
Stochastic 
Superparametrization in 
quasigeostrophic models

Shafer Smith (Courant/NYU)!
Ian Grooms (Courant/NYU —> UC Boulder/Math)!

Andy Majda (Courant/NYU)!
!

Workshop on Energy Transfer!
MPI, Hamburg!

20-22 April 2015



Stochastic 
Superparametrization in 
quasigeostrophic models

Shafer Smith (Courant/NYU)!
Ian Grooms (Courant/NYU —> UC Boulder/Math)!

Andy Majda (Courant/NYU)!
!

Workshop on Energy Transfer!
MPI, Hamburg!

20-22 April 2015



• Superparametrization (SP) developed for tropical moist 
convection: Randall (CSU), Khairoutdinov (Stonybrook), 
Arakawa (UCLA), Grabowski (NCAR) — great results there.!

• IDEA:  Instead of trying to parameterize unresolved 
dynamics, compute them on each grid cell!

• SP acts like a stochastic parameterization because 
feedback to large-scale is chaotic, not a deterministic 
function of large scales!

• Here, we reduce subgrid model to a stochastic model, and 
use cheap methods to obtain fluxes to large scale.

Superparametrization = multiscale parametrization



Example ocean application:  Deep convection
Superparameterization
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E�cient stochastic superparameterization for
geophysical turbulence
Ian Grooms and Andrew J. Majda ⇤

⇤Department of Mathematics and Climate, Atmosphere, Ocean Science, Courant Institute of Mathematical Sciences, New York, NY 10012

Contributed by Andrew J. Majda

E�cient computation of geophysical turbulence, such as
occurs in the atmosphere and ocean, is a formidable challenge
for the following reasons: the complex combination of waves,
jets, and vortices; significant energetic backscatter from unre-
solved small scales to resolved large scales; lack of dynamical
scale separation between large and small scales; and small-
scale instabilities, conditional on the large scales, which do
not saturate. Nevertheless, e�cient methods are needed to
allow large ensemble simulations of su�cient size to provide
meaningful quantifications of uncertainty in future predictions
and past reanalyses through data assimilation and filtering.
Here a class of e�cient stochastic superparameterization al-
gorithms is introduced. In contrast with conventional super-
parameterization, the method here (i) does not require the
simulation of nonlinear eddy dynamics on periodic embedded
domains, (ii) includes a better representation of unresolved
small-scale instabilities, and (iii) allows e�cient representa-
tion of a much wider range of unresolved scales. The simplest
algorithm implemented here radically improves e�ciency by
representing small-scale eddies at and below the limit of com-
putational resolution by a suitable one-dimensional stochastic
model of random-direction plane waves. In contrast to hetero-
geneous multiscale methods, the methods developed here do
not require strong scale separation or conditional equilibration
of local statistics. The simplest algorithm introduced here
shows excellent performance on a di�cult test suite of pro-
totype problems for geophysical turbulence with waves, jets,
and vortices with a speedup of several orders of magnitude
compared with direct simulation.

waves, jets, vortices | stochastic backscatter | random plane waves

Introduction

One of the foremost challenges of modern applied math-
ematics is to guide successful methods of accounting

for unresolved scales in computational models of multiscale
turbulent systems without scale separation. Examples of
such systems include atmospheric and oceanic fluid dynam-
ics, stellar- and geodynamos, mantle convection, and confined
plasmas, among others. In many of these systems direct res-
olution of all relevant scales in numerical simulations is im-
possible given current computers and will remain so for the
foreseeable future. The problem is compounded by the need
to run large ensembles of simulations to quantify the uncer-
tainty in predictions.

The approach here to modeling the e↵ects of unresolved
scales is founded on a multiscale method, called ‘superparam-
eterization’ (SP), developed for capturing the e↵ects of unre-
solved cloud processes in atmospheric convection [1, 2, 3]. SP
deals with unresolved scales by partially resolving them: high-
resolution, horizontally periodic computational domains are
embedded within the grid cells of a low-resolution global at-
mospheric model; computational savings are realized by dras-
tically simplifying both the coupling between the large and
small scales and the detailed dynamics of the small scales
themselves – the embedded domains are reduced to having
only one horizontal coordinate. Despite its success in a va-
riety of problems [3, 4, 5], traditional SP is still extremely

expensive, and does not admit straightforward application to
other multiscale turbulent systems.

