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Introduction
Gravity waves (GWs) play an important role in atmospheric dynam-
ics by transporting momentum over considerable distances, affect-
ing daily weather as well as the climate. Spontaneous GW emission
by imbalances of the large-scale flow may be an important source
of GWs in the atmosphere and no satisfactory parameterization in
weather and climate models for it exists [1].
In trying to obtain further insight into this process, the differentially
heated rotating annulus experiment might serve as a complement
to observations in the atmosphere. Experiments with a rotating an-
nulus exhibiting a jet modulated by large-scale waves arising due to
baroclinic instability have already been used to study GWs: Williams
et al. [2] observed small-scale interfacial waves in a two-layer flow,
and Jacoby et al. [3] detected GWs emitted from boundary-layer
instabilities in a differentially heated annulus.
In order to study if the differentially heated rotating annulus might be
useful for the investigation of spontaneous GW emission, we employ
a finite-volume model (cylFloit) [4].

Model
The annulus experiment consists of 2 coaxial cylinders mounted on
a rotating table. The inner cylinder is cooled to a temperature Ta
and the outer cylinder is heated to Tb (Ta < Tb). The gap between
the cylinders is filled with the working fluid, and the whole apparatus
rotates at angular velocity Ω (fig. 1).
The numerical model cylFloit is based on the following elements:

• fluid flow is governed by Boussinesq equations [5]

Dv

Dt
+ 2Ω× v +Ω× (Ω× r) +

dΩ

dt
× r = ρ̃g −∇ · P,

DT

Dt
= ∇ · (κ∇T ) ,

∇ · v = 0,

with velocity v, position r, density deviation ρ̃ = ρ̃(T ) = (ρ −
ρ0)/ρ0, reduced gravity ρ̃g, molecular momentum flux P = p̃ I −

ν
[
∇v + (∇v)T

]
, pressure deviation p̃ = (p− p0)/ρ0, unit tensor I,

kinematic viscosity ν = ν(T ) and thermal diffusivity κ = κ(T )

• finite-volume discretization on regular, cylindrical C-grid (fig. 1)

• implicit parameterization of subgrid-scale turbulence by Adaptive
Local Deconvolution Method (ALDM) [6]

• validation against laboratory measurements provided by U. Har-
lander (BTU Cottbus-Senftenberg) [5, 7]
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Figure 1. Left : Schematic view of differentially heated rotating an-
nulus with sector removed to indicate cell walls of regular, cylindrical
finite-volume grid (dotted lines). Right : Arrangement of variables in
finite-volume grid cell.

Atmosphere-like annulus configura-
tion

The ratio of the Brunt-Väisälä frequency N to the Coriolis parameter
f = 2Ω is an important parameter for the GW propagation. Its value
in classical annulus configurations [e.g. 8] is N/f ∼ 0.1, compared
to N/f ∼ 100 in the atmosphere.

Table 1. Atmosphere-like annulus parameters

Radius of inner cylinder: a = 20 cm

Radius of outer cylinder: b = 70 cm

Fluid depth: d = 4 cm

Temperature difference: Tb − Ta = 30K

Angular velocity: Ω = 0.76 rpm

Working fluid: water

Using the global estimate

N ≈

√
gα (Tb − Ta)

d
,

with expansion coefficient α, a
more atmosphere-like annulus
configuration has been chosen
as test bed. Its parameters are listed in tab. 1. This configuration
features (see fig. 2):

• baroclinic wave of azimuthal mode number 3

•N/f > 1

• spiral-like GW pattern within baroclinic wave as indicated by hor-
izontal velocity divergence δ = ∇h · u (with horizontal velocity
component u) [9]

Figure 2. Left : Horizontal cross section of temperature at mid-height
(z = 2 cm). Centre: Vertical cross section of azimuthally averaged
N/f . Right : Pressure (colors) and contours of horizontal velocity
divergence in 10−1 s−1 (black) of one lobe of baroclinic wave.

Indicators of GW activity
Linear modal decomposition
Linear theory is used to estimate the contribution of the GWs to the
small-scale structures of the flow. The method consists of:

• large-scale part of velocity, buoyancy and pressure fields: X :=
(v, B̄ = −ρ̃g, p̃) is obtained from moving average

• within averaging volume Fourier decomposition of small-scale
part: X

′
= X − X → X̂k,l,m (with azimuthal, radial and vertical

wave numbers k, l and m which are omitted in the following)

• express small-scale part as superposition of geostrophic mode R̂

and GW modes Ĝ
±

: X̂ = ̺R̂ + γ+Ĝ
+
+ γ−Ĝ

−

• modes are orthonormal with respect to energy scalar product:
〈X̂1, X̂2〉 := (v̂1 · v̂

∗
2 + B̂1B̂

∗
2/N

2)/2 (∗ denotes complex conjugate)

• thus total energy of X̂ is: 〈X̂, X̂〉 = |̺|2+ |γ+|2+ |γ−|2, and modal
contributions obtained by projection, e.g. ̺ = 〈R̂, X̂〉

• geostrophic and GW contributions to total energy: E(R̂) =∑
k,l,m |̺k,l,m|2 and E(Ĝ

±
) =

∑
k,l,m(|γ+k,l,m|2 + |γ−k,l,m|2) are de-

termined grid cell by grid cell, yielding spatially varying energetic
decomposition shown in fig. 3

Figure 3. Left : Energy contained in the geostrophic mode E(R̂) at
mid-hight. White contour indicates approximate horizontal size of
volume used for moving average and linear analysis. Right : Energy
contained in the two GW modes E(Ĝ

±
).

