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Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)

How to theoretically predict such a velocity profile?
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Has One of Jupiter’s Jets Been Lost ?
We look for a theoretical description of zonal jets

Jupiter’s white ovals (see
Youssef and Markus 2005)

The white ovals appeared in 1939-1940 (Rogers 1995). Following
an instability of the zonal jet ?
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Abrupt Climate Changes
Long times matter

Temperature versus time: Dansgaard–Oeschger events (S. Rahmstorf)

What is the dynamics and probability of abrupt climate
changes?
Predict attractors, transition pathways and probabilities.
Study a hierarchy of models of ocean circulation and of
turbulent atmospheres.
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Phase Transitions in Rotating Tank Experiments
The rotation as an ordering field (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path.

Compute attractors, transition pathways and probabilities.
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The Main Issues

How to characterize and predict the attractors in turbulent
geophysical flows?
In case of multiple attractors, can we compute their relative
probability?
Can we compute the transition pathways and the transition
probabilities?
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Large Deviation Theory and Statistical Mechanics

Probability of an order parameter p [ω] and large deviations

p [ω] (x,σ , t) = 〈δ (ω(x, t)−σ)〉

P [p] ∼
ε�1

Ce−
F [p]

ε .

For equilibrium systems, F is the free energy, and ε = kBT/N.
Computing F “solves” the dynamics (most probable state,
fluctuations, phase transitions).
The large deviation function F can be computed from the
dynamics (Macroscopic fluctuation theory, instanton theory).
Large deviation theory extends statistical mechanics tools to
non-equilibrium systems.
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The Main Mathematical Questions

How to characterize and predict attractors in turbulent
geophysical flows?
When is Freidlin–Wentzell theory relevant for turbulent flows?
Large deviation results beyond Freidlin–Wentzell theory?
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q
∂ t

+v.∇q = ν∆ω−αω +
√
2σ fs ,

with q = ω + βy .
β = 0 : the two–dimensional stochastic Navier-Stokes
equations.
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Outline
1 The 2D Navier–Stokes Eqs

The equilibrium statistical mechanics
Non equilibrium phase transitions
Other close to equilibrium bifurcations in turbulent flows
(F.B., M. Mathur, E. Simonnet, and J. Sommeria)

2 2D Euler and Quasi-Geostrophic Langevin dynamics: Large
Deviations and Instantons.

Langevin dynamics, time reversal symmetry and large
deviations.
Instantons for Langevin quasi-geostrophic dynamics (F.B., J.
Laurie, and O. Zaboronski).
Non-Equilibrium Instantons for the 2D Navier–Stokes
equations (F.B. and J. Laurie)

3 Stochastic averaging and jet formation in geostrophic turbulence.
The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.F. Bouchet CNRS–ENSL Phase transitions in geophysical fluid dynamics.
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The equilibrium statistical mechanics
Non equilibrium phase transitions
Other bifurcations in turbulent flows (F.B., M.M, E.S., and J.S.)

The 2D Euler Equations

2D Euler equations:

∂ω

∂ t
+v [ω] .∇ω = 0,

Vorticity ω = (∇∧v) .ez . Stream function ψ : v = ez ×∇ψ ,
ω = ∆ψ .
Conservative dynamics - Hamiltonian (non canonical) and time
reversible.
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The equilibrium statistical mechanics
Non equilibrium phase transitions
Other bifurcations in turbulent flows (F.B., M.M, E.S., and J.S.)

Equilibrium Large Deviation: Macrostate Entropy
The most probable vorticity field (Miller–Robert–Sommeria theory)

A probabilistic description of the vorticity field ω : ρ (x,σ) is
the local probability to have ω (x) = σ at point x.
A measure of the number of microscopic field ω corresponding
to a probability ρ (Liouville and Sanov theorems):

Macrostate entropy : S [ρ]≡−
∫

D
drdσ ρ logρ.

The microcanonical variational problem (MVP):

S (E ) = sup
{ρ|N [ρ]=1}

{S2[ρ] | E [ω] = E and D (σ) = d (σ)} (MVP).

Critical points are steady solutions of the 2D Euler equations:

ω = fd (βψ).
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The equilibrium statistical mechanics
Non equilibrium phase transitions
Other bifurcations in turbulent flows (F.B., M.M, E.S., and J.S.)

Statistical Equilibria for the 2D-Euler Eq. (torus)

A second order phase transition.