The initial successes of SP, given the drastic simplifica-
tion of the large-small coupling and of the small-scale dy-
namics, suggests that further computational savings might be
had, without decreasing performance, by making further sim-
plifications of the small-scale dynamics. Xing, Majda, and
Grabowski [6] have pursued this line of reasoning by devel-
oping sparse space-time SP algorithms using embedded do-
mains that do not fill the spatio-temporal grid of the large
scale model. We follow a similar line of reasoning, but in
a di↵erent direction, pursuing the idea that the small scales
might be e�ciently modeled stochastically, yet still retaining
the multiscale structure of SP. The algorithm presented here
is inspired by the mathematical test model for superparam-
eterization of [7], the stochastic Gaussian Closure of [8], and
random-direction plane waves in turbulent di↵usion [9, 10, 11],
and results in a semi-analytical, nonlinear, stochastic closure
for the unresolved dynamics based on random sampling of uni-
directional, small-scale, unstable plane waves. Unlike conven-
tional SP, our approach does not require computation on em-
bedded domains (although such domains are formally present
in the theory), and as a result is extremely computationally
e�cient. In contrast with other multiscale methods like the
heterogeneous multiscale methods (HMM [12]), stochastic SP
requires neither spatial nor temporal scale separation, nor con-
ditional equilibration of the small-scale dynamics.

In this article we describe the implementation of stochas-
tic SP in a di�cult, paradigm model of geophysical turbulence
with an inverse cascade of energy from small to large scales,
turbulent dispersive waves, and coherent jets and vortices:
two-layer quasigeostrophic (QG) dynamics. The approach is
tested in a numerical model whose coarse resolution is such
that any parameterization, to be successful, must simulta-
neously model the stochastic backscatter of kinetic energy
from small to large scales in an inverse cascade, and the for-
ward/direct cascade of potential energy from large to small
scales. The success in this setting suggests that stochastic
SP may have application in fields more diverse than two-layer
QG dynamics, for example in atmosphere-ocean modeling, as-
trophysical turbulence, mantle convection, confined plasmas,
etc. – any setting with complex multiscale interactions and
turbulent unresolved scales.
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In this article we expand and develop the authors’ recent proposed methodology for
efficient stochastic superparameterization algorithms for geophysical turbulence. Geophys-
ical turbulence is characterized by significant intermittent cascades of energy from the
unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices.
Conventional superparameterization simulates large scale dynamics on a coarse grid in a
physical domain, and couples these dynamics to high-resolution simulations on periodic
domains embedded in the coarse grid. Stochastic superparameterization replaces the
nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear
stochastic approximations on formally infinite embedded domains. The result is a seamless
algorithm which never uses a small scale grid and is far cheaper than conventional SP, but
with significant success in difficult test problems.
Various design choices in the algorithm are investigated in detail here, including decoupling
the timescale of evolution on the embedded domains from the length of the time step used
on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the
shape of the assumed eddy energy spectrum). We present four closures based on stochastic
superparameterization which elucidate the properties of the underlying framework: a ‘null
hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic
closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and
a stochastic closure based on energy conservation. The different algorithms are compared
and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer
dynamics on a β-plane forced by an imposed background shear.
The success of the algorithms developed here suggests that they may be fruitfully
applied to more realistic situations. They are expected to be particularly useful in
providing accurate and efficient stochastic parameterizations for use in ensemble-based
state estimation and prediction.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Computational physics often faces the challenge of simulating phenomena with complex interactions across a range of
scales too wide to be accessible with existing supercomputers. This is the case, for example, in simulations of global-scale
atmospheric and oceanic dynamics, of solar magnetohydrodynamics, and of mantle convection, to name a few. In these
situations it is of paramount importance to provide accurate and efficient parameterizations of the effects of unresolved
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Stochastic superparameterization, a stochastic parameterization framework based on a multiscale for-
malism, is developed for mesoscale eddy parameterization in coarse-resolution ocean modeling. The
framework of stochastic superparameterization is reviewed and several configurations are implemented
and tested in a quasigeostrophic channel model – an idealized representation of the Antarctic Circumpo-
lar Current. Five versions of the Gent–McWilliams (GM) parameterization are also implemented and
tested for comparison. Skill is measured using the time-mean and temporal variability separately, and
in combination using the relative entropy in the single-point statistics. Among all the models, those with
the more accurate mean state have the less accurate variability, and vice versa. Stochastic superparam-
eterization results in improved climate fidelity in comparison with GM parameterizations as measured
by the relative entropy. In particular, configurations of stochastic superparameterization that include sto-
chastic Reynolds stress terms in the coarse model equations, corresponding to kinetic energy backscatter,
perform better than models that only include isopycnal height smoothing.

