale.

FIG. 11. The QG runs presented with thermal damping. See Fig. 10 for legend and Table 2 for more details.
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MESO

QG

Subtropics Southern Ocean

(ii) the magnitude, and (iii) the vertical structure of the
eddy field: to what extent are these quantities consistent
in the global circulation model and quasigeostrophic
simulations?

The paper is organized as follows: section 2 is devoted
to the studies of eddy properties in MESO simulations,
with an emphasis on their vertical structure and a com-
parison with computations of linear baroclinic instability.
Section 3 discusses the quasigeostrophic simulations car-
ried out at various locations in the Southern Ocean. A
comparison between eddies in MESO simulations and the
forced–dissipated quasigeostrophic simulations is pre-
sented in section 4, and a summary is given in section 5.

2. Eddies in a comprehensive primitive equation
ocean model

In this section, we examine the mesoscale turbulence
in the eddy-resolving comprehensive primitive equa-
tion ocean model, specifically the 1/68 resolution MESO
simulations of Hallberg and Gnanadesikan (2006). This
is an isopycnal hemispheric ocean model with realistic
geometry but somewhat idealized forcing.1 There are
20 interior vertical layers and a three-level bulk mixed
layer on the top.

a. Eddy properties in MESO simulations

The surface eddy kinetic energy (EKEs) in MESO
simulations, computed by considering a one-year time
average of the square of velocity fluctuations, is pre-
sented in Fig. 1 (bottom). This map of EKEs compares
reasonably well with observations from altimetry (for
more details, see Hallberg and Gnanadesikan 2006). It
shows an inhomogeneous distribution of oceanic eddies:
regions of high EKE are mostly located around western
boundary currents and in some regions in the main body
of the Antarctic Circumpolar Current (ACC).

A snapshot of the surface EKE in Fig. 1 (top) shows
that these regions of high EKEs correspond to regions
where mesoscale turbulence tends to be organized into
rings with typical velocities of 1 m s21 and diameters
Lring of about 200 km. To extract coherent structures in
an objective way from the eddy field, we employ the
Okubo–Weiss parameter W 5 4[(›xu)2 1 ›yu›xy]. This
procedure has been used in previous diagnostics of al-
timetry measurements (Isern-Fontanet et al. 2003, 2006;
Chelton et al. 2007). Coherent structures are found by
looking for simply connected regions in which W , 22 3
10212 s22, as in Chelton et al. (2007). The critical value
must be sufficiently low to capture relevant coherent

structures and sufficiently high to capture the whole area
of a given coherent structure (Isern-Fontanet et al. 2006).
We define the length scale Lco of a given structure as
equal to the diameter of a disk that has the area of the
coherent structure, Lco 5 2(area/p)1/2. In practice, this

FIG. 1. (top) Snapshot of the surface KE (m2 s22) plotted with a
log10 scale. (bottom) One-year average of EKEs from MESO
simulations. The black circles correspond to the six locations con-
sidered for QG simulations; see Fig. 4 for the vertical structure of
EKE at these particular points.

1 For instance, there is no seasonal cycle in wind forcing.
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Venaille, Vallis & Smith 11:



3.4. Eddy origins and terminations

A census of eddy origins is shown in the upper panel of Fig. 6.
The most clearly defined regions of frequent eddy formation are
along the eastern boundaries of the ocean basins. These eddies
most likely form as meanders that pinch off of the eastern bound-
ary currents and undercurrents or from other manifestations of
baroclinic instability in these regions of vertically sheared currents.
Outside of these eastern boundary regions, eddies apparently form
throughout most of the open-ocean regions where propagating ed-
dies are observed (Figs. 4a and 5). This is consistent with the con-
clusions of Gill et al. (1974), Robinson and McWilliams (1974),
Stammer (1998) and Smith (2007b) and others that nearly all of
the World Ocean is baroclinically unstable, particularly in regions
where the flow is non-zonal (Spall, 2000; Arbic and Flierl, 2004;
Smith, 2007a).

The large number of eddies formed along the various seamount
chains northwest of Hawaii is notable. This may be an indication of
interaction between bottom topography and the flow field, which
could include Rossby waves incident from the eastern basin. Or it
may be attributable to abrupt amplification of westward propagat-
ing eddies that are too small to detect in the eastern basin and only
become trackable when their amplitudes increase as they encoun-
ter these bathymetric features.

It should be kept in mind that some of the apparent eddy
formations in the upper panel of Fig. 6 may actually be the reappear-
ance of eddies that are temporarily lost to the tracking procedure be-
cause of a variety of factors (e.g., noise in the SSH fields or because the
shapes of the eddies become temporarily too distorted from interac-
tions with other nearby mesoscale features). Based on animations of
the tracked eddies, we do not feel that this is a major problem, but we
are not able to quantify how frequently this occurs.

Fig. 4a and b. The trajectories of cyclonic (blue lines) and anticyclonic (red lines) eddies over the 16-year period October 1992–December 2008 for (a) lifetimes P16 weeks
and (b) lifetimes P16 weeks for only those eddies for which the net displacement was eastward. The numbers of eddies of each polarity are labeled at the top of each panel.
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The distributions of the upper-layer thickness nonlinearity
parameter defined in this manner are shown for the three latitude
bands in the last column of Fig. 16. A value of dH/H = 0.1 is a rea-
sonable threshold above which this measure of nonlinearity can
be considered significant. It is evident from Fig. 16 that dH/H ex-
ceeds 0.1 for more than 72% of the observed eddies in the extra-
tropics of both hemispheres (slightly higher for the southern
hemisphere than the northern hemisphere). About 2/3 of the ed-
dies in the tropical band are nonlinear by this measure.

The hemispheric asymmetries of the dependencies of the
advective nonlinearity parameter U/c and the quasi-geostrophic
nonlinearity parameter U=ðbL2

s Þ discussed in Sections 6.1 and 6.2
is also found for the upper-layer thickness nonlinearity parameter
dH/H; the distribution of dH/H is more skewed toward large values
for cyclones than for anticyclones in the southern hemisphere
extratropics but the opposite is found in the northern hemisphere
extratropics.

It is noteworthy that our estimates of the ratio dH/H in the last
column of Fig. 16 based on H and e defined in terms of the clima-
tological average hydrography as summarized above are typically
four times larger than our estimates of the Rossby number
Ro = U/(fLs) in Fig. 14. This suggests that many of the observed ed-
dies may formally violate the limits of the quasi-geostrophic
approximation, for which the ratio dH/H is assumed to be of the or-
der of Ro or less (e.g., Pedlosky, 1987).