Z. Yin, D. C. Montgomery, and H. J. H. Clercx, Phys. Fluids (2003)

F. Bouchet, and E. Simonnet, PRL, (2009) (Lyapunov Schmidt
reduction, normal form analysis).
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The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model for two dimensional turbulence.
Navier Stokes equations with random forces

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
σ fs ,

where ω = (∇∧v) .ez is the vorticity, fs is a random force, α is the
Rayleigh friction coefficient.
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Statistical Equilibria for the 2D-Euler Eq. (torus)

A second order phase transition.

Z. Yin, D. C. Montgomery, and H. J. H. Clercx, Phys. Fluids (2003)

F. Bouchet, and E. Simonnet, PRL, (2009) (Lyapunov Schmidt
reduction, normal form analysis).
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Non-Equilibrium Phase Transition (2D Navier–Stokes Eq.)
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7

F. Bouchet and E. Simonnet, PRL, 2009.
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Bistability in the 2D Navier–Stokes Eq. in a Channel
“Predicted” from equilibrium statistical mechanics

Simulations by E. Simonnet
A. VENAILLE, and F. BOUCHET, 2011, J. Stat. Phys.; M. CORVELLEC and
F. BOUCHET, 2012, condmat.
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The equilibrium statistical mechanics
Non equilibrium phase transitions
Other bifurcations in turbulent flows (F.B., M.M, E.S., and J.S.)

Bistability in a Rotating Tank Experiment
Rotating tank with a single-bump topography

Bistability (hysteresis) in rotating tank experiments

M. MATHUR, and J. SOMMERIA, to be submitted to J. Geophys. Res., M.
MATHUR, J. SOMMERIA, E. SIMONNET, and F. BOUCHET, in preparation.
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Jet-Vortices Phase Transition on Jupiter
Phase diagram for a 1-1/2 QG Jupiter model

Jupiter’s phase diagram
Transition between a jet and

oval vortices
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Non-Equilibrium Phase Transitions for the Stochastic Vlasov
Eq.
with a theoretical prediction based on non-equilibrium kinetic theory

Time series for the order parameter for the 1D stochastic Vlasov Eq.

C. NARDINI, S. GUPTA, S. RUFFO, T. DAUXOIS, and F. BOUCHET, 2012,
J. Stat. Mech., L01002, and 2012 J. Stat. Mech., P12010.
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Kramers’ Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of Arrhenius’ law for
a bistable mechanical system with stochastic noise

dx
dt

=−dV
dx

(x) +
√
2kBTη (t) Rate : λ =

1
τ
exp
(
− ∆V

kBT

)
.
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< τ > = 36.2

The problem was solved by Kramers (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin-Wentzell, mathematicians).
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Path Integrals for ODE – Onsager Machlup (50’)

Path integral representation of transition probabilities:

P (xT ,T ;x0,0) =
∫ x(T )=xT

x(0)=x0
e
− AT [x]

2kBT D [x]

with AT [x] =
∫ T

0
L [x , ẋ] dt and L [x , ẋ] =

1
2

[
ẋ +

dV
dx

(x)

]2
.

The most probable path from x0 to xT is the minimizer of

AT (x0,xT ) = min
{x(t)}

{AT [x ] |x(0) = x0 and x(T ) = xT } .

We may consider the low temperature limit, using a saddle
point approximation (WKB), Then we obtain the large
deviation result

logP (xT ,T ;x0,0) ∼
kBT
∆V →0

−AT (x0,xT )

2kBT
.
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Time Reversal and Action Duality

We consider a path x = {x(t)}0≤t≤T and its reversed path
xr = {I [x(T − t)]}0≤t≤T . We have

AT [xr ] = AT [x ] +2V (x(T ))−2V (x(0)).

Transition probabilities of the direct process are related to
transition probabilities of the dual process (a generalization of
detailed balance).
This implies that the most probable path to reach a state x (a
fluctuation) is the time reversal of a relaxation path starting
from I [x ] for the dual process (dissipation).
This is a generalized Onsager-Machlup relation, that justifies
generalization of fluctuation-dissipation relations.
Instantons are the time reversed relaxation paths of the dual
process.
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Langevin Dynamics In a General Framework

∂q
∂ t

= F [q] (r)−α

∫
D

C (r,r′)
δG

δq(r′)
[q]dr′+

√
2αγη ,

Assumptions: i) F verifies a Liouville theorem

∇.F ≡
∫

D

δF

δq(r)
dr = 0

(
Generalization of ∇.F ≡

N

∑
i=1

∂F

∂qi
= 0

)
,

ii) The potential G is a conserved quantity of ∂q
∂ t = F [q] (r):∫

D
F [q] (r)

δG

δq(r)
[q]dr = 0.

iii) η a Gaussian process, white in time, with covariance

E
[
η(r, t)η(r′, t ′)

]
= C (r,r′)δ (t− t ′).