! 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mesoscale eddies play a dominant role in stirring and mixing
active and passive tracers in the oceans. These eddies have typical
horizontal scales between 80 and 200 km (Chelton et al., 2011),
and are often not fully resolved in global coupled model simula-
tions. The most widely used parameterizations of the effects of
ocean mesoscale eddies are based on the GM parameterization
(Gent and McWilliams, 1990; Gent et al., 1995); indeed, most of
the IPCC AR4 climate models used ocean mesoscale parameteriza-
tions based on the GM parameterization (Kuhlbrodt et al., 2012).
As the resolution of ocean models increases these eddies are begin-
ning to be partially resolved in global coupled models; neverthe-
less, the need to run ensemble simulations for prediction and
data assimilation, the need to run models with complex ocean–
ice–land–atmosphere interactions with large numbers of organic
and inorganic tracers, and the fact that partially-resolved eddies
are not always superior to parameterized ones (Hallberg, 2013)
implies that mesoscale eddy parameterization will remain relevant
for some time to come.

Most ocean mesoscale parameterizations are developed with
the goal of capturing the average feedback from the unresolved
scales, and as such, model eddy fluxes of tracers and momentum
as deterministic functions of the large scales. This approach is
reasonable, and is justified e.g. by multiple-scales asymptotic
arguments (Pedlosky, 1984; Grooms et al., 2011), when the
subgridscale dynamics evolve on space and time scales much
smaller than the resolved large scales. But when the coarse grid
scale begins to encroach upon the mesoscale eddy range, the
feedbacks from the subgridscale should no longer be expected to
be purely deterministic. Instead, they include significant variability
about the average value, and this variability can in principle have a
pronounced effect on the resolved large-scale dynamics.

Stochastic parameterizations have been developed to include
subgridscale variability in, for example, engineering-scale models
(Leith, 1990; Mason and Thomson, 1992; Schumann, 1995;
Marstorp et al., 2007), atmospheric models (Buizza et al., 1999;
Berner et al., 2009; Lin and Neelin, 2000, 2003; Khouider et al.,
2003; Frenkel et al., 2013; Khouider et al., 2010; Deng et al.,
Submitted for publication; Frederiksen and Davies, 1997), and
ocean models (Berloff, 2005; Kitsios et al., 2013, 2014; Jansen
and Held, 2014; Mana et al., 2014; Brankart, 2013; Grooms and
Majda, 2013; Grooms and Majda, 2014). One typical impact of sto-
chastic parameterizations is to increase the internal variability of a
model. This leads to increased spread of prediction ensembles

http://dx.doi.org/10.1016/j.ocemod.2014.10.001
1463-5003/! 2014 Elsevier Ltd. All rights reserved.
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Stochastic SP for 2-layer QGStochastic Superparameterization for QG

The setting is quasigeostrophic (QG) dynamics in a two-layer model with
equal depths, on a �-plane and forced by imposed baroclinic shear
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@
t

q1 +r · (u1q1) + @
x

q1 + (k2� + k

2
d

)v1 = ⌫r8
q1

@
t

q2 +r · (u2q2)� @
x

q2 + (k2� � k

2
d

)v2 = �rr2 2 + ⌫r8
q2

where

u
j

= r? 
j

, q

j

= r2 
j

+
k

2
d

2
( 3�j

�  
i

), k� =

r
�

U

L

with j = 1, 2.

