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Climate change experiments

MuLTi-MobpEL AVERAGES AND AsSSESSED RANGES FOR SURFACE WARMING
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Introduction: response theory

Response theory in general is a formalism aimed at describing changes in the
statistical properties of a system a under the application of a forcing in terms of the

statistical properties of the unperturbed system;

For conservative systems: classical results of equilibrium statistical mechanics,
Fluctuation-Dissipation Theorem (FDT);

For dissipative systems: FDT in general does not hold;

Ruelle (1998 and others) has demonstrated that for a specific class of dynamical
systems (Axiom A) it is possible to build a response theory for deviations from non-
equilibrium steady states (NESS) formally similar to the equilibrium case;

Axiom A systems are very specific; applications to more general systems are
justified by the Chaotic Hypothesis by Gallavotti and Cohen (1995, 1996): systems
with many degrees of freedom can be treated as Axiom A as long as macroscopic
observables are considered.
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Ruelle response theory (RRT)

* Let us consider a dynamical system for which we assume we can apply RRT,
described by the evolution equation

x=F(x)+X(x)f(t)
where F(x) represents the unperturbed dynamics, X(x) is the structure of the forcing
in the phase space, and f(t) the time modulation.

- Considering a generic observable @, we can write its expectation value as a
perturbative expansion

(®), )= (@), + 3 (@), 1)

« Each term of the serie can be computed knowing the n-th order Green function

+00 400 +

(@) W)= .. oodal do,...do G (0,,0,,...0 )f(t-0)f(t-0,)..f(t-0)

—00 —00 0o
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Linear response theory

* Limiting the attention to the linear term

(@), (1)= [doG@pf-0,)

The Green function can be computed knowing the SRB measure of the system;

It is general a causal function (G((Dl)(t) =0 for t <0). Taking the Fourier transform

(®) (@)= 2@ f @)

where the linear susceptibility Xo (©0) is the Fourier transform of G\ (1)
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Kramers-Kronig relations

» The real and imaginary parts of xfﬁ)(w) describe the in- and out-of phase response
of the system at each frequency (time-scale), and obey the Kramers-Kronig
relations (KK)

[ (1)(0))] f Q) Im[X(l)(a) )]da)

M) 2w Re[X (l)(w N
| g’ (@)|====P f >

» Self-consistency relations, have to be satisfied by any linear causal model;

« All this for the linear term; we also have nonlinear susceptibilities for the higher
order terms, and related generalized KK relations.
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Example: Lorenz 63 model

—rGron]
e [1 { x4 (10)}
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Lucarini (2009)
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Application to climate change experiments

Let us consider as our dynamical system the climate system as described by a
general circulation model (GCM));

Climate change experiments (IPCC-like): for each emission scenario we change
the time modulation of the radiative forcing f(t), and we perform a simulation;

If we know the Green function of an observable, we could in principle avoid doing
running the model for every scenario, using simply

(@) ()= [ do,GY' (o) flt-0,)

Moreover, the analysis of the susceptibility could tell something on the properties of
the observable;

How do we compute numerically the Green function?
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Application to climate change experiments

We perform an experiment with a test forcing f(f), and we obtain the susceptibility
inverting the equation ()
(@) ()

=\ 1 7 1
(®) (@)= x5 @)f@) = x3@)= 5

From this we can compute the Green function taking the inverse Fourier transform;

Now we can compute the response to any other forcing g(t) using the response
formula without running again the GCM

A good forcing to compute things in this way is the one given by a step-function. In
this case

. n i | A\
f@O=H@) = f(w)= (55<w>+—) = 1 (@) =i (®) (@)

(40,
that is equivalent to

d
Gy (@) =—(®) (1 .
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Planet Simulator
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Results: response to [CO,] doubling and Green function

Observable: global SST 9
=T

Forcing: instantaneous [CO,] doubling
from 360 to 720 ppm

f@) = feo,H(t)

Ensemble of 200 simulations with
different initial conditions, each 200
years long;

Then we compute the Green function |
differentiating the time series of the 1 01 - _— _— oy
ensemble average <T > | tme (years)

0 50 100 150 200
time (years)
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Results: test of prediction with 1% per year [CO,] increase

« We take another emission scenario: 9
1% [CO,] increase per year from 360
to 720 ppm, then constant; 8
7_
« Forcing g(t) is a linear function for the
first T = 70 years and then constant 6
- < sl
<g(l‘) fc()2 , I<T v§4_
3_
g(1) = f CO,? =7
. 2_
* Prediction by RRT coincides almost 1r _
perfectly with Plasim simulations. | | —f;;g;;nse theory
% 50 100 150 200

time (years)
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Results: susceptibility of global SST to [CO,] forcing

« Susceptibility similar to exponential y—
relaxation process, but tails different: S
complex nature of climate response B
at multiannual time-scales; 7t

« Value at frequency 0 equivalent to &
long-term stabilization value of SST - o
increase: Equilibrium Climate Sens.: i al o

() Se gl
ECS = feo, X1, (0) SR
2r
 Therefore when we compute ECS we 1
are computing one (and only one) value o
of the susceptibility. o

_1 . . . . L L N L L N
10 1072 107"
w (years™1)
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Results: climate sensitivity in response theory framework

Computing the whole function with RRT is useful because the KK in zero give

(1) 400
ECS = £2 % (0) = —P f X (w)]da) - 2P [Rel(T)" (@)
7T 0

One can check which is the contribution of each frequency (time-scale, therefore
physical processes) in determining ECS;

Intercomparison: by comparing the integrand for two models with a different ECS
one can see which are the time-scales mostly responsible for the discrepancy;

Another measure of CS is the Transient Climate Response (TCR), the temperature
increase after a 1% increase of the CO,, at the moment of doubling T = 70 years.
One can show that

TCR=ECS-P f foo X (w)

1+sinc(wt /2)e ™ oo

2JTi
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Not only global quantities!

Plasim

35 years

70 years

long term

-24-22-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 -24-22-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24



Conclusions

 We have demonstrated the applicability of RRT the analysis of the output
of a complex GCM,;

 This demonstrates that climate change assessment is a well-defined
problem from the mathematical and physical point of view (not obvious!);

 RRT can be used both in a prognostic and diagnostic sense in order to
improve climate change studies and optimize the usage of the
computational resources;

« In this framework we can approach rigorously the problem of climate
sensitivity and climate prediction at specific time scales (for example
decadal), both major issues of the last IPCC report.
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e Studying other variables (water vapor, temperature gradients, radiation
fluxes) can give some interesting insights into the properties of the
response of the climate system to CO2 increase;

e Response properties to other forcings (for example, solar forcing) can be
interesting for other fields (planetary sciences);

e \We can use the theory in order to study systematically simple geophysical
models: Lorenz63 (Reick, Lucarini), Lorenz80 (existence of slow manifold,
work in progress), others...
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Other quantities: surface temperature gradients
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Other quantities: 500 hPa global temperature
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Other quantities: 500 hPa temperature gradients
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Other quantities: global vertical (in)stability

A[Ts — Ts00)(K)
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