The geographical distribution of the average value of dH/H (bot-
tom panel of Fig. 17) is qualitatively similar to those of the advec-
tive and QG nonlinearity parameters U/c and U= bL2

s

! "
over most of

the World Ocean. Notable exceptions are the zonal bands of high
values of dH/H along the propagation paths of the previously noted
eddies in the eastern tropical Pacific that are generated off the west
coast of Central America, at low tropical latitudes in the South In-
dian Ocean from the eddies that are generated in the region be-
tween Australia and Indonesia, and along the Azores front at
about 34!N across most of the North Atlantic. Other than these
three areas, average values of dH/H larger than 0.1 are restricted
to the same major unstable, meandering current systems as the

large values of the other two nonlinearity parameters shown in
Fig. 17.

6.4. Summary of nonlinearity

The three nonlinearity parameters considered above paint a
generally consistent picture of the degree of nonlinearity of the ed-
dies. The most highly nonlinear eddies are found in the major
unstable, meandering current systems and the mesoscale features
are somewhat less nonlinear in the tropics than at higher latitudes.
All three measures of nonlinearity indicate that there is a prefer-
ence for highly nonlinear extratropical eddies to be cyclonic in
the southern hemisphere but anticyclonic in the northern
hemisphere.

Of the three nonlinearity parameters considered, we feel that
the advective nonlinearity parameter U/c is the most pertinent as
noted previously since it determines whether an eddy can advect
a parcel of trapped fluid and its associated water properties and
biogeochemical characteristics.

7. Propagation characteristics

7.1. Eddy propagation directions

A striking feature of the trajectories in Figs. 4a and 4c–f is the
visual tendency for nearly due-west propagation. This can be quan-
tified from the average azimuth of each eddy trajectory, defined
here as the angle with respect to due west formed by the great cir-
cle connecting the starting and ending points of the trajectory. The
eddy centroid locations are somewhat noisy, either because of
noise in the SSH fields of the AVISO Reference Series or because
of distortions of the eddy boundaries from eddy-eddy interactions
and eddy-mean flow interactions. In order to reduce the effects of
this noise on the azimuth estimates, we have restricted attention
to the eddies with lifetimes P16 weeks that traversed at least
10! of longitude (approximately 1000 km). The trajectories of all
4508 such eddies are shown in Fig. 18. Except in the Alaska Stream

Fig. 18. The trajectories of all of the 2435 cyclonic (blue lines) and 2273 anticyclonic (red lines) eddies over the 16-year period October 1992–December 2008 that had
lifetimes P16 weeks and propagated westward a minimum of 10! of longitude. The horizontal lines show the latitude ranges of 10–50! that were considered for the analyses
in Figs. 19 and 20.
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Chelton, Schlax & 
Samelson (2011) 
AVISO SSH: 
coherent vortices 
(one type of eddy) 
are long-lasting - 
some over 1 
year…!

.. and in that time 
travel westward, 
many for over 
1000km.  Eddy 
energy not a 
function of local 
mean!



Locality defined

INTRODUCTION METHODS PERIODIC SIMULATIONS CONCLUSIONS

What is energy locality?

Eddy energy can be generated (G), dissipated (D), and fluxed
(F ) from one place to another:

@
t

E = G + F + D

The eddy energy budget of a region is local if generation
balances dissipation in that region.

INTRODUCTION METHODS PERIODIC SIMULATIONS CONCLUSIONS

Why does eddy energy locality matter?

Almost all mesoscale eddy parameterizations are local,
meaning that they relate the effects of eddies in a given location
to the properties of the mean flow in that location.

Eddy energy non-locality would suggest that nonlocal
parameterizations might work better than local ones.

INTRODUCTION METHODS PERIODIC SIMULATIONS CONCLUSIONS

Why does eddy energy locality matter?

Almost all mesoscale eddy parameterizations are local,
meaning that they relate the effects of eddies in a given location
to the properties of the mean flow in that location.

Eddy energy non-locality would suggest that nonlocal
parameterizations might work better than local ones.



Prognostic eddy energy…
Parameterizations with prognostic eddy energy 
equations are common in engineering turbulence 
(e.g. K − ε models), but not in ocean modeling.!
• Eden & Greatbatch 08, Marshall & Adcroft 10: 

Propose parameterizations with prognostic eddy 
energy equations.!

• Grooms, Smith & Majda 12:  Derive eddy energy 
equation from multiscale model for mesoscale-
gyrescale interaction!



Dynamics of Atmospheres and Oceans 58 (2012) 95– 107

Contents lists available at SciVerse ScienceDirect

Dynamics  of  Atmospheres
and  Oceans

journal homepage: www.elsevier.com/locate/dynatmoce

Multiscale  models  for  synoptic–mesoscale  interactions  in
the  ocean

Ian  Grooms ∗,  K.  Shafer  Smith,  Andrew  J.  Majda
Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY
10012, United States

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 11 May  2012
Received in revised form 17 August 2012
Accepted 19 September 2012

Available online 27 September 2012

Keywords:
Geostrophic flow
Oceanic eddies
Eddy flux
Modelling

a  b  s  t  r  a  c  t

Multiscale  analysis  is  used  to  derive  two  sets  of  coupled  models,
each  based  on  the  same  distinguished  limit,  to  represent  the  inter-
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The surface boundary conditions have been linearized to apply at z = 0, 1. The Rhines scale is Lˇ =√
U/ˇ, and the nondimensional numbers are

Ro = U
f0L
, Fre = U√

gH
, Fri =

U
NH
, E1/2 = dE

H
, A!,t =

!∗
t

H
, A!,b =

!∗
b

H
, Aw = |!|

UHf0
.