7 / 39



Stochastic SP for 2-layer QGStochastic Superparameterization
Formulation of SP

Reynolds averaging⇤ of governing equations gives

@
t

q

j

= �r · (u
j

q

j

) + (�1)j@
x

q

j

� ⇧
j

@
x

 
j

� �
j2rr2 

j

� ⌫r8
q

j

,

@
t

q

0
j

= �r · (u0
j

q

0
j

)0 � (u
j

� (�1)j x̂) ·rq

0
j

� u0
j

·rQ

j

� �
j2rr2 0

j

� ⌫r8
q

0
j

where ⇧
j

= k

2
� � k

2
d

(�1)j and Q

j

= ⇧
j

y + q

j

and:

r · (u
j

q

j

) = r · (u
j

q

j

) +r · (u0
j

q

0
j

)

r · (u0
j

q

0
j

) =
k

2
d

(�1)j

2
r · (u0

j

( 0
1 �  0

2))

+
�
@2
x

� @2
y

�
u

0
j

v

0
j

+ @
xy

⇣
(v 0

j

)2 � (u0
j

)2
⌘

⇤ a low-pass filter is more appropriate but gets to the same place eventually.

8 / 39



Point approximation for eddy equationStochastic Superparameterization: Point Approximation

Apply ‘point approximation’ to get eddy equations for SP:

1. Eddy variables depend on new coordinates ⌧ , x̃ , ỹ .

2. Overbar is re-interpreted as an average over the new coordinates.

3. Large-scale variables have no dependence on the new coordinates.
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One could run an SP based on these equations, and it would allow
baroclinic instability, but it would be too expensive (and probably fail in
some situations — ask Ian).
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Gaussian eddy closure
Stochastic Superparameterization
Formulation of SP

‘Gaussian Closure’ (GC) eddy equations: Replace nonlinear products of
eddy variables by Gaussian additive stochastic forcing F

j

and deterministic
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Note: GC assumes turbulent eddy behavior — perhaps problematic with
weakly nonlinear eddies
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In Fourier space, eddy equations can be written

84 I. Grooms, A.J. Majda / Journal of Computational Physics 271 (2014) 78–98

(second order cumulant expansion) method used by Tobias and Marston [27] and Srinivasan and Young [28] drops the
eddy–eddy nonlinearity altogether, without replacing it by a stochastic approximation. Sapsis and Majda [29] develop a
modified quasilinear Gaussian approximation that includes a more sophisticated, energy-conserving approximation of the
eddy–eddy nonlinearity; they also show that the CE2 closure necessarily evolves to an incorrect marginally-stable statistical
equilibrium regardless of the external forcing in the Lorenz-96 model [30,31]. A key difference of the current approach,
motivated by Majda and Grote [12], is that the Gaussian stochastic model is developed here only for the small scales in a
multiscale framework based on the point approximation above.

Following GM and [6] we model the eddy variables as spatially-homogeneous random functions in a formally infinite
domain x̃ = (x̃, ỹ) ∈ R2 with the following spectral representation

q′
j =

∫ ∫
q̂ je

ik·x̃ dWk (8)

where Wk is a complex Weiner process and q̂ j depends on k = (kx,ky). The use of formally infinite embedded domains
instead of periodic ones is convenient since it allows a continuum of possible eddy scales, thereby avoiding the difficulty
associated with conventional SP of missing instabilities that occur on a limited range of wavenumbers.

