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Project Aims and Challenges

This project focuses in the derivation of Kinetic-Induced Moment Systems (KIMS)
based in the relationship between kinetic theory and non-linear hyperbolic conservation laws
and their potential applications in the description of small-scale geophysical flows. Using sim-
ple base cases as the 1-D Burgers’ equation and the 1-D shallow water equations, our aim
on the one hand is to use the resulting PDEs as a monitoring function to detect particular
flow structure (like shocks and rarefaction waves) into the construction of adaptive numeri-
cal methods, and on the other hand as a basis to derive novel parametrizations for subgrid
closures.

Main Definitions

•Boltzmann-like equation with a BGK collision term: describes the statistical
distribution of the density of particles f (t, x, ξ), where f0(Q, ξ) is considered its equilibrium
function and ξ the microscopic velocity,

∂tf (t, x, ξ) + ξ∂xf (t, x, ξ) =
1

ε
[f0(Q, ξ)− f (t, x, ξ)]

with 0 < ε� 1, the mean free path.

•Moments (Wk): are weighted averages of f (t, x, ξ),

Wk =

∫
R

ξk f (t, x, ξ) dξ

with k ∈ Z≥0 the order of the moment.

The equilibrium moments Wk |E are also weighted averages but of f0(Q, ξ),

Wk |E=

∫
R

ξk f0(Q, ξ) dξ

Consider a 1-D conservation laws system

∂tQ + ∂xF (Q) = 0

Q(n) the vector of unknowns with n elements. For 0 < k 6 n − 1 holds that
f (t, x, ξ) = f0(Q, ξ) and

Wk−1 = Wk−1 |E = Q(k) , 0 < k 6 n− 1

and the remaining moments Wk for k > n, will yield the new unknowns.

What is a KIMS?

It is an infinite moment system based on an artificial Boltzmann-like transport equation using
the connection between kinetic theory and conservation laws together with an
asymptotic expansion of the corresponding moments.

How to derive it?

1. Multiplication on both sides of the Boltzmann-like transport equation by the weights
(1, ξ, ..., ξn−1, ξk) and subsequent integration over the microscopic velocity ξ yield an infinite
PDE moment system.

2. Express the infinite system in terms of the p-order non-equilibrium moments, starting at
p = 1

W
(p)
k = W

(p−1)
k −W (p−1)

k |E, p > 1

for 0 ≥ k ≥ n + p− 2 holds that W
(p)
k = 0.

3. Use asymptotic expansion in terms of the small parameter ε to show that at each order a
scale-induced closure is possible, resulting in a closed moment system.

W
(p)
k = εpW

(p)
k,p + εp+1W

(1)
k,p+1 + . . . , k ≥ n + p− 1

Base Cases

1. 1-D Inviscid Burgers’ equation:

∂tu + ∂x

(
1

2
u2

)
= 0

evolution of the horizontal velocity u(t, x)
at a time t ≥ 0 and at a point x ∈ R.

2. 1-D Shallow Water equations:

∂th + ∂x(hu) = 0

∂t(hu) + ∂x
(
hu2 +

g

2
h2
)

= 0

evolution of the height of water h(t, x) and
its horizontal velocity u(t, x), with t ≥ 0,
x ∈ R and g the gravitational acceleration.

The respective KIMS at third order (p = 3) reads,

1-D Inviscid Burgers’ equation:

∂tu + u∂xu + ε∂xW = 0

∂tW +
1

3ε
∂xu + u∂xW =

4ε

15
∂xxW −

1

ε
W

where W = 1
εW

(1)
1

1-D Shallow Water equations:

∂th + ∂x(hu) = 0

∂t(hu) + ∂x(hu
2 +

g

2
h2) + ε∂xW = 0

∂tW +

(
g

2ε
h2 + 3W

)
∂xu + u∂xW

= −3

2
εg∂x

[
g

ε
h2∂xh + 2W∂xh+

h∂xW + gh3∂xxu

]
− 1

ε
W

where W = 1
εW

(1)
2

Monitoring Functions (ε→ 0)

In the limit ε→ 0, the previous third-order systems read

1-D Inviscid Burgers’ equation:

∂tu + u∂xu = 0

W = −1

3
∂xu

1-D Shallow Water equations:

∂th + ∂x(hu) = 0

∂t(hu) + ∂x(hu
2 +

g

2
h2) = 0

W = −g
2
h2∂xu

Can be proved that the previous systems yield the correct shock propagation and therefore as
ε→ 0: if ∂xu = 0 then W = 0, if ∂xu→ −∞ then W →∞ (shock wave) and if ∂xu→∞
then W → −∞ (rarefaction wave). Consequently, W (x, t) tends to δ -function located at
the points of the discontinuities.

Numerical Experiments

Using developing shock initial conditions in both cases, we proof numerically that for a suffi-
ciently small epsilon (ε = 0.01), W (x, t) behaves as expected.

1-D Inviscid Burgers’ equation:
u(x, 0) = tan−1(−x) + 4 ∀x

Figur 1. u(x, t) and w(x, t) at t = 2

1-D Shallow Water equations:
(Dam break)

Figur 2. h(x, t), u(x, t) and w(x, t) at t = 3

Present and Future Work

•The current stage of our research is focused on the applicability of the monitoring function as
a refinement parameter in the construction of novel grid-adaptive simulation tools. Again,
we use the previous base cases in the development of numerical experiments and compare
its performance with traditional grid-adaptive simulations.

•The next step consist in the derivation of novel parametrizations for subgrid closures. We
will use spectral analysis in order to compare in a coherent way the original flow equations
and its corresponding moment system, together with the corresponding subgrid closures.
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