(16)

We add extra space and time coordinates so that T is the slow time variable, t is fast, X, Y are large,
and x, y are small; |"|, !∗

t , and !∗
b denote the characteristic dimensions of the applied wind stress,

free surface deviations, and topography, respectively. The slow time scale is advective on the large
spatial scale, i.e. T* = LX,Y/U. This makes the time scale separation equal to the space scale separation.
The addition of extra independent variables yields

Ah(∂Tu + ∇h · (uu)) + ∂tu + ∇h · (uu) + ∂z(wu)  + (Ro−1 + AhA
2
ˇY)ẑ × u

+ (RoAhAe)
−2A!,t(∇h + Ah∇h)!t − Fr−2

i

∫ 1

z

(∇h + Ah∇h)b dz′ = 0 (17)

Ah(∂Tb + ∇h · (ub)) + ∂tb + ∇h · (ub) + ∂z(wb) = 0 (18)

Ah∇h · u + ∇h · u + ∂zw = 0 (19)

w − A!,b(Ahu · ∇h!b + u · ∇h!b) − Eẑ · (∇ × +Ah∇h×)u = 0 at z = 0 (20)

w − AhA!,t(∂T!t + u · ∇h!t) − A!,t(∂t!t + u · ∇h!t) − Aw ẑ · (∇ × +Ah∇h×)! = 0 at z = 1 + A!,t!t .

(21)

Here ∇h = (∂X, ∂Y ) is the horizontal gradient acting on the large scale variables. The new nondimen-
sional parameters are

Ah =
Lx,y
LX,Y

, Aˇ =
LX,Y
Lˇ
, Ae =

LX,Y
Le

(22)

where Le =
√
gH/f0 is the external deformation radius; note Fre = RoAhAe.

We set the small scale equal to the baroclinic deformation radius Lx,y = Ld = NH/f0. The separation
between LX,Y and Ld defines a small asymptotic parameter $, which is related to the other nondimen-
sional parameters by the distinguished limit

Ah ≡ $ ≪ 1, Fri∼$, E∼$2, Ro∼$, A!,t∼$2, A!,b∼$2, Aw∼$2, Aˇ∼O(1),  Ae∼O(1).

(23)

The distinguished limit sets the large scale LX,Y comparable to both the Rhines scale and the external
deformation radius, but this is merely a convenience which allows us to investigate the effects of  ̌ and
a free surface simultaneously. The ratios of the large scale to the Rhines scale (Aˇ) and to the external
deformation radius (Ae) should be considered free parameters which are only constrained to be order
one or less. This is made clear by the fact that the essentials of the following analysis are unchanged
on an f-plane with a rigid lid, by setting either or both of Aˇ and Ae to zero (more precisely, one may
take Ae =

√
A!,t/$ and then let A!,t become smaller than $2).

The main requirement of the distinguished limit is that the Rhines scale Lˇ be greater than Ld; for
this reason our analysis does not apply in the tropics where Ld exceeds the Rhines scale. The large
scale LX,Y is also required to be smaller than the planetary scale, because the gradient of the Coriolis
parameter on the large scale is not order one as it would be, for example, in planetary geostrophy (PG).
The large scale is thus constrained by the distinguished limit, but is not as yet explicitly tied to any
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equations wherein the small scale dynamics are geostrophic but not hydrostatic has been previously
derived by K. Julien and G. Vasil (personal communication).

4. The weak synoptic-scale isopycnal gradient limit

The above equations are valid when the scale of isopycnal variation is smaller than the planetary
scale, for example in the vicinity of large-scale fronts. Away from such fronts the isopycnal variation
becomes order one only on the planetary scale, which by assumption is much larger than LX,Y. In these
regions the dynamics on the scale of isopycnal variation are described by PG, and the small-scale
coupling is investigated using MSA  by Pedlosky (1984) and Grooms et al. (2011).  However, in those
same regions it is possible to examine dynamics at a scale intermediate between the deformation
radius and the planetary scale; at high latitudes for example there is a very great disparity in scale
between the planetary scale and the deformation radius.

Because our large scale LX,Y is not explicitly tied to any external parameters, we can proceed in
the same framework to examine the dynamics with small isopycnal variation at scales between the
planetary scale and the deformation radius. Two  properties of the LAG equations allow us to proceed:
they do not evolve the horizontal mean of the stratification, and if supplied with a horizontally uniform
initial buoyancy they will not generate horizontal buoyancy variations. That is to say, b0 = b0(z) is an
exact, linearly stable solution of the LAG equations. We  may  thus consistently proceed to next order
in the asymptotics of the large scale buoyacy equation by setting b0 = b0(z). In order to include the
effects of a gyre-scale buoyancy gradient whose slow evolution we  do not specify, we modify the
ansatz to b0 = b0(z, !ıX, !ıY)  where ı is a parameter of at most order one which controls the strength
of the externally imposed planetary scale isopycnal tilt.

Setting b0 = b0(z, !ıX, !ıY), the eddy-mean system becomes

ẑ × u0 + A−2
e ∇h"t,0 = 0, b0 = b0(z, !ıX, !ıY)  (42)

∂Tq + u0 · ∇hq − curl[!] + ω0 = −curl[∇h ·
∫ 1

0
u′

0u′
0 dz] (43)

∂Tb1 + u0 · ∇hb1 + ıu0 · ∇hb0 = −∇h · (u′
0b

′
1) (44)

q = (ω0 − "t,0 + "b + A2
ˇY) (45)

ẑ × u′
0 + A−2

e ∇h"′
t,1 −

∫ 1

z

∇hb′
1 dz′ = 0 (46)

∂tq′ + (u0 + u′
0) · ∇hq′ = 0 (47)

q′ = ω′
0 + ∂z

(
b′

1

∂zb0

)
(48)

∂tb′
1 + (u0 + u′

0) · ∇hb′
1 = 0 at z = 0, 1 (49)

To derive the mean equations we have used w′
1b

′
1 = 0, which is a necessary solvability condition on

the eddy dynamics: lacking friction, the average rate of generation of eddy kinetic energy (equal to
w′

1b
′
1) must be zero or the eddy kinetic energy will grow secularly on the fast time scale.