For most classical Langevin dynamics:

F [q] (r) = {q,H } and G = H .
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Langevin Dynamics for the Quasi-Geostrophic Eq.

∂q
∂ t

= v [q−h] .∇q−α

∫
D

C (r,r′)
δG

δq(r′)
[q]dr′+

√
2αγη .

Assumptions: i) F =−v [q−h] .∇q verifies a Liouville theorem.
ii) The potential G is a conserved quantity of ∂q

∂ t = F [q] (r)
with

G =C + βE ,

with a Casimir functionals

Cc =
∫

D
drc(q),

and energy

E =−1
2

∫
D
dr [q−H cos(2y)]ψ =

1
2

∫
D
dr∇ψ

2.
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Path integrals and large deviations.
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.).
Non-equilibrium instantons (F.B. and J.L.)

Tricritical Points
Bifurcation from a second order to a first order phase transition

a

b

4a=b

16a=3b

E

λ

2

2

Tricritical point corresponding to the normal form
s(m) =−m6-3b2 m4−3am2.
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A Quasi-Geostrophic Potential with A Tricritical Point

G = (1−ε)
1
2

∫
D
dr [q−H cos(2y)]ψ +

∫
D
dr
[
q2

2
−a4

q4

4
+a6

q6

4

]
with h(y) = H cos(2y).

There is a tricritical transition (transition from first order to
second order) close to ε = 0 and a4 = 0 for small H.
Close to the transition the stochastic dynamics can be reduced
to a two-degrees of freedom stochastic dynamics, which is a
gradient dynamics with potential

G(A,B) =−H2

3
+ε
[
A2 +B2]− 3a4

2
[
A2 +B2]2+

a6
6

γ
[
A2 +B2]3+

5π

144
a6H2 (A2−B2)2 .

And the potential vorticity field is

q(y)' Acos(y) +B sin(y).
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The Reduced Potential and the Instanton

The reduced potential and one instanton/relaxation path.
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Bistability for the Langevin Quasi-Geostrophic Eq.

The reduced potential and one instanton/relaxation path.
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The 2D Navier–Stokes Eqs
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

Path integrals and large deviations.
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.).
Non-equilibrium instantons (F.B. and J.L.)

Conclusion for Phase Transitions of the Langevin
Quasi-Geostrophic Eq.

For this turbulent dynamics, we can predict the phase diagram
(a tricritical point). For a range of parameter, we have first
order phase transitions.
Using large deviations, we can compute transition probabilities.
We can compute the transition rate between two attractors.
Most transitions concentrate close to the optimal one, it is
describe by an instanton that is easily computed.
Sufficiently close to the tricritical point, the dynamics reduces
to a two degrees of freedom stochastic dynamics.
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Langevin dynamics, time reversal symmetry and large
deviations.
Instantons for Langevin quasi-geostrophic dynamics (F.B., J.
Laurie, and O. Zaboronski).
Non-Equilibrium Instantons for the 2D Navier–Stokes
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The 2D Navier–Stokes Eqs
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

Path integrals and large deviations.
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.).
Non-equilibrium instantons (F.B. and J.L.)

2D Stochastic Navier-Stokes Eq. and 2D Euler Steady
States

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs

This is no more a Langevin dynamics.
Time scale separation: magenta terms are small.
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The 2D Navier–Stokes Eqs
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

Path integrals and large deviations.
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.).
Non-equilibrium instantons (F.B. and J.L.)

Instantons: Maximum Likelihood Paths

Most trajectories that lead to a rare event follow the easiest
path.
Large deviation theory: instantons as minimum action paths.

2D Navier-Stokes equations
(time: 10 000) (PRL)
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Numerical instanton (time of
order 1) (J. Stat. Phys.)

Goal: predict attractors, transition pathways and probabilities.
Instanton computations will predict them when it is not
possible to do that using direct numerical simulations.
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The 2D Navier–Stokes Eqs
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

Path integrals and large deviations.
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.).
Non-equilibrium instantons (F.B. and J.L.)