Unbalanced flow component

The predominant model concept for the investigation of GWs is the
decomposition of the flow into balanced (subscript bal) and unbal-
anced (subscript unbal) parts, assuming the latter part to contain the
GWs [e.g. 10]
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The decomposition is generally defined through diagnostic balance
conditions, which the balanced part of the flow is assumed to sat-
isfy. The accuracy of these conditions may be measured by ex-
pressing the magnitude of the unbalanced part of the flow in pow-
ers of the Rossby number: Ro = U/(fL) with horizontal velocity
and length scales U and L (the decomposition into geostrophic and
ageostrophic flow parts is e.g. of order Ro).
A common example of a GW indicator is the horizontal velocity di-
vergence δ. It is based on the assumption that the balanced part of
the horizontal velocity field is nondivergent (e.g. a property of the
geostrophic flow).
Indicators of higher-order accuracy may be obtained from the GW-
filtering constraints [11, 12]

Dnδ

Dtn
≡ 0 and

Dn+1δ

Dtn+1
≡ 0,

where n ∈ N0. Using the governing equations, the two constraints
can be reformulated as two diagnostic balance conditions. Their ac-
curacy should increase with increasing n. For n = 0 the balanced
part of the flow is nondivergent δ = ∇h · u ≡ 0 and satisfies the
nonlinear balance equation

∆NBE := − (∇hu ·· ∇hu)δ=0 + fζ −∇2
hp̃ ≡ 0

whith the double scalar product of the horizontal velocity gradient
with itself at vanishing divergence (∇hu ·· ∇hu)δ=0

† and the vertical
component of vorticity ζ = ez · (∇h × u).
∆NBE is the residual of the nonlinear balance equation. Regions
where ∆NBE 6= 0 are due to flow imbalances and indicate GW
activity [13].

Results

δ and ∆NBE show activity close to the inner cylinder wall (see fig.
4). This might be due to GWs originating from boundary layer in-
stabilities described by Jacoby et al. [3]. In addition GW activity is
indicated within the baroclinic wave (the spiral-like pattern), which is
supported by the results from linear theory (fig. 3). A portion of these
GWs might be emitted spontaneously by the large-scale flow of the
baroclinic wave.

Figure 4. Left : Horizontal velocity divergence δ. Centre: Residual of
nonlinear balance equation ∆NBE. Right : Geostrophic forcing of δ.

† The double scalar product of two tensors might be demonstrated using the example of dyads.
Given two dyads ab and cd, the double scalar product of the two is defined as ab··cd = a·(b·cd) =

b · cd · a.

Spontaneous GW emission
A simple model is used to diagnose spontaneous GW emission. It is
based on the following elements:

• decomposition of flow into background (subscript 0),
geostrophic/hydrostatic (subscript g) and ageostrophic (sub-
script a) parts
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• balanced part of flow is given by

dB0

dz
=

d2p̃0
dz2

= N2 = const., fez × ug = ∇hp̃g and Bg =
∂p̃g
∂z

• to close definition of balanced part, p̃g is related diagnostically to
quasi-geostrophic potential vorticity Π = ζ + (f/N2)∂B/∂z, which
is assumed to govern the balanced flow (Πa ≡ 0) [14]

(
∇2
h +

f2

N2

∂2

∂z2

)
p̃g = fΠ

• purely geostrophic forcing of ageostrophic flow is used to diagnose
spontaneous GW emission, example: prognostic equation of δ =
∇h · u = ∇h · ua

Dδ

Dt
=

∂v

∂z
· ∇wa −

∂Ba

∂z
+
∂2p̃aa
∂z2

−
∂2

∂z2
∇−2 (

∇hug ·· ∇hug

)

︸ ︷︷ ︸
=

∂2p̃ag
∂z2

,
geostrophic forcing

with vertical velocity component w = wa and decomposition of
ageostrophic pressure into ageostrophically and geostrophically
forced parts p̃a = p̃aa + p̃ag

Results

The purely geostrophic forcing of δ is shown in fig. 4. Stronger
activity can be observed close to the inner cylinder wall and within
the baroclinic wave. Since viscosity is not included in this simple
model of spontaneous GW emission, the signals close to the walls
are not reliable. The signals within the baroclinic wave, however,
suggest that GW emission is present.

Summary

• finite-volume model of differentially heated rotating annulus
(cylFloit) is used for investigation of spontaneous GW emission

• a more atmosphere-like annulus configuration featuring N/f > 1
has been chosen as test bed

• clear GW activity is indicated by linear modal decomposition, hor-
izontal velocity divergence δ and residual of nonlinear balance
equation ∆NBE

• purely geostrophic forcing of ageostrophic part of flow indicates
that part of GWs in rotating annulus is spontaneously emitted from
large-scale flow of baroclinic wave

• next step: use tangent-linear model to quantify contribution of
spontaneous emission to GW field [15, 16]
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