Spatial and temporal variability of deep ocean mixing inferred with finescale parameterizations

Maren Walter & Christian Mertens with contributions from Janna Köhler, Uwe Stöber, Marcus Dengler, Monika Rhein, and others

> Workshop "Energy transfers in Atmosphere and Ocean" Hamburg, April 21, 2015

Friday, April 24, 15

Outline

I. Deep ocean mixing

- 2. Finescale parameterizations: why are they useful, how do they work, what are the limits
- 3. What can we learn from finescale parameterizations? (local processes, global distributions/budgets)
- 4. Insights from existing data: temporal + spatial variability; (North Atlantic, South Atlantic, etc)
- 5. Outlook: what might be possible in the future?

Energy cycle in the (deep) ocean

Overturning, bathymetry, and mixing

• Schematic of upper & lower cell of the global MOC

Processes in the vertical wave number/frequency domain

Parameterizations:

FP: Finescale; SI: Shear Instability; OT: Thorpe scale/Overturn

Friday, April 24, 15

Mixing/Diapycnal diffusivity K_ρ:

J

$$\overline{u'u'}\frac{\partial\overline{u}}{\partial x} + \overline{u'v'}\frac{\partial\overline{u}}{\partial y} + \dots + \overline{v'w'}\frac{\partial\overline{w}}{\partial y} + \overline{w'w'}\frac{\partial\overline{w}}{\partial z} = \varepsilon + K_{\rho}N^{2}$$
turbulent production $(\overline{u'_{i}u'_{j}}\frac{\partial\overline{u_{i}}}{\partial x_{j}}) = \text{dissipation} + \text{buoyancy flux}$

local production of current shear is balanced by dissipation and buoyancy flux (i.e. homogenization of the water column)

flux Richardson number
$$R_f = \frac{\text{buoyancy flux}}{\text{turbulent production}} \le 0.15$$

 $\Rightarrow K_{\rho} = \frac{R_f}{1 - R_f} \frac{\varepsilon}{N^2} \le \Gamma \frac{\varepsilon}{N^2} \quad \text{mixing efficiency: } \Gamma = 0.2$

(Osborn, 1980)

- I. Integral: Tracer spreading (e.g. SF6)
- 2. Direct: Microstructure measurements of temperature & velocity fluctuations
- 3. Parametric:
 - a. Inversions in temperature or density (overturn method)
 - b. Finestructure variance of velocity shear and density strain

Mixing over rough topography, microstructure

1000

Diapycnal diffusivity in the Brazil Basin from HRP microstructure measurements

Finescale parameterizations of mixing - why

Finescale parameterizations of mixing - why

(Waterhouse et al., 2014)

• Large data sets with good (better) spatial & temporal resolution

Thorpe scale (Overturn) method

 Breaking internal waves generate overturns visible as instabilities in density/temperature profiles

- Size of overturns is proxy for strength of turbulence
- Dissipation ε can be estimated from density/temperature displacements

Thorpe scale (Overturn) method

 Breaking internal waves generate overturns visible as instabilities in density/temperature profiles

- Size of overturns is proxy for strength of turbulence
- Dissipation & can be estimated from density/temperature displacements

Finescale shear and strain

- Assumption: dissipation of energy by turbulence is in equilibrium with energy production by internal waves
- Dissipation & is proportional to the energy level of the spectrum of vertical current shear for wavelengths > 10m
- Analogous: strain of the density field

Practical application:

Diffusivity from shear & strain:

$$K = K_0 \frac{\langle V_z^2 \rangle^2}{{}_{\rm GM} \langle V_z^2 \rangle^2} h_1(R_\omega) j \left(\frac{f}{N}\right)$$

Shear/strain variance ratio R_{ω} - a measure of the aspect ratio and frequency content of the IW field; for a single wave:

$$R_{\omega} = \frac{\langle V_z^2 \rangle}{\overline{N}^2 \langle \xi_z^2 \rangle} = \frac{\text{HKE}}{\text{APE}} = \frac{\omega^2 + f^2}{\omega^2 - f^2} \cong 1 + \frac{2f^2 k_z^2}{\overline{N}^2 k_h^2}$$

For strain-only use

$$K = K_0 \frac{\langle \xi_z^2 \rangle^2}{_{\rm GM} \langle \xi_z^2 \rangle^2} h_2(R_{\omega}) j(f/N),$$

with fixed R_{ω} .

Gregg et al., 2003; Kunze et al., 2006

Finescale shear and strain - problems:

- Instrumental: instrument noise, attenuation by filtering etc
- Methodological: energy content/spectral shape; non-homogeneity of internal wave field: latitudinal dependencies (PSI), distortions (vertical/ horizontal wavenumber),

(Thorpe, 1975)

Instrument noise and and attenuation

Sensitivity to integration limits

... and choice of integration limits problems: noise, contamination by low modes, shape of spectrum for high/low shear/strain variance levels

Finescale parameterizations compared to microstructure measuremen: Example from Southern Ocean

Differences may indicate

- violation of underlying assumptions, e.g. mixing not (solely) caused by breaking internal waves
- variable shear/strain ratio
- bad signal/noise ratio
- •
- i.e. either caused by underlying physics or measurement error

(Waterman et al., 2013)

Energy dissipation

Median dissipation vs. roughness, World ocean, from ARGO floats (Whalen et al., 2012)

Integrated dissipation vs. roughness, North Atlantic, from LADCP/ CTD (Li, 2013)

Spatial distribution of K in the North Atlantic

Spatial distribution of ε - role of EKE

(a) Eddy kinetic energy E_k

(b) Integrated energy dissipation rates E over whole water columns, averaged in $1^{\circ} \times 1^{\circ}$ boxes.

Horizontal patterns of integrated energy dissipation (from LADCP/CTD) in the North Atlantic

Dependence on latitude, PSI

- Diffusivity vs. latitude for different depth ranges, world ocean (WOCE lines), CTD, strain-only parameterization, w/o (upper) and with (lower) latitude correction function j(f/N)
- Energy dissipation (250-1000m) vs. latitude world ocean, ARGO floats, strain-only

Latitudinal dependence, PSI

Meridional section of diffusivity along southern MAR, shear/strain /CTD/LADCP)

Strong mesoscale flow

Subtropical Atlantic (16°N)

Subpolar Atlantic (48°N)

Composite diapycnal diffusivity from 3 (left) and 2 (right) sections across the DWBC position shows strongly enhanced mixing and altered shear/strain ratios when DWBC is present

Overturn size and distribution and mixing strength from shear/strains show strong mixing events in the DWBC

Mesoscale flow and temporal variability

 Temporal variability of shear variance in internal wave band and integrated dissipation across NAC/SPF in the North Atlantic

2013)

Friday, April 24, 15

Friday, April 24, 15

Temporal variability: seasonal cycle

a Average Dissipation Rate Jul.–Sep. [Wkg⁻¹] **b** Average Dissipation Rate Jan.–Mar. [Wkg⁻¹] log₁₀E

Seasonal cycle in the Pacific from ARGO (strain only)

Temporal variability: tidal cycle

 Small scale mixing at rough topography, from Thorpe scale (hydrothermal vent site, southern MAR)

(Walter et al., 2010)

ebb:

- more inversions, strong mixing
- internal waves of up to 200 m amplitude and ~ 2h period

flood:

 sporadic inversions, weaker mixing

Towyo tracks

16.50

Important (open) Questions:

- What is the temporal variability of the spectral characteristics of the deep ocean internal wave field?
- What is the role of regional and temporal variability in forcing?
- How does variability in the internal wave field affect observable spectral properties used in finescale parameterizations of mixing?