Instanton in Turbulent Flows: Conclusions

For some restricted classes of force spectrum (Langevin
dynamics), we can solve completely the problem (compute the
large deviation functionals, fluctuation paths, transition
probabilities, instantons, and so on).
This is usually not the case. Then we have partial answers
only. We can 1) rely on equilibrium large deviation and test
empirically their interest for slightly non equilibrium situations
2) compute instantons numerically 3) We have few more cases
with explicit instanton solutions.
A lot is still to be understood.
More can be done theoretically in the inertial limit.
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q
∂ t

+v.∇q = ν∆ω−αω +
√
2σ fs ,

with q = ω + βy .
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

The Inertial Limit

The non-dimensional version of the barotropic QG equation.
Quasi-Geostrophic equations with random forces

∂q
∂ t

+v.∇q = ν∆ω−αω +
√
2αfs ,

with q = ω + β ′y .
Spin up or spin down time = 1/α� 1 = jet inertial time scale.
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Jet Formation in the Barotropic QG Model
In the inertial (weak forces and dissipation) limit
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Figure by P. Ioannou (Farrell and Ioannou).
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Weak Fluctuations around Jupiter’s Zonal Jets

Jupiter’s atmosphere.
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003).

We will treat those weak fluctuations perturbatively (inertial limit).
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Averaging out the Turbulence

∂q
∂ t

+v.∇q = ν∆ω−αω +
√
2αfs .

P [q] is the PDF for the Potential Vorticity field q (a
functional). Fokker–Planck equation:
∂P
∂ t

=
∫

dr
δ

δq(r)

{[
v.∇q−ν∆ω + αω +

∫
dr′C (r,r′)

δ

δq(r)

]
P
}
.

Time scale separation. We decompose into slow (zonal flows)
and fast variables (eddy turbulence)

qz(y) = 〈q〉 ≡ 1
2π

∫
D
dx q and q = qz +

√
αqm.

Stochastic reduction (Van Kampen, Gardiner, ...) using the
time scale separation.
We average out the turbulent degrees of freedom.
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A New Fokker–Planck Equation for the Zonal Jets

R [qz ] is the PDF to observe the Zonal Potential Vorticity qz :

1
α

∂R
∂ t

=
∫
dy1

δ

δqz (y1)

{[
∂

∂y
Eqz

〈
vm,yqm

〉
+ ωz (y1)− ν

α

∂2qz

∂y2 (y1)+

+
∫
dy2 Cz (y1,y2)

δ

δqz (y2)

]
R
}
.

This new Fokker–Planck equation is equivalent to the
stochastic dynamics

1
α

∂qz

∂ t
=− ∂

∂y
Eqz 〈vm,yqm〉−ωz +

ν

α

∂ 2qz

∂y2
+ ηz ,

with 〈ηz(y , t)ηz(y ′, t ′)〉= Cz(y ,y ′)δ (t− t ′).
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The Deterministic Part and the Quasilinear Approximation
Deterministic quasilinear dynamics

1
α

∂qz

∂ t
= F [qz ]−ωz +

ν

α

∂ 2qz

∂y2
.

F [qz ] =− ∂

∂yEqz 〈vm,yqm〉. The average of the Reynolds stress
is over the Ornstein-Uhlenbeck process for the linearized
dynamics close to the current zonal flow U(y) and vorticity
profile qz , with random forces:

∂tqm +U(y)
∂qm

∂x
+ vm,y

∂qz

∂y
= ν∆qm−αωm + fs .

We identify SSST by Farrell and Ioannou (JAS, 2003); quasilinear
theory by Bouchet (PRE, 2004); CE2 by Marston, Conover and
Schneider (JAS, 2008); Sreenivasan and Young (JAS, 2011).
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Dynamics of the Relaxation to the Averaged Zonal Flows
Deterministic quasilinear dynamics
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Troposphere Dynamics and the Quasilinear Approximation
Comparison of quasilinear approximation and DNS for the primitive equations
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Zonal wind and momentum convergence for the primitive equations.

Farid Ait Chaalal and Tapio Schneider (Caltech and ETH Zurich).

The qualitative structure of a fast rotating Earth troposphere
is well approximated by quasilinear dynamics.
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The Stochastic Dynamics of the Zonal Jet
Beyond the deterministic quasilinear approximation: the noise term

We can now go further. What is the effect of the noise term?

1
α

∂qz

∂ t
= F [qz ]−ωz +

ν

α

∂ 2qz

∂y2
+ηz .

R [qz ] is the PDF to observe the Zonal Potential Vorticity qz :

1
α

∂R
∂ t

=
∫
dy1

δ

δqz (y1)

{[
∂

∂y
Eqz

〈
vm,yqm

〉
+ ωz (y1)− ν

α

∂2qz

∂y2 (y1)+

+
∫
dy2 Cz (y1,y2)

δ

δqz (y2)

]
R
}
.

