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Motivation

The Main Object of Study

Source: http://en.wikipedia.org/wiki/Vortex

Definition

Vorticity describes the tendency of a fluid to spin, or swirl. Formally, it is related to the velocity field
u by ω = ∇× u.

Definition

A coherent vortex is a localized region of enhanced vorticity.
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Motivation

Example of Vortex Equilibrium

Vortex relative equilibrium in a hurricane [Kossin and Schubert, 2004]
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The N-Vortex Problem

The Euler Point Vortex Approximation

Consider the motion of a collection of well-separated, disjoint vortex patches in the plane
governed by the two-dimensional incompressible Euler equations.

∂tω + (u · ∇)ω = 0

We wish to treat each vortex as a single point.
Q: Is this reasonable?
A: Yes, to some extent.

[Marchioro, 1988], [Marchioro and Pulvirenti, 1993]

N disjoint vortex patches with small diameter will evolve according to the Euler equations as
disjoint vortex patches for long times

As the initial diameter tends to zero, the vorticity distribution converges weakly to a collection
of Dirac masses (point vortices)

The motion of these small patches is governed by the “point vortex equations”
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The N-Vortex Problem

The Euler Point Vortex Equations of Motion

Let qi = (xi , yi ) ∈ R2, i = 0, 1, ...,N denote the positions of N point vortices with circulation Γi .

q̇j =
N∑

i=0,i 6=j

Γi
(qj − qi )

⊥

|qj − qi |2
(1)

where (x , y)⊥ = (−y , x).

Remark

This system is Hamiltonian with “interaction energy”

H(q0, ..., qN ) = −
∑
i<j

Γi Γj log |qi − qj |,

and so we expect the system to have conserved quantities and exhibit symmetries.
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The N-Vortex Problem Vortex Equilibria

Relative Equilibria of the N-Vortex Problem

Some Definitions

A fixed equilibrium is a point vortex configuration which remains fixed in space for all time.

A relative equilibriium is a configuration that is fixed in space when viewed from an
appropriately rotating or translating frame.

In this talk, we focus on relative equilibria. Some known examples of rigidly rotating relative
equilibria are the N- and 1 + N-gon configurations.
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The N-Vortex Problem Vortex Equilibria

Background: Spectral Stability for Hamiltonian Systems

Consider a two-dimensional system with Hamiltonian H(p, q). Then

ṗ =
∂H
∂q

q̇ = −
∂H
∂p

.

Suppose the system has a fixed point (p0, q0). We compute the linearization matrix about this
fixed point

M =

 ∂2H
∂p∂q (p0, q0) ∂2H

∂q2 (p0, q0)

− ∂
2H
∂q2 (p0, q0) − ∂H

∂p∂q (p0, q0)


and compute the eigenvalues of M − λI:

λ = ±

√
∂2H
∂p2

∂2H
∂q2

+
∂2H
∂p∂q

and so eigenvalues come in purely real or complex pairs⇒ asymptotic stability is impossible.

Punchline

An equilibrium of a Hamiltonian system can only possess a weak form of stability.
Eigenvalues of the linearization come in real or complex pairs, or complex quartets.
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The N-Vortex Problem Vortex Equilibria

Spectral Stability of the N- and 1 + N-gon Configurations

Thomson 1882. The N-gon is spectrally stable for N < 7, degenerate for N = 7 and
unstable for N ≥ 8.

Cabral, Schmidt 1999. Consider the 1 + N-gon with central vortex having strength 1 and
outer vortices having equal strength Γ. There is an interval in Γ for which the configuration is
locally nonlinearly stable (and the configuration is unstable outside of this interval).
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Perturbations of Point Vortex Relative Equilibria The N-gon Equilibrium

Perturbing the N-gon

Proposition 1.

Consider the N-gon for N ≤ 7. Make a small (O(ε)) perturbation to the position of one of the
vortices. Then

All radii of the vortices satisfy ri (t) = 1 +O(ε)

All angular variables satisfy θi (t) = θi (0) +O(ε)

In other words, perturbations of the relative equilibria stay close to the unit circle and rotate
slowly.
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Perturbations of Point Vortex Relative Equilibria The N-gon Equilibrium

Example (N = 3)

Perturbing the Equilateral Triangle

All radii of the vortices satisfy ri (t) = 1 +O(ε)

All angular variables satisfy θi (t) = θi (0) +O(ε)

In other words, perturbations of the relative equilibria stay close to the unit circle and rotate
slowly.
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Perturbations of Point Vortex Relative Equilibria The N-gon Equilibrium

Proof of Proposition 1

“Proof”

Simplifying Assumptions:
Consider radial perturbations r1(0) 7→ r1(0) + ε

Define

Fi (r, θ) = −(ri (t)− ri (0)) +

∫ t

0
ṙi (s)ds

Gi (r, θ) = −(θi (t)− θi (0)) +

∫ t

0
θ̇i (s)ds

and note that zeroes of Fi ,Gi , i = 1, 2, ...,N are solutions of the point vortex equations.