The Fourier transform of the eddy equations is

d
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where k = |k|, W j,k are independent complex Weiner processes E[W j,k W i,k′ ] = δi jδkk′ , and A j,k are complex constants. We
write this as a system for ψ̂1 and ψ̂2
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At this point note that the eddy terms that appear in the mean equation, e.g. u′
1ψ

′
2, all consist of the average over x̃

and τ of quadratic products of eddy variables. The spatial average of a quadratic product is related to an integral over the
Fourier coefficients by the Plancherel theorem

∫ ∫
f g dx̃ =

∫ ∫
f̂ ∗ ĝ dk (13)

where ∗ denotes the complex conjugate (and conjugate transpose for vectors and matrices). Furthermore, because the eddies
are spatially homogeneous, the spatial average is equal to an ensemble average. Thus terms in the eddy potential vorticity
flux can be calculated as, e.g.
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where E denotes an ensemble average, I{·} denotes the imaginary part of a complex number, and the average over τ has
length ϵ−1. The formulas of the remaining terms are found in Appendix A. This suggests that, rather than simulate solutions
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eddy–eddy nonlinearity altogether, without replacing it by a stochastic approximation. Sapsis and Majda [29] develop a
modified quasilinear Gaussian approximation that includes a more sophisticated, energy-conserving approximation of the
eddy–eddy nonlinearity; they also show that the CE2 closure necessarily evolves to an incorrect marginally-stable statistical
equilibrium regardless of the external forcing in the Lorenz-96 model [30,31]. A key difference of the current approach,
motivated by Majda and Grote [12], is that the Gaussian stochastic model is developed here only for the small scales in a
multiscale framework based on the point approximation above.

Following GM and [6] we model the eddy variables as spatially-homogeneous random functions in a formally infinite
domain x̃ = (x̃, ỹ) ∈ R2 with the following spectral representation
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where Wk is a complex Weiner process and q̂ j depends on k = (kx,ky). The use of formally infinite embedded domains
instead of periodic ones is convenient since it allows a continuum of possible eddy scales, thereby avoiding the difficulty
associated with conventional SP of missing instabilities that occur on a limited range of wavenumbers.
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At this point note that the eddy terms that appear in the mean equation, e.g. u′
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2, all consist of the average over x̃

and τ of quadratic products of eddy variables. The spatial average of a quadratic product is related to an integral over the
Fourier coefficients by the Plancherel theorem

∫ ∫
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∫ ∫
f̂ ∗ ĝ dk (13)

where ∗ denotes the complex conjugate (and conjugate transpose for vectors and matrices). Furthermore, because the eddies
are spatially homogeneous, the spatial average is equal to an ensemble average. Thus terms in the eddy potential vorticity
flux can be calculated as, e.g.
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where E denotes an ensemble average, I{·} denotes the imaginary part of a complex number, and the average over τ has
length ϵ−1. The formulas of the remaining terms are found in Appendix A. This suggests that, rather than simulate solutions
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of the linear stochastic eddy PDE directly, we instead solve for the evolution of the quadratic products involved in the eddy
potential vorticity flux.

The covariance of the Fourier coefficients of the eddy streamfunction

Ck = E
[ |ψ̂1|2 ψ̂1ψ̂

∗
2

ψ̂∗
1 ψ̂2 |ψ̂2|2

]
(16)

evolves according to the linear, autonomous ordinary differential equation

d
dτ

Ck = LkCk + CkL∗
k + σkσ

∗
k (17)

which is obtained from the Itō formula. Note that Lk depends on the mean variables and their derivatives and thus provides
coupling to the large scales. To evolve Ck according to this equation one must specify an initial condition, γk , and σkσ

∗
k ;

that is, one must specify Ck(τ = 0) and the forcing and damping that model the nonlinear eddy–eddy interaction.
We deal first with the details of the forcing and damping. Following GM we specify γk and σkσ

∗
k by requiring the

solution Ck to relax towards a stable equilibrium with phenomenological properties in the absence of mean variables,
i.e. when U j = ∇ Q j = 0. In the following we (i) detail the properties of the equilibrium covariance (Eqs. (20) and (21)),
(ii) specify under what conditions the system should approach this equilibrium (Eq. (22)), and finally (iii) provide remaining
assumptions to complete the specification of γk and σkσ

∗
k (Eq. (23)). We specify the equilibrium covariance such that

1. it is isotropic (a function only of k = |k|),
2. the energy spectrum is proportional to k−5/3 for k < kd and to k−3 for k ! kd ,
3. the barotropic kinetic energy equals the baroclinic energy at every k,
4. αE[|ψ̂1|2] = E[|ψ̂2|2] with α > 0,
5. E[I{ψ̂1ψ̂

∗
2 }] = 0.