Although these equations are closed, they are missing a key ingredient: the above equations do
not account for changes in eddy energy due to interactions with the mean flow, because there is no
baroclinic instability term in the small-scale equations. On the other hand, the large-scale buoyancy
equation now includes an eddy flux term, thus eddies can directly affect the stratification. Energy
transfer to and from the large scales in the above system occurs only on the slow time scale, whereas
the eddy equations describe evolution only on the fast time scale; if one can account for the slow-time
evolution of the eddy energy, it will be possible to close the energy budget.
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with LX,Y << planetary scale, and weak gyrescale buoyancy 
gradients                                  eventually leads to
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4.1. Slow-time evolution of the eddy energy

In the appendix we derive an equation for the slow-time, large-scale evolution of eddy energy as
a necessary solvability condition on the next-order eddy dynamics. The resulting energy evolution
equation is

∂T ⟨E⟩ + u0 · ∇h⟨E⟩ + ∇h · ⟨u′
0E⟩ − ∇h × ⟨p′

1(∂tu′
0 + u0 · ∇hu′

0)⟩ = −⟨u′
0 · (u′

0 · ∇hu0)⟩

−

〈
u′

0b
′
1 · (∇hb1 + ı∇hb0)

∂zb0

〉
+ u′

0|z=1 · ! − |u′
0|2|z=0 + p1|′z=0(u0 ·∇h"′

b). (50)

where E = (1/2)(|u′
0|2 + ((b′

1)2/(∂zb0))) and ⟨ · ⟩ denotes averaging over depth in addition to the mul-
tiscale average ( · ).  The above equation guarantees energetic consistency for the eddy-mean system,
so that energy gained or lost by the mean flow due to eddy forcing is reflected in a corresponding loss
or gain by the eddies. Application of the same methods to homogeneous isotropic turbulence yields a
similar equation for the slow evolution of small scale energy (McLaughlin et al., 1985).

The large scale dynamics in this system are simply the large scale dynamics which occur in regimes
of QG turbulence with an extended inverse cascade: the large scale vorticity is primarily barotropic,
and the large scale buoyancy field is passively advected by the barotropic flow. The inverse cascade
is accomplished by the eddy momentum flux, which provides small-scale forcing to the large-scale
barotropic vorticity equation. The generation and forward cascade of potential energy3 is accom-
plished by passive advection of large scale buoyancy by the barotropic flow, being ultimately absorbed
by the eddy buoyancy flux divergence. The eddy dynamics are highly energetic; so much so, in fact,
that their nonlinear self interaction occurs on a timescale faster than the timescale of baroclinic insta-
bility. Energy exchange with the mean flow occurs slowly in comparison with advection on the small
scales, and this effect is included through the eddy energy equation (50).

5. Discussion and conclusions

We have used MSA  with a single distinguished limit to derive two  systems of equations describing
the interaction of synoptic scales and mesoscales in the oceans. In both systems the small scale is
comparable to the deformation radius, and bottom friction acts at leading order on the large scale
velocity. The distinguished limit requires the synoptic ˇ-scale and external deformation radius to be
larger than the internal deformation radius, so the analysis is not applicable to the tropics. The synoptic
scale (our relative large scale) in both systems is smaller than the planetary scale, while the large scale
in Pedlosky (1984) and Grooms et al. (2011) is equal to the planetary scale. The first system, (35)–(41),
describes the interaction of large scale ‘Large Amplitude Geostrophic’ (LAG) dynamics with small
scale eddies (QG). The dynamics are coupled by an eddy momentum flux in the LAG equations and
by baroclinic instability of the small scale dynamics to the large-scale shear. This system is applicable
to regions where the scale of order one isopycnal variation is larger than the deformation radius but
smaller than the planetary scale, for example in the vicinity of moderately large scale baroclinic fronts
or near the boundaries of wind driven gyres.

Mathematically, the equations are in need of regularization, principally because the QG equa-
tions include baroclinic instability but lack dissipation, but also because of the catastrophic baroclinic
instability present in the LAG equations (Benilov, 1993). This situation is similar to the difficulties
encountered with the PG equations, which require the addition of frictional and dissipative terms (e.g.
de Verdière, 1986, 1988; Samelson and Vallis, 1997; Samelson et al., 1998). Our asymptotic analy-
sis shows that the small-scale contribution to the large-scale dynamics in this regime is dominantly
through the divergence of the horizontal momentum flux; indeed it is possible that this term may  be

3 Quasigeostrophic available potential energy, to be precise, which is equal to half the square of the buoyancy variance.
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ABSTRACT

This paper investigates the energy budget of mesoscale eddies in wind-driven two-layer quasigeostrophic
simulations. Intuitively, eddy energy can be generated, dissipated, and fluxed from place to place; regions
where the budget balances generation and dissipation are ‘‘local’’ and regions that export or import large
amounts of eddy energy are ‘‘nonlocal.’’ Many mesoscale parameterizations assume that statistics of the
unresolved eddies behave as local functions of the resolved large scales, and studies that relate doubly pe-
riodic simulations to ocean patches must assume that the ocean patches have local energetics. This study
derives and diagnoses the eddy energy budget in simulations of wind-driven gyres. To more closely ap-
proximate the ideas of subgrid-scale parameterization, the authors define the mean and eddies using a spatial
filter rather than the more common time average. The eddy energy budget is strongly nonlocal over nearly
half the domain in the simulations. In particular, in the intergyre region the eddies lose energy through
interactions with the mean, and this energy loss can only be compensated by nonlocal flux of energy from
elsewhere in the domain. This study also runs doubly periodic simulations corresponding to ocean patches
from basin simulations. The eddy energy level of ocean patches in the basin simulations matches the level
in the periodic simulations only in regions with local eddy energy budgets.

1. Introduction

Mesoscale eddies are a ubiquitous feature of ocean
dynamics and have been the subject of myriad in-
vestigations. Gill et al. (1974) showed that the potential
energy of the large-scale-mean circulation is much
greater than its kinetic energy and argued that the
conversion of large-scale available potential energy by
baroclinic instability is primarily responsible for the
ubiquity of mesoscale eddies. Diagnostic studies of eddy
energetics in numerical simulations began in the 1970s;
Harrison (1979) reviews the results. Early attention
(e.g., Holland 1978) was focused on the partition of
energy between kinetic and potential, mean and eddy,
and on domain-integrated budgets. A notable exception
is Harrison and Robinson (1978), who analyzed the
energy budget over a few subregions of a single-gyre
basin. Subsequent work by Hall (1986) and Treguier
(1992) also analyzed the energy budget over subregions
of their computation domains. Each of these energy
budget analyses demonstrates that the eddy energy

budget of an ocean patch balances local generation,
local dissipation, and nonlocal import or export of
energy. However, none of these analyses directly ad-
dresses the question of energy locality, namely, the
extent to which local eddy generation is balanced by
local eddy dissipation.
The question of eddy energy locality bears on the

subject of mesoscale parameterization because the ef-
fects of unresolvedmesoscale eddies on a resolvedmean
flow depend on the eddy energy. Visbeck et al. (1997)
and Cessi (2008) both relate the transfer coefficient k in
the Gent and McWilliams (1990) parameterization to
eddy energy using amixing-length approximation k’ yele
where le is a mixing length and ye is an eddy velocity de-
pendent on the eddy energy. These parameterizations are
local in the sense that ye and le are functions only of the
local values of the resolved, large-scale variables and of
external parameters like the strength of bottom friction
and the local Coriolis frequency.1 In contrast, Eden and
Greatbatch (2008) and Marshall and Adcroft (2010)
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ABSTRACT