Insert the ansatz ri (t) = 1 + εr̃i (t) +O(ε2), θi (t) = θi (0) + εθ̃i (t) +O(ε2) into Fi and Gi ,
expand in ε.

Now Fi and Gi are functions of r̃i , θ̃i and ε

Use the Implicit Function Theorem to prove that zeroes of Fi and Gi persist for |ε| > 0
sufficiently small.
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Perturbations of Point Vortex Relative Equilibria The N-gon Equilibrium

Back to N = 3

For N = 3, we calculate the O(ε) terms in the expansions explicitly. We have
ri (t) = 1 + εr̃i (t) +O(ε2), θi (t) = 2(k−1)π

3 + εθ̃i (t) +O(ε2), k = 1, 2, 3 with

r̃1(t) =
1
3

(1 + 2 cos(t)), r̃2(t) = r̃3(t) =
1
3

(1− cos(t))

θ̃1(t) = −
2
3

(t + sin(t)), θ̃2(t) = θ̃3(t) =
1
3

(−2t + sin(t))

Below we compare the actual vortex motion to the first order terms in the expansions:
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Perturbations of Point Vortex Relative Equilibria The N-gon Equilibrium

Passive Tracer Motion

Now suppose we track the motion of a passive tracer under the influence of N-point vortices of
equal strength Γ in an N-gon configuration with rotation rate ω:

ẋ = ωy −
N∑

i=1

Γi
y − yi

(x − xi )2 + (y − yi )2

ẏ = −ωx +
N∑

i=1

Γi
x − xi

(x − xi )2 + (y − yi )2
.

Since the system is written in rotating coordinates, (xi , yi ) is fixed in space for i = 1, ...,N. The
tracer motion is bounded by separatrices corresponding to the streamlines of the N-vortex
problem, or the Hamiltonian of the tracer problem.
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i=1

Γi
y − yi

(x − xi )2 + (y − yi )2

ẏ = −ωx +
N∑

i=1

Γi
x − xi

(x − xi )2 + (y − yi )2
.

Since the system is written in rotating coordinates, (xi , yi ) is fixed in space for i = 1, ...,N. The
tracer motion is bounded by separatrices corresponding to the streamlines of the N-vortex
problem, or the Hamiltonian of the tracer problem.
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Passive Tracer- N = 3

When ε = 0, the tracer motion is restricted to streamlines.

The 3-vortex problem is completely integrable, so there can be no chaotic motion of
vortices upon perturbations.
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Passive Tracer- N = 3

For ε > 0, the tracer motion becomes more complicated.

Tracer motion in the 3-vortex problem can be chaotic (Kuznetsov and Zaslavsky 2000).
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To Do List!

Proposition 2.

For N ≤ 7, the motion of a passive tracer is bounded.

Big Question.

Can the tracer motion be chaotic, even if ε is very small?
Idea: Apply Melnikov Theory- measures distance between stable and unstable manifolds

Images from Guckenheimer and Holmes 1983
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Practical Considerations for Melnikov’s Method

Requires knowledge of the explicit formula for the homoclinic or heteroclinic orbit.

This is easy to find numerically, but not analytically.

Punchline: The Melnikov distance can easily be calculated numerically in individual cases,
but may not be tractable analytically unless we can exploit the symmetries of the N-gon
configuration.
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Visions of the Future

Weak perturbations of inviscid vortex equilibria

Measure Melnikov distance for N- and 1 + N-gons

Can we generalize these ideas to other equilibria?

Can we quantify transport and mixing that occurs when separatrices break or intersect
transversally?

One can also examine perturbations to the circulation of one or more vortices.

Viscous perturbations inviscid vortex equilibria

How does the introduction of weak viscosity affect the tracer motion? Must turn to the PDE-
Euler and Navier-Stokes

Must extend Melnikov theory for finite time weak solutions!

