
A new framework for climate sensitivity and prediction

Francesco Ragone(a), Valerio Lucarini(b,c,d), Frank Lunkeit(b)

a) Institut für Meereskunde, University of Hamburg, b) Meteorologisches Institut, University of Hamburg

c) Department of Mathematics and Statistics, University of Reading, d) Walker Institute for Climate System Research, University of Reading

4. Response of global SST
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PlaSim
response theory

The instantaneous [CO2] doubling induces a ra-
diative forcing given by a (scaled) Heaviside func-
tion f = f2x2CO2

H(t). In this case we can compu-

te directly the (scaled) Green function as

f2x2CO2
G
(1)
Ts
(t) =

d

dt
〈Ts〉f

Figure 1 show 〈Ts〉f (t) and f2x2CO2
G
(1)
Ts
(t) (insert)

resulting from the ensemble of simulations.
Figure 1

Figure 2

The 1% [CO2] increase scenario induces a forcing linear up to f2x2CO2
and

constant afterwards. Figure 2 shows in blue the ensemble average of the
SST increase from Plasim. The shaded area represents 95% of the en-
semble variability. The red curve is the SST increase predicted by RRT
computed using equation (3). The agreement between the result of the
simulations and the prediction of RRT is remarkable, with only a slight dis-
crepancy during the transient, most probably connected to the activation of
the ice-albedo feedback. We stress how, despite the system being highly
non linear, the linear theory reproduces the results extremely well.

5. Susceptibility of global SST and climate sensitivity
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The real and imaginary parts of f2x2CO2
χ
(1)
Ts
(ω) are only partially consistent

with those of a relaxation process (figure 3). The KK analysis retains most
of the irregularity in the high frequency regime (complex behavior of the

CS at multiannual scale). The value of f2x2CO2
χ
(1)
Ts
(ω) at ω = 0 coincides

with the equilibrium climate sensitivity (ECS), the stabilization value of the
temperature increase after a [CO2] doubling. Thanks to the KK

ECS = f2x2CO2
χ
(1)
Ts
(0) =

2

π
P

∫ +∞

0

$
{

f2x2CO2
χ
(1)
Ts
(ω)

}

ω
dω

It is possible to derive formulas for other measures of climate sensitivity, as
the transient climate response (TCR) (see (4)), the temperature increase
at time τ when [CO2] has doubled increasing by 1% per year (ca. 70 years)

TCR = ECS − f2x2CO2
P

∫ +∞

−∞
χ
(1)
Ts

1 + sinc(ωτ/2)e−iωτ/2

2πiω
dω

In general, the linear susceptibility contains all the informations about the
response of the system in the linear regime at all frequencies (time-scales).

Figure 3

6. Response of SST pattern
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Figure 4

Plasim RRT

35 years

70 years

stab.

In figure 4 we show the results performing the same
analysis but considering as observable the local SST
at each grid point. This involves computing the Green
function of the SST at each grid point. We would expect
the skills of RRT in predicting the change in the local
SST to be worse than for the global SST. However, it
turns out that also locally the prediction is extremely
accurate at all times.

The left column shows the patterns of SST increase
with 1% per year increase of [CO2] obtained with Pla-
sim, the right column the ones obtained with RRT. The
top row shows the temperature increase at 35 years (in
the middle of the transient, where the discrepancy in
the global SST between Plasim and RRT is maximum),
the middle row at 70 years (the [CO2] doubling time),
the bottom row the long term mean after the stabiliza-
tion. In all cases the agreement is remarkably good,
almost perfect in the last two cases, with some quan-
titative discrepancy but overall good qualitative agree-
ment also during the transient.