This equation describes the zonal jet statistics and not only
the mean zonal flow.
This statistics can be nearly Gaussian, but can also be strongly
non-Gaussian.
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path.

Compute attractors, transition pathways and probabilities.
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Multiple Attractors Do Exist for the Barotropic QG Model
Two attractors for the same set of parameters
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Figure by P. Ioannou (Farrell and Ioannou).

Two attractors for the mean zonal flow for one set of
parameters.
What is the dynamics for the transition? What is the
transition rate?
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Work in Progress : Zonal Flow Instantons
Onsager Machlup formalism (50’). Statistical mechanics of histories

1
α

∂qz

∂ t
= F [qz ]−ωz +

ν

α

∂ 2qz

∂y2
+ηz .

Path integral representation of transition probabilities:

P(qz ,0,qz ,T ,T ) =
∫ q(T )=qz ,T

q(0)=qz ,0
D [qz ]exp(−S [qz ]) with

S [qz ] =
1
2

∫ T

0
dt
∫
dy1dy2

[
∂qz
∂t
−F [qz ] + ωz −

ν

α

∂2qz
∂y2

]
(y1)CZ (y1,y2)

[
∂qz
∂t
−F [qz ] + ωz −

ν

α

∂2qz
∂y2

]
(y2).

Instanton (or Freidlin-Wentzel theory): the most probable path
with fixed boundary conditions

S(qz,0,qz,T ,T ) = min
{qz |qz (0)=qz ,0 and qz (T )=qz ,T }

{S [qz ]} .
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The Real Issue was to Cope with UltraViolet Divergences
We have proven that they are no such divergences

∂tqm +U(y)
∂qm

∂x
+ vm,y

∂qz

∂y
= ν∆qm−αωm +

√
2fs

We need to prove that the Gaussian process has an invariant
measure which is well behaved in the limit ν → 0, and α → 0.

This is true because of inviscid damping of the
Quasi-Geostrophic or Euler dynamics.
The result is based on asymptotics of the linearized equations:

vm,x (y ,t) ∼
t→∞

vm,x ,∞ (y)

t
exp(−ikU(y)t) and vm,y (y ,t) ∼

t→∞

vm,y ,∞ (y)

t2
exp(−ikU(y)t) .

F. Bouchet and H. Morita, 2010, Physica D. (Related to
Landau-Damping and the recent result of Bedrossian and
Masmoudi).
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Stat. Mech. of Zonal Jets: Conclusions

Stochastic averaging for the barotropic Quasi-Geostrophic
equation leads to a non-linear Fokker-Planck equation.
This Fokker-Planck equation predicts the Reynolds stress and
jet statistics. Related to Quasilinear theory and SSST.
For some parameters, multiple attractors are observed.
Path integral, instanton and large deviation theories can
predict rare transitions between attractors.

F. Bouchet, C. Nardini and T. Tangarife, 2013 J. Stat. Phys.,
http://hal.archives-ouvertes.fr/hal-00819779.
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Numerical Computation of Rare Events and Large Deviations
Computation of least action paths (instantons) and/or multilevel splitting

Multilevel-splitting: Ginzburg-Landau
transitions (with E. Simonnet and J.

Rolland)
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2D Navier-Stokes
instantons (with J. Laurie)

Rare events and their probability can now be computed
numerically in complex dynamical systems.
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Summary and Perspectives

Non-equilibrium statistical mechanics and large deviation
theory apply to GFD turbulence.

Ongoing projects and perspectives:
Large deviations and non-equilibrium free energies for particles
with long range interactions (with K. Gawedzki, and C. Nardini).
Microcanonical measures for the Shallow Water equations
(with M. Potters and A. Venaille).
Instantons for zonal jets in the quasi-geostrophic dynamics
(with T. Tangarife, E. Van-den-Eijnden, and O. Zaboronski).
Rare events, large deviations, and extreme heat waves in the
atmosphere (with J. Wouters).

F. Bouchet, and A. Venaille, Physics Reports, 2012, Statistical mechanics of

two-dimensional and geophysical flows.

F. Bouchet, C. Nardini and T. Tangarife, 2013 J. Stat. Phys.

F. Bouchet, J. Laurie and O. Zaboronsky, hal et condmatF. Bouchet CNRS–ENSL Phase transitions in geophysical fluid dynamics.
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