Thank you (and stay tuned)! If time, go on to next problem...
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R.E. in the 1 + N-Vortex Problem

The 1 + N-Vortex Problem

Goal. Study existence and stability of relative equilibria in the problem of 1 strong vortex and N
weak vortices
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R.E. in the 1 + N-Vortex Problem

Relative Equilibrium of the (1 + N)-Vortex Problem

Definition.

A relative equilibrium of the (1 + N)-vortex problem is a configuration which is the limit of a
sequence of relative equilibrium configurations of (1) with weak vortex strength ε tending to zero.

We wish to consider only those configurations which satisfy the following assumptions:

1. Bounded: |xεj | < M for all j , ε and some M > 0

2. Bounded away from each other: |xεj − xεi | > m for all i 6= j and some m > 0

3. Fixed center of vorticity at the origin: x0+ε(x1+...+xN )
1+Nε = 0

4. Fixed rotation rate: ω = 1
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R.E. in the 1 + N-Vortex Problem Results

A Property of Limit Configurations

Under assumptions 1-4, one can prove the

Lemma 1.1[Barry et al., 2011].

All relative equilibria, xε0, ..., x
ε
N , which converge to a relative equilibrium x0, ..., xN of the

(1 + N)-vortex problem satisfy |xε0| = O(ε), |xεj |
2 − 1 = O(ε), j = 1, ...,N.

1+3 Vortex relative equilibria
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R.E. in the 1 + N-Vortex Problem Results

Relative Equilibria of the Limit Problem

Observation: Periodic relative equilibria with center of vorticity at the origin must satisfy xj · ẋj = 0
for each j
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R.E. in the 1 + N-Vortex Problem Results

Limit Potential

Using the observation and Lemma 1, one can prove the following

Lemma 1.2 [Barry et al., 2011].

All periodic relative equilibria of the (1 + N)-vortex problem, N ≥ 2, are critical points of

V (θ1, ..., θN ) = −
∑
i<j

(
cos(θi − θj ) +

1
2

log(2− 2 cos(θi − θj ))

)
.
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Limit Potential

Using the observation and Lemma 1, one can prove the following

Lemma 1.2 [Barry et al., 2011].

All periodic relative equilibria of the (1 + N)-vortex problem, N ≥ 2, are critical points of

V (θ1, ..., θN ) = −
∑
i<j

(
cos(θi − θj ) +

1
2

log(2− 2 cos(θi − θj ))

)
.

Set N = 2, θ = θ1 − θ2
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See [Newton, 2001]
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R.E. in the 1 + N-Vortex Problem Results

Limit Potential

Using the observation and Lemma 1, one can prove the following

Lemma 1.2 [Barry et al., 2011].

All periodic relative equilibria of the (1 + N)-vortex problem, N ≥ 2, are critical points of

V (θ1, ..., θN ) = −
∑
i<j

(
cos(θi − θj ) +

1
2

log(2− 2 cos(θi − θj ))

)
.

Q: Are all critical points of V limits of sequences of relative equilibria of the full problem as
ε→ 0?
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R.E. in the 1 + N-Vortex Problem Results

ε 6= 0: Continuation of Critical Points and Linear Stability

Theorem 1.1 [Barry et al., 2011]

“Nondegenerate” critical points of V can be continued to relative equilibria of the full problem with
ε 6= 0 sufficiently small.

Remark 1. “Nondegenerate” means that the Hessian matrix, Vθθ , of V has exactly one zero
eigenvalue.

Remark 2. The proof relies on two applications of the Implicit Function Theorem.

Theorem 1.2 [Barry et al., 2011].

A family of relative equilibria which converges to a nondegenerate relative equilibrium θ of the
(1 + N)-vortex problem is

linearly stable for ε > 0 if and only if θ is a local minimum of V .
linearly stable for ε < 0 if and only if θ is a local maximum of V .
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R.E. in the 1 + N-Vortex Problem Results

Sketch of Proof of Theorem 1.2

Theorem 1.2 [Barry et al., 2011].

A family of relative equilibria which converges to a nondegenerate relative equilibrium θ of the
(1 + N)-vortex problem is

linearly stable for ε > 0 if and only if θ is a local minimum of V .
linearly stable for ε < 0 if and only if θ is a local maximum of V .