This paper investigates the energy budget of mesoscale eddies in wind-driven two-layer quasigeostrophic
simulations. Intuitively, eddy energy can be generated, dissipated, and fluxed from place to place; regions
where the budget balances generation and dissipation are ‘‘local’’ and regions that export or import large
amounts of eddy energy are ‘‘nonlocal.’’ Many mesoscale parameterizations assume that statistics of the
unresolved eddies behave as local functions of the resolved large scales, and studies that relate doubly pe-
riodic simulations to ocean patches must assume that the ocean patches have local energetics. This study
derives and diagnoses the eddy energy budget in simulations of wind-driven gyres. To more closely ap-
proximate the ideas of subgrid-scale parameterization, the authors define the mean and eddies using a spatial
filter rather than the more common time average. The eddy energy budget is strongly nonlocal over nearly
half the domain in the simulations. In particular, in the intergyre region the eddies lose energy through
interactions with the mean, and this energy loss can only be compensated by nonlocal flux of energy from
elsewhere in the domain. This study also runs doubly periodic simulations corresponding to ocean patches
from basin simulations. The eddy energy level of ocean patches in the basin simulations matches the level
in the periodic simulations only in regions with local eddy energy budgets.

1. Introduction

Mesoscale eddies are a ubiquitous feature of ocean
dynamics and have been the subject of myriad in-
vestigations. Gill et al. (1974) showed that the potential
energy of the large-scale-mean circulation is much
greater than its kinetic energy and argued that the
conversion of large-scale available potential energy by
baroclinic instability is primarily responsible for the
ubiquity of mesoscale eddies. Diagnostic studies of eddy
energetics in numerical simulations began in the 1970s;
Harrison (1979) reviews the results. Early attention
(e.g., Holland 1978) was focused on the partition of
energy between kinetic and potential, mean and eddy,
and on domain-integrated budgets. A notable exception
is Harrison and Robinson (1978), who analyzed the
energy budget over a few subregions of a single-gyre
basin. Subsequent work by Hall (1986) and Treguier
(1992) also analyzed the energy budget over subregions
of their computation domains. Each of these energy
budget analyses demonstrates that the eddy energy

budget of an ocean patch balances local generation,
local dissipation, and nonlocal import or export of
energy. However, none of these analyses directly ad-
dresses the question of energy locality, namely, the
extent to which local eddy generation is balanced by
local eddy dissipation.
The question of eddy energy locality bears on the

subject of mesoscale parameterization because the ef-
fects of unresolvedmesoscale eddies on a resolvedmean
flow depend on the eddy energy. Visbeck et al. (1997)
and Cessi (2008) both relate the transfer coefficient k in
the Gent and McWilliams (1990) parameterization to
eddy energy using amixing-length approximation k’ yele
where le is a mixing length and ye is an eddy velocity de-
pendent on the eddy energy. These parameterizations are
local in the sense that ye and le are functions only of the
local values of the resolved, large-scale variables and of
external parameters like the strength of bottom friction
and the local Coriolis frequency.1 In contrast, Eden and
Greatbatch (2008) and Marshall and Adcroft (2010)
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propose parameterizations that allow for nonlocality in
the eddy energy budget by solving prognostic equations
for eddy energy on the coarse grid. A recent multiscale
asymptotic analysis by Grooms et al. (2012) shows that
nonlocal components, including an advective flux of
energy from one place to another, can be comparable to
local generation and dissipation in the eddy energy
budget.
Energy locality is also important in relating the results

of doubly periodic simulations to patches of ocean. Be-
cause doubly periodic simulations always have local
energetics, they are unable to correctly model patches of
ocean that have nonlocal energetics. For example, Arbic
and Flierl (2004b) and Arbic and Scott (2008) make
inferences about the type and strength of bottom friction
operative in the oceans by comparing doubly periodic
simulations to observational data. The relevance of
these results is contingent on the energetic locality of
the observed eddies.
The question of locality is also connected to the results

of doubly periodic simulations with imposed nonzonal
baroclinic shear on a b plane. Doubly periodic simula-
tions with imposed nonzonal baroclinic shear often de-
velop unrealistically large energy levels (Arbic and
Flierl 2004a; Smith 2007). A simple explanation of the
mechanism is that the flow, under the influence of b,
tends to organize into zonal jets that extract energy from
imposed nonzonal shear more efficiently than from im-
posed zonal shear. One possible explanation for the
unrealistically high energy levels in doubly periodic
simulations with nonzonal shear is that the eddy energy
budget in these ocean patches is nonlocal: rather than
being balanced by dissipation, efficient eddy energy
generation in these patches could be balanced by a net
export of energy, which is lacking in doubly periodic
simulations.
Venaille et al. (2011) investigate locality by comparing

eddies from ocean patches in a general circulation model
(GCM) with eddies in doubly periodic quasigeostrophic
(QG) simulations. Though able to demonstrate locality
by agreement between the QG and GCM eddies, this
approach has difficulty in conclusively demonstrating
nonlocality because any failure of the QG simulations to
match their GCM counterparts can potentially be at-
tributed to a mismatch in the dynamics (QG versus
primitive equations) rather than to nonlocality per se.
We address the question of energy locality of meso-

scale eddies by diagnosing the energy budget of eddies
in simulations of two-layer quasigeostrophic dynamics
in a wind-driven basin configuration. We say that the
eddy energy budget is ‘‘local’’ if it comprises a balance
between local energy generation (through interaction
with the mean flow, wind forcing, etc.) and dissipation.

This question is formally distinct from the parameteri-
zation question of whether the eddy fluxes of momen-
tum and tracers are local functions of the large scale,
which we do not address directly; we simply assume that
nonlocality in the eddy energy budget suggests some
degree of nonlocality in the fluxes.
There are many ways of defining ‘‘mean’’ and ‘‘eddy.’’