7. Conclusions
- We have shown that linear RRT can be used in order to predict the response of global and local SST to a [CO2] increase
scenario. This implies that climate change assessment is a well defined problem from a mathematical and physical point of view;

- RRT could be used in order to extend the palette of climate change scenario considered by the IPCC without resorting to
additional expensive numerical simulations;

- The analysis of the susceptibilities of different models can be used in order to perform a rigorous intercomparison aimed at
understanding the origins of persisting discrepancies among models in the different measures of climate sensitivity;

- The analysis of other observables (i.e. precipitable water, vertical and horizontal gradients of temperature) would be of great
interest in order to characterize rigorously the response of the CS to climate change;
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1. Summary
- The climate system (CS) is an example of nonequilibrium chaotic
dynamical system. Climate change theories and modelling aim at
predicting changes in the statistics of climatic observables due to
external forcings or internal parameter modulations, such as [CO2];

- After decades of studies and model development, large uncertainties
are still present in the evaluation of the climate sensitivity to [CO2]
increase and in the predictive skills of the general circulation models
(GCMs) at specific (e.g. decadal) time-scales;

- Ruelle response theory (RRT) provides a framework to address
rigorously the problem of the response for a class of forced-dissipative
systems (1). Applications to a system like the CS are justified by the
Chaotic Hypotesis (2);

- RRT has been proposed as a tool to build rigorously response opera-
tors for generic observables by performing a single forcing experiment
exploiting ensemble methods (3).

2. Ruelle linear response theory

Given an Axiom A dynamical system subject to a forcing with structure
in the phase-space X(x) and time modulation f(t)

ẋ = F(x) +X(x)f(t) (1)

the deviation of the expectation value of an observable 〈Φ〉f(t) from a
stationary state of the unperturbed dynamics 〈Φ〉0 can be computed as

〈Φ〉f(t) = 〈Φ〉0 +
+∞
∑

n=1

〈Φ〉(n)f (t) (2)

The linear term can be computed introducing the first order Green func-

tion G(1)
Φ (t) of the observable Φ

〈Φ〉(1)f (t) =

∫ +∞

−∞
G(1)

Φ (σ1)f(t− σ1)dσ1 (3)

The Green function is a causal function, G(1)
Φ (t) = 0, t < 0. Taking the

Fourier transform of (3)

〈Φ̂〉(1)f (ω) = χ(1)
Φ (ω)f̂(ω) (4)

where the linear susceptibility χ(1)
Φ (ω) is the Fourier transform of G(1)

Φ (t).

Being G(1)
Φ (t) a causal function, the real and imaginary parts of χ(1)

Φ (ω)
obey the Kramers-Kronig relations (KK)

&
{

χ(1)
Φ (ω)

}

=
2

π
P

∫ +∞

0

ω
′
$
{

χ(1)
Φ (ω′)

}

ω′2 − ω2
dω

′

$
{

χ(1)
Φ (ω)

}

= −
2ω

π
P

∫ +∞

0

&
{

χ(1)
Φ (ω′)

}

ω′2 − ω2
dω

′

(5)

KK are self-consistency relations linking to each other the in- and out-
of phase response of the system at all frequencies.

3. Model and methods

Application to climate response and prediction:

1. we perform with a GCM an ensemble of test forcing experiments
increasing [CO2] with a certain time modulation f(t) starting from
different initial conditions on the attractor of the unperturbed system;

2. we compute the ensemble average of the response of an observable

〈Φ〉(1)f (t), and we compute χ(1)
Φ (ω) = 〈Φ̂〉(1)f (ω)/f̂(ω) from eq. (4);

3. we compute G(1)
Φ (t) as the inverse Fourier transform of χ(1)

Φ (ω);

4. we consider any different time modulation of the forcing g(t): now the

response to the new forcing 〈Φ〉(1)g (t) can be computed using eq. (3),
without the need to run again the GCM.

We test this procedure with Plasim, a simplified GCM developed at
the University of Hamburg. The atmospheric model includes a full set
of physical parameterizations which make it qualitatively comparable
with state-of-the art GCMs, and is coupled to a mixed layer ocean.
The model is run in T21 horizontal resolution with 10 vertical layers.
Daily and seasonal cycles are switched off.

We perform an ensemble of istantaneous [CO2] doubling experiments
starting from 200 different initial conditions taken from a control run
with [CO2] = 360 ppm. As observable we consider the global surface

temperature (SST) Φ = Ts, and we compute χ(1)
Ts
(ω) and G(1)

Ts
(t). We

perform another ensemble of experiments increasing [CO2] by 1% per
year until it has doubled. By comparing the results of this second en-
semble of simulations with the prediction obtained with eq. (3) we test
the predictive power and applicability of the theory.