Key Observation: The matrix of the linearization, M, is given by

M =

(
−εA +O(ε2) εVθθ(φ) +O(ε2)
−2I +O(ε) εA +O(ε2)

)
and after some simplification,

det(M − λI) = (1 +O(
√
ε)) det(λ2I + 2εVθθ +O(ε5/4)).
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R.E. in the 1 + N-Vortex Problem Results

A Low-Dimensional Example

N = 2
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Theorem 1.1: Critical points can be continued to relative equilibria for ε 6= 0 sufficiently small

Theorem 1.2: Equilateral triangle is linearly stable for ε > 0 and linearly unstable for ε < 0

Collinear configuration is linearly unstable for ε > 0 and linearly stable for ε < 0
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R.E. in the 1 + N-Vortex Problem Results

Numerical Continuation of Minima of V for N = 3,4,5

¶ = 0.06 ¶ = 0.06
¶ = 0.4
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R.E. in the 1 + N-Vortex Problem Results

The Minimum Family: Predictions for Further Electron Column
Experiments?

The minimum of V continues to a linearly stable family of relative equilibria when ε > 0.

Q1: Is there a minimum for each N?

Q2: Can we identify which limiting configuration is the minimum (in general)?
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R.E. in the 1 + N-Vortex Problem Results

The Minimum Family: Predictions for Further Electron Column
Experiments?

A1: Theorem 1.3 [Barry et al., 2011]

Under nondegeneracy assumptions, V has at least three families of critical points for all N ≥ 4,
one of which is a minimum.

Idea of Proof:

One family consists of (1 + N)-gons

Structure of limit potential⇒ V must have a minimum

Hopf Index Theorem: there must be a third critical point with negative index
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R.E. in the 1 + N-Vortex Problem Results

The Minimum Family: Predictions for Further Electron Column
Experiments?

A2: Theorem 1.4 [Barry, 2012]

All symmetric “limiting distributions” of the minimum configuration are members of the family

fα(θ) =
1

2π
+ α cos θ, |α| ≤

1
2π
.

Idea of Proof:

V is undefined in the limit N →∞. Instead we choose a limiting functional and use standard
Fourier analysis to show fα is the unique minimizer.
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R.E. in the 1 + N-Vortex Problem Results

The Hurricane Example: Instability of the (1 + N)-gon

Corollary to Theorem 1.2 [Barry et al., 2011].

For N ≥ 4, the (1 + N)-gon configuration is a linearly unstable relative equilibrium for all ε 6= 0
sufficiently small.
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R.E. in the 1 + N-Vortex Problem Results

The Hurricane Example: Instability of the (1 + N)-gon

Corollary to Theorem 1.2 [Barry et al., 2011].

For N ≥ 4, the (1 + N)-gon configuration is a linearly unstable relative equilibrium for all ε 6= 0
sufficiently small.

“Proof”

The limiting configuration as ε→ 0 is also the (1 + N)-gon

The matrix Vθθ is circulant allowing for explicit computation of its eigenvalues

For N ≥ 4, λ1 = 0, λ2,3 = − 1
2 , λj > 0 for j ≥ 4

(1 + N)-gon is a saddle point of V
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The Hurricane Example: Instability of the (1 + N)-gon

Corollary to Theorem 1.2 [Barry et al., 2011].

For N ≥ 4, the (1 + N)-gon configuration is a linearly unstable relative equilibrium for all ε 6= 0
sufficiently small.

“Proof”

The limiting configuration as ε→ 0 is also the (1 + N)-gon

The matrix Vθθ is circulant allowing for explicit computation of its eigenvalues

For N ≥ 4, λ1 = 0, λ2,3 = − 1
2 , λj > 0 for j ≥ 4

(1 + N)-gon is a saddle point of V

Remark. In contrast, the (1 + N)-gon is a linearly stable relative equilibrium of the (1 + N)-body
problem for N ≥ 7.
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So what about Hurricane Isabel?

Corollary: (1 + 5)-gon linearly unstable
The catch is ε is not “sufficiently small” to apply to this example
[Cabral and Schmidt, 2000]: If N point vortices with strength Γ form a regular polygon around
a vortex of strength pΓ, then the configuration is stable if and only if

N2 − 8N + 8
16

< p <
(N − 1)2

4
for N even,

N2 − 8N + 7
16

< p <
(N − 1)2

4
for N odd.

Using Γ = ε, p = 1
ε

, this yields instability for −2 < ε < 1
4 .
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