In the context of energetics, the most popular definition
of the mean is the time average. This has several ad-
vantages, including analytical tractability and ease of
implementation. But in the context of mesoscale ocean
dynamics, and in particular in the context of parame-
terization, the concepts of mean and eddy are more
intuitively connected to spatial scale than to a time
average, and the time-average definition of mean and
eddies is only indirectly connected to spatial scale. For
example, time-mean analysis allows nonstationary large-
scale features, like fast barotropic Rossby waves or os-
cillating gyres, to appear in the eddy field and small-scale
standing features, like thin stationary jets, to appear in the
mean. In addition, topographic interactions and Rossby
wave reflection at boundaries are able to transfer energy
from large to small scales, but in the time-mean analysis
topography and boundaries cannot mediate energy
transfer between the mean and eddies.
In zonal channels and doubly periodic domains, the

zonal mean is often preferred to a time average for de-
fining mean and eddies. As with the time average, this
has advantages in terms of computational and analytical
tractability, but the zonal-mean analysis allows features
with small zonal scales (e.g., jets) to appear in the mean
and features with large meridional scales (e.g., large-
scale vortices) to appear as eddies. These disadvantages
distance the results of time-mean and zonal-mean anal-
yses from the spatial-scale concept of mean and eddies
and particularly from the application of subgrid-scale
parameterization.
In addition to deviations from a zonal mean or time

mean, the term eddy can also refer to nonlinear coherent
vortices; indeed, it is natural to think of these as the
eddies regardless of the definition of the mean. Analysis
of large altimetric datasets shows that these eddies typi-
cally propagate westward over long distances (Chelton
et al. 2007, 2011), which suggests that the eddy energy
budget is nonlocal. But eddy propagation only suggests
energetic nonlocality and does not necessarily imply it. If,
for example, an eddy enters and leaves a quiescent region
without significantly changing amplitude, then its passage
has no effect on the time-averaged energy budget for
that region. Similarly, in the case of eddy formation or
lysis, the energy flux associated with a coherent eddy
entering or leaving a region can be balanced by a flux of
incoherent small-scale eddy energy. Thus, the formation,
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Systematically measure locality in two-layer QG 
wind-driven gyre simulations:  !

• Simple setting keeps definitions and analysis 
focused on locality!

• Allows comparison with periodic models using same 
dynamics (whereas in VVS, difference could be due 
to non-QG dynamics in PE model)



• An alternative way to study the fluxes generated by 
mesoscale eddies is to diagnose them directly from 
an eddy-resolving data set.  Recent examples 
include:  Abernathey et al.13, Bachman & Fox-
Kemper 13, Mana & Zanna 14 (Apologies to those 
neglected!)!

• Once the flux terms are diagnosed, one looks for a 
relationship between the fluxes and the local 
properties of the mean flow.  Bachman & Fox-
Kemper also diagnosed the eddy KE directly, and 
found that using it improved the diagnostic 
performance of a parameterization.

[Alternatives…]



propagation, and decay of nonlinear coherent vortical
eddies can only be viewed as suggestive of energetic
nonlocality—an intuition that requires confirmation.
To avoid the difficulties inherent in the time-mean

and zonal-mean formulations, we use a purely spatial
filter of the type used by Nadiga (2008); we are unaware
of other local energetic analyses of mesoscale eddies
that define the mean by a spatial filter.2 We also address
the question of locality by comparing doubly periodic
simulations to patches of ocean in basin simulations.
Venaille et al. (2011) forced doubly periodic quasigeo-
strophic simulations with mean baroclinic shear profiles
taken from patches of ocean in a primitive equation
simulation and compared the results with the eddies in
the primitive equation patches. Many of the doubly
periodic simulations developed excess eddy energy
(suggesting nonlocal behavior) but the need to tune the
balanced quasigeostrophic simulations to approximate
the primitive equation dynamics meant that disagree-
ment between the QG and primitive equation simula-
tions could not be unambiguously attributed to nonlocal
effects. Our doubly periodic simulations use the same
governing quasigeostrophic dynamics as the basin and
channel simulations, thereby avoiding this difficulty.
As expected, we find that the energy level of the quasi-
geostrophic simulations correlates with the eddy en-
ergy in the ocean patches when the patches have local
energetics.
As noted above, there is reason to expect that the

eddy energy budget is nonlocal in regions of nonzonal-
mean shear, because doubly periodic simulations with
nonzonal shear are often unrealistic. Some regions of
nonzonal shear in our simulations do have nonlocal eddy
energy budgets, in particular those at the eastern edges
of the wind-driven gyres, where doubly periodic simu-
lations bear essentially no resemblance to these ocean
patches. However, other regions of nonzonal shear have
local eddy energy budgets and are modeled well by
doubly periodic simulations.
The outline of the paper is as follows. We present

the eddy energy budget of two-layer quasigeostrophic
equations based on a spatial filter in section 2, with the
details of the derivation sequestered in an appendix. In
section 3 we describe the experimental setup, including
the details of the code, basin dimensions, etc. In section 4,
we present and analyze the results of the energetic anal-
ysis and of the comparison with doubly periodic simula-
tions. We conclude in section 5.

2. Eddy energy equations (analysis/theory)

We analyze the energetics of the following two-layer
QG equations:

›tq11$ ! (u1q1)1by15Fw 1Ah=
4c1 , (1)

›tq21$ ! (u2q2)1by252r=2c21Ah=
4c2 , (2)

q15=2c1 1F1(c22c1)2F0c1, and (3)

q25=2c21F2(c12c2) , (4)

where F0 5 f 20 /(gH1), F1 5 f 20 /(g
0H1), and F2 5 f 20 /(g

0H2).
The velocity is ui 5 (2›yci, ›xci), and Fw denotes wind
forcing. The potential vorticity in each layer is qi (i5 1 is
upper and i 5 2 is lower), the streamfunction is ci, the
depth of each layer is Hi, the local Coriolis frequency is
f0, the gravitational acceleration is g, and reduced
gravity is g0; Ah is the turbulent viscosity coefficient, r is
the Ekman drag coefficient, and b is the meridional
gradient of planetary vorticity. We include the effect of
a free surface through the inclusion of nonzeroF0 (which
is much smaller than F1 and F2), but this has minimal
impact on the dynamics because the external deforma-
tion radius is close to the domain scale. The internal
(baroclinic) and external (barotropic) deformation radii
are the reciprocal of the square root of the eigenvalues of
the matrix [(F1 1 F2) 2F1; 2F2F2] (in MATLAB nota-
tion); the larger radius is barotropic. We use Laplacian
vorticity diffusion rather than the more common bi-
harmonic vorticity diffusion for reasons discussed below.
The values taken by the parameters in our simulations
are discussed in section 3.
We define the large-scale-mean potential vorticity to

be the solution of the following elliptic problem:

