Project Aims and Challenges

This project focuses on the derivation of Kinetic-Induced Moment Systems (KIMS) based on the relationship between kinetic theory and non-linear hyperbolic conservation laws and their potential applications in the description of small-scale geophysical flows. Using simple base cases as the 1-D Burgers’ equation and the 1-D shallow water equations, our aim on the one hand is to use the resulting PDEs as a monitoring function to detect particular flow structure (like shocks and rarefaction waves) into the construction of adaptive numerical methods, and on the other hand as a basis to derive novel parametrizations for subgrid closures.

Main Definitions

- **Boltzmann-like equation with a BGK collision term:** describes the statistical distribution of the density of particles \(f(t, x, \xi) \), where \(f_0(Q, \xi) \) is considered its equilibrium function and \(\xi \) the microscopic velocity.
 \[
 \partial_t f(t, x, \xi) + \xi \partial_x f(t, x, \xi) = \frac{1}{\epsilon} f_0(Q, \xi) - f(t, x, \xi)
 \]
 with \(0 < \epsilon \ll 1 \), the mean free path.

- **Moments (\(W_k \)):** are weighted averages of \(f(t, x, \xi) \).
 \[
 W_k = \int \xi^k f(t, x, \xi) d\xi
 \]
 with \(k \in \mathbb{Z} \), the order of the moment.

The equilibrium moments \(W_0 \) are also weighted averages but of \(f_0(Q, \xi) \).
\[
W_0 = \int \xi^0 f_0(Q, \xi) d\xi
\]
Consider a 1-D conservation law system
\[
\partial_t Q + \partial_x F(Q) = 0
\]
\(Q(n) \) the vector of unknowns with \(n \) elements. For \(0 < k \leq n-1 \) holds that \(f(t, x, \xi) = f_0(Q, \xi) \) and \(W_{k-1} = W_{k-1} \mid Q = Q(k), \quad 0 < k \leq n-1 \) and the remaining moments \(W_k \) for \(k \geq n \), will yield the new unknowns.

What is a KIMS?

It is an infinite moment system based on an artificial Boltzmann-like transport equation using the connection between kinetic theory and conservation laws together with an asymptotic expansion of the corresponding moments.

How to derive it?

1. **Multiplication on both sides of the Boltzmann-like transport equation by the weights (1, \(\xi, \ldots, \xi^{n-1}, \xi^n \)) and subsequent integration over the microscopic velocity \(\xi \) yield an infinite PDE moment system.

2. **Express the infinite system in terms of the \(p \)-order non-equilibrium moments, starting at \(p = 1 \):**

 \[
 W_k^{(p)} = W_k^{(p-1)} - W_{k-1}^{(p-1)} \mid Q, \quad p \geq 1
 \]
 for \(0 \geq k \geq n + p - 2 \) holds that \(W_k^{(p)} = 0 \).

3. **Use asymptotic expansion in terms of the small parameter \(\epsilon \) to show that at each order a scale-induced closure is possible, resulting in a closed moment system.**

 \[
 W_k^{(p)} = \epsilon^p W_{k,p}^{(0)} + \epsilon^{p+1} W_{k,p+1}^{(1)} + \ldots, \quad k \geq n + p - 1
 \]

Base Cases

1. **1-D Inviscid Burgers’ equation:**

 \[
 \partial u + \partial_x \left(\frac{1}{2} u^2 \right) = 0
 \]

 evolution of the horizontal velocity \(u(t, x) \) at a time \(t \geq 0 \) and at a point \(x \in \mathbb{R} \).

2. **1-D Shallow Water equations:**

 \[
 \partial_h + \partial_x (hu) = 0
 \]

 \[
 \partial_t h + \partial_x (hu^2 + \frac{1}{2} g h^2) = 0
 \]

 evolution of the height of water \(h(t, x) \) and its horizontal velocity \(u(t, x) \), with \(t \geq 0 \), \(x \in \mathbb{R} \) and \(g \) the gravitational acceleration.

The respective KIMS at third order (\(p = 3 \)) reads,

Monitoring Functions (\(\epsilon \to 0 \))

In the limit \(\epsilon \to 0 \), the previous third-order systems read

1. **1-D Inviscid Burgers’ equation:**

 \[
 \partial u + u \partial_x u = 0
 \]

 \[
 W = -\frac{1}{3} u
 \]

2. **1-D Shallow Water equations:**

 \[
 \partial_h + \partial_x (hu) = 0
 \]

 \[
 \partial_t h + \partial_x (hu^2 + \frac{1}{2} g h^2) = 0
 \]

 \[
 W = -\frac{2}{3} h/\partial_x u
 \]

Can be proved that the previous systems yield the correct shock propagation and therefore as \(\epsilon \to 0 \). If \(\partial_x u \not= 0 \) then \(W \not= 0 \) and if \(\partial_x u \to -\infty \) then \(W \to -\infty \) (shock wave) and if \(\partial_x u \to \infty \) then \(W \to -\infty \) (rarefaction wave). Consequently, \(W(t, x) \) tends to \(\delta \)-function located at the points of the discontinuities.

Numerical Experiments

Using developing shock initial conditions in both cases, we proof numerically that for a sufficiently small epsilon (\(\epsilon = 0.01 \)), \(W(t, x) \) behaves as expected.

Present and Future Work

- **The current stage of our research is focused on the applicability of the monitoring function as a refinement parameter in the construction of novel grid-adaptive simulation tools.** Again, we use the previous base cases in the development of numerical experiments and compare its performance with traditional grid-adaptive simulations.

- **The next step consist in the derivation of novel parametrizations for subgrid closures.** We will use spectral analysis in order to compare in a coherent way the original flow equations and its corresponding moment system, together with the corresponding subgrid closures.

Selected References

Affiliations

1. Department of Mathematics, University of Hamburg, Germany