This project focuses in the derivation of Kinetic-Induced Moment Systems (KIMS)
based in the relationship between kinetic theory and non-linear hyperbolic conservation laws
and their potential applications in the description of small-scale geophysical flows. Using sim-
ple base cases as the 1-D Burgers’ equation and the 1-D shallow water equations, our aim
on the one hand is to use the resulting PDEs as a monitoring function to detect particular
flow structure (like shocks and rarefaction waves) into the construction of adaptive numeri-
cal methods, and on the other hand as a basis to derive novel parametrizations for subgrid
closures.

e Boltzmann-like equation with a BGK collision term: describes the statistical
distribution of the density of particles f(t, z, &), where fy(Q, &) is considered its equilibrium
function and & the microscopic velocity,

0 (t,,€) + E0.1(2,€) = ~{o(Q. ) ~ f(t,,€)

with 0 < € < 1, the mean free path.

e Moments (W}): are weighted averages of f(t,z, &),
Wi= [ € fito€)de
R

with £ € Z~ the order of the moment.

The equilibrium moments Wy, |g are also weighted averages but of fo(Q, &),

Wi ’E:/§ka(Q7€) dg
R

Consider a 1-D conservation laws system

0Q + 0, F(Q) =0

For 0 < k <

Q(n) the vector of unknowns with n elements. n — 1 holds that

flt,z,8) = fo(Q,&) and
Wii = Wi |g= Q(k),

and the remaining moments W, for £ > n, will yield the new unknowns.

0<k<n—-1

It is an infinite moment system based on an artificial Boltzmann-like transport equation using
the connection between kinetic theory and conservation laws together with an
asymptotic expansion of the corresponding moments.

1. Multiplication on both sides of the Boltzmann-like transport equation by the weights
(1,€, ..., "1 €F) and subsequent integration over the microscopic velocity € yield an infinite
PDE moment system.

2. Express the infinite system in terms of the p-order non-equilibrium moments, starting at
p=1
~1 ~1
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for 0 > k > n + p — 2 holds that W,gp):().

p=1

3. Use asymptotic expansion in terms of the small parameter € to show that at each order a
scale-induced closure is possible, resulting in a closed moment system.

W,gp)zepW,gnge:p“W,gBHJr..., Ek>n+p—1

2.1-D Shallow Water equations:

1.1-D Inviscid Burgers’ equation:

O + 0, (%u2> — () Oy(hu) + 0, (hu” + ghQ) — ()

evolution of the height of water h(t, x) and
its horizontal velocity w(t, x), with t > 0,
r € R and g the gravitational acceleration.

evolution of the horizontal velocity w(t, x)
at a time t > 0 and at a point z € R.

The respective KIMS at third order (p = 3) reads,

1-D Inviscid Burgers’ equation: 1-D Shallow Water equations:

Oy (hu) + 0, (hu” + ghQ) + 0, W =0
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where W = %WQ(D

In the limit € — 0, the previous third-order systems read

1-D Inviscid Burgers’ equation: 1-D Shallow Water equations:
g
W = —%@xu Op(hu) + O, (hu” + §h2) —0
W = —ghQ&I;u

Can be proved that the previous systems yield the correct shock propagation and therefore as
e — 0: if dpu = 0 then W =0, if 0,u — —oo then W — oo (shock wave) and if 0,u — oo
then W — —oo (rarefaction wave). Consequently, W (x,t) tends to ¢ -function located at
the points of the discontinuities.

Using developing shock initial conditions in both cases, we proot numerically that for a suffi-
ciently small epsilon (¢ = 0.01), W (x, t) behaves as expected.

1-D Shallow Water equations:
(Dam break)

1-D Inviscid Burgers’ equation:
u(z,0) =tan t(—xz)+4 Vax

h{x.t) at time t = 3. 00000000
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Figur 1. u(z,t) and w(z,t) at t = 2
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Figur 2. h(z,t), u(x,t) and w(z,t) at t = 3

e The current stage of our research is focused on the applicability of the monitoring function as
a refinement parameter in the construction of novel grid-adaptive simulation tools. Again,
we use the previous base cases in the development of numerical experiments and compare
its performance with traditional grid-adaptive simulations.

e The next step consist in the derivation of novel parametrizations for subgrid closures. We
will use spectral analysis in order to compare in a coherent way the original flow equations
and 1ts corresponding moment system, together with the corresponding subgrid closures.
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