(12L2
f=

2)qi 5 qi , (5)

with boundary condition qi 5 0. The filter scale is Lf:
larger scales aremean and smaller scales are eddies. This
is essentially the same as the filter used by Nadiga
(2008). The eddy potential vorticity is defined by
q0i 5 qi 2 qi. The overbar and prime notation are defined
as above for any dependent variable, not just potential
vorticity.
Some insight into the behavior of the filter may be

gained by examining its behavior in a periodic domain.
In a periodic domain, application of the low-pass filter
is equivalent to scaling the Fourier coefficients of qi
by (11L2

f k
2)21, where k is the modulus of the wave-

number. Large wavenumbers with Lfk" 1 are damped
approximately as (Lfk)

22, while small wavenumbers are

2Nadiga and Straub (2010) use a spatial filter defined by Fourier
truncation to diagnose domain-integrated energetics, but such
a filter is unable to produce a meaningful local energetic analysis.
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I Square domain, 6,144 km wide
I Deformation radius 20 km
I 8 km grid
I Layer depths 1 & 4 km
I Two different wind stress profiles

(Show movies here)
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We need a way to separate the data set from our simulations
into ‘mean’ and ‘eddy’ components.

Time and/or zonal averages are often used to define the ‘mean’
component. However, both methods fail to separate by spatial
scale, so that the ‘mean’ has a small-scale part and the ‘eddies’
have a large-scale part.

Time mean also implies no energy transfer due to topography,
but topography does transfer energy between scales.

You can use a Fourier series truncation to define large- and
small-scale parts, even in an enclosed domain, but this is
nonlocal because the basis functions have global support. It’s
useful for global statistics (e.g. Nadiga & Straub 2010), but not
for regional investigations.

The filter defines the eddy
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We choose to define the large-scale mean using a spatial filter
defined by the following elliptic inversion

(1 � L

2
f

r2)q
i

= q

i

with boundary condition q

i

= 0. The small-scale eddy part is
q

0
i

= q

i

� q

i

.

As with any spatial filter in an enclosed domain, it does not
commute with differentiation

rq 6= rq.

For convenience we define the ‘eddy’ streamfunction  ̃
i

by
performing the PV inversion using q

0
i

, and define eddy velocities
using

ũ

i

= �@
y

 ̃
i

, ṽ

i

= @
x

 ̃
i

.

We’ll use Lf = 180 km in analysis of simulations.

[consider Fourier!
case…]
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We apply the (high-pass) spatial filter to the QGPV equations to
arrive at

The “Error
i

” result from formally commuting the spatial filter with
derivatives. We track these errors in the code, and they are
confined to a thin layer near the boundaries.

Eddy equations
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We derive the eddy energy equation by multiplying the eddy
QGPV equations by  ̃

i

and performing some simplifications.
The result is

@
t

Ẽ = G + F + D + �

I
Ẽ = eddy energy (kinetic plus potential)

I
G = ‘generation’ through interaction with the large-scale
mean (can be negative, indicating upscale transfer)

I
F = all nonlocal terms, defined as the divergence of a flux

I
D = net dissipation due to Ekman drag and viscosity

I � = terms resulting from commuting the filter with
derivatives

Local eddy energy budget
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The generation term has the form

The dissipation term has the form

INTRODUCTION METHODS PERIODIC SIMULATIONS CONCLUSIONS

The nonlocal flux-divergence term has the form

It is not clear if one can separate this into pieces corresponding
to distinct physical processes like wave radiation or advection
by the mean flow, because the ‘pressure flux’  ̃

i

@
t

r ̃
i

couples
everything.
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The next slide shows the four terms in the eddy energy budget,
averaged over 10 years.

The budget is well-defined instantaneously; a time average
simply smoothes out the results.

There is a very large variation in the size of the terms in the
budget across the domain. To improve clarity we show the
terms in the budget scaled by the eddy energy, e.g.

G/Ẽ .

Errors    are small everywhere except near boundaries

approximately unchanged. For comparison, note that
a low-pass filter defined by averaging over a circle is
equivalent to scaling the Fourier coefficients by a Bessel
function of the first kind J0(Lfk), and that the amplitude
of this Bessel function decays as (Lfk)

21/2 (with oscil-
lation). Similarly, a low-pass filter defined by convolu-
tion with a Gaussian is equivalent to scaling the Fourier
coefficients by a Gaussian, which decays faster than
exponentially with k. Our elliptic filter is thus more scale
local than the circular average but less so than aGaussian
filter. Although these considerations formally apply only
in a periodic domain, the qualitative aspect of scale lo-
cality is transferred to nonperiodic domains. Finally,
we note that Nadiga and Straub (2010) investigate eddy
energetics in a barotropic, wind-driven basin using a
spectral-truncation filter; this filter epitomizes scale lo-
cality but is not spatially local, which is consistent with
their investigation of the area-integrated energy budget.
The disadvantage of our filter is that it is inho-

mogeneous: it does not commute with spatial deriva-
tives; this is a problem endemic to spatial filters in
domains with boundaries. To make analytical progress
in deriving an energy budget one must commute the
filter with derivatives, which incurs errors. These errors
are tracked in our diagnostic code and are generally
limited to the region within a distance Lf from the
boundary. Because using different boundary conditions
on the elliptic inversion results in changes primarily near
the boundaries where errors are already large, the use of
a different boundary condition like qi 5 qi would have
a negligible effect on our results. Analysis of the viscous
dissipation requires formally commuting the spatial fil-
ter with several derivatives; because commuting the fil-
ter with derivatives incurs errors, we choose to minimize
these errors by using Laplacian instead of higher-order
dissipation.
To alleviate the difficulties introduced by the in-

homogeneity, we define the eddy streamfunction ~ci to
be the solution of

q015=2~c11F1(
~c22

~c1)2F0
~c1 and (6)