The first property guarantees that the equilibrium spectrum, and hence the stochastic approximation of the nonlinear
term, does not bias the Reynolds stresses since an isotropic spectrum produces u′

i v ′
i = 0 and (u′

i)
2 = (v ′

i)
2. Quasigeostrophic

turbulence on a β-plane (i.e. kβ ≠ 0) is known to develop an anisotropic ‘dumbell’ spectrum, but this affects primarily the
large scales, so isotropy remains an appropriate assumption for the small scales.

The second property, the slope of the energy spectrum, is well known from the phenomenology of quasigeostrophic tur-
bulence. In Fig. 3(a) we plot the time- and angle-averaged energy spectra from the three reference simulations compensated
by the energy spectrum of the equilibrium covariance. Each compensated spectrum is approximately flat (indicating approx-
imately correct spectral slope) for k > 10, and falls off due to viscosity at small scales. Although GM included an exponential
decrease in the equilibrium energy spectrum at small scales, we leave the small-scale spectrum at k−3 to demonstrate that
the results are not sensitive to the small-scale properties of the equilibrium spectrum.

GM specified that the total kinetic energy in the equilibrium equals twice the available potential energy at each k < kd

k2(|ψ̂1|2 + |ψ̂2|2
)
= k2

d

(
|ψ̂1|2 + |ψ̂2|2 − 2R

{
ψ̂1ψ̂

∗
2
})

. (18)

We instead specify the equilibrium to have barotropic kinetic energy equal to baroclinic energy (potential energy plus
baroclinic kinetic energy) at every k,

k2(|ψ̂1|2 + |ψ̂2|2 + 2R
{
ψ̂1ψ̂

∗
2
})

=
(
k2 + k2

d

)(
|ψ̂1|2 + |ψ̂2|2 − 2R

{
ψ̂1ψ̂

∗
2
})

. (19)

The former option implies that R{ψ̂1ψ̂
∗
2 } → 0 as k → kd , which is not consistent with the reference simulations. For com-

parison, Larichev and Held [32] suggest that the barotropic kinetic energy should be approximately five times larger than the
total baroclinic energy at each wavenumber. Fig. 3(b) shows the time- and angle-averaged value of R{ψ̂1ψ̂

∗
2 } for each of the

three reference simulations compensated by the equilibrium spectrum that assumes equipartition of barotropic and baro-
clinic energies. The compensated spectra are approximately flat in each case, but only to a very loose approximation. Rather
than tune the properties of the equilibrium spectrum to match the reference simulations more closely, we use the simpler
assumption of equipartition of barotropic and baroclinic energies (the third property above) to underscore the success of
the method even with an imperfect equilibrium.

The fourth property specifies the partition of kinetic energy between layers. For α = 1, which was used by GM, the
layers have equal energy. Fig. 3(c) shows the ratio of the time- and angle-averaged |ψ̂2|2 and |ψ̂1|2 for each of the three
reference simulations. While the layers have approximately equal energy for large scales, at smaller scales the lower layer
has less energy in all of the reference simulations. This accords with standard quasigeostrophic turbulence theory (which
predicts barotropic large scales) and with the expectation of having lower energy in the lower layer due to bottom friction.
We set α = 1/4 for the weakly supercritical case and α = 1/2 for the moderately and strongly supercritical cases; some
results with α = 1 are also provided for comparison in Section 4. The differences in the results between α < 1 and α = 1
are notable, but small; this, and the fact that we do not further tune α or make it a function of k underscore the robustness
of the method.
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three reference simulations compensated by the equilibrium spectrum that assumes equipartition of