q025=2~c21F2(
~c12

~c2) , (7)

with a boundary condition on the eddy streamfunction
inversion ~ci 5 0; this guarantees that the eddy velocity
normal to the boundaries is zero. The more common
mass-conserving integral boundary condition would in-
troduce a large-scale barotropic component to ~ci (as-
sociated with the finite barotropic deformation radius),
which is undesirable. In addition, the effect of mass-
conserving boundary conditions on the baroclinic com-
ponent of ~ci would be confined to the boundaries, where

errors are already large. The eddy velocity ~ui and vor-
ticity ~vi are defined by ~ui 5 (2›y~ci, ›x~ci) and ~vi 5=2~ci.
Note that c0

i 6¼ ~ci, u
0
i 6¼ ~ui, and ~vi 6¼ v0

i, but the errors are
concentrated near the boundaries.
The instantaneous eddy energy budget for an in-

homogeneous spatial filter is

1

2
›t

~E5G1F1D1 x , (8)

where the eddy energy density is

~E5
r0f

2
0

g0
(~c12

~c2)
2 1

r0f
2
0

g
~c
2
11 r0!

i
(Hij~uij

2) , (9)

the local generation rate due to wind forcing and inter-
actions with the mean is

G52r0H1
~c1F

0
w1 r0!

i
Hi~ui 3 (uiqi)

0 , (10)

the local dissipation rate by Ekman friction and vis-
cosity is

D52r0rH2j~u2j
22 r0Ah!

i
Hi~v

2
i , (11)

the nonlocal divergence of the energy flux is F, and x is
the collection of terms that result from inexact com-
muting of the filter with spatial derivatives. Details of
the derivation and the precise forms of F and x are in-
cluded in the appendix.
The general form of the energy budget derived using

a temporal filter (specifically, a long-time average) in-
stead of a spatial filter is similar, except that it does not
include local eddy generation by the steady wind forcing
and it does not include filter error because the temporal
filter commutes with spatial derivatives. Details of the
mean and eddy energy budgets defined for a time filter
can be found in Holland (1978). Although the form of
the temporal-filter budget is similar to that of the spatial-
filter budget, the budgets themselves can be different for
the reasons described above (e.g., large-scale Rossby
waves appear in the mean of the spatial filter but in the
eddies of the temporal filter). Furthermore, the spatial-
filter budget is instantaneously meaningful, in contrast
to the temporal-filter budget.

3. Experimental setup

a. Basin simulations

The numerical experiments are performed using a
model based on the QG equations truncated to two layers,
Eqs. (1) and (2). The free-slip conditions appropriate for
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FIG. 3. Scaled terms in the eddy energy budget (s21). (from top to bottom) The scaled generation
rate ahGit/h ~Eit, the scaled nonlocal flux rate ahFit/h ~Eit, the scaled dissipation rate ahDit/h ~Eit , and the
scaled filter error rate ahxit/h ~Eit, where h!i denotes a 10-yr average and a5 107 is a scaling factor. The
zonal-wind (left) and the nonzonal-wind (right) experiments are shown.
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The results of the periodic simulations shown in Fig. 6
are clearly quite different from the basin results shown in
Fig. 2. The most striking contrasts are evident in the
central part of the basins and in the eastern edges of the
gyres, where the eddy energy budgets are strongly non-
local as shown in Fig. 5. In the central part of the basin
the shear is predominantly zonal, but is subcritical and
the doubly periodic simulations do not generate any
eddy energy. In the eastern part of the gyres where the
shear is strongly nonzonal the basin simulations have
minimal eddy energy and strongly nonlocal budgets,
whereas the doubly periodic simulations display the

typical high-energy levels of simulations forced by strongly
nonzonal shear. The regions of westward flow at the
northern and southern edges of the basin display agree-
ment between the eddy energy density of the doubly pe-
riodic and basin simulations, which is again consistent with
the fact that the eddy energybudget is local in those regions
(Fig. 5). The baroclinic shear in the southern half of the
subtropical gyre has a nonzonal component in both zonal-
wind and nonzonal-wind experiments, yet the eddy energy
budget in these regions is local, and the energy levels of the
basin and periodic simulations are in agreement; thus,
nonzonal shear does not always imply nonlocality.

FIG. 5. Basin nonlocality. The ratio of coarse-grained nonlocal terms hFit to local dissipation hDit shown as
a percentage for the (left) zonal-wind and (right) nonzonal-wind cases. Regions where the nonlinear energy transfer
is upscale (negative generation hGit) are indicated by horizontal lines. Regions where the coarse-grained energy
density h ~Eit is less than 103kg s22 are indicated by vertical lines. Coarse-graining is performed by averaging over 163 16
square regions of width 384km, and h!it denotes a 10-yr average.

FIG. 6. Eddy kinetic energy density in periodic simulations. The logarithm of the average eddy kinetic energy
density (kg s22) from the suite of doubly periodic simulations is shown for the (left) zonal-wind and (right) nonzonal-
wind experiments.
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Growth rate of baroclinic instability based on large-scale mean
shear and PV gradient.

Linear stability of time-mean

As conjectured by VVS, regions of fast growth rates are 
localish…
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There is a plausible correlation between the performance of
periodic simulations and the strength of instability.

Our doubly-periodic simulations are most accurate in the
regions of local energetics, which are also regions of strong
instability.

Our doubly-periodic simulations are least accurate where the
energetics are nonlocal, and where the mean shear is

strongly meridional.

INTRODUCTION METHODS PERIODIC SIMULATIONS CONCLUSIONS

Our results demonstrate that doubly-periodic simulations with
meridional shear do not approximate mid-ocean flows with
meridional shear.

Comparison to periodic runs
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Summary and Conclusions

I Eddy energy budget is nonlocal over a wide region of our
idealized model.

I Mesoscale eddy parameterizations might benefit from
prognostic models of eddy energy.

I Doubly-periodic simulations do not accurately model
regions with nonlocal energetics or nonzonal shear, e.g. on
the eastern side of wind-driven gyres. This might be
improved by using a time-dependent large-scale flow,
instead of the time-mean large-scale flow (e.g. Poulin
2010; Poulin et al. 2010).

I Nonlocal energetics and weak instability are correlated in
our simulations, providing support for the conjecture of
Venaille et al. (2011) that regions with weak instability are
susceptible to nonlocal effects.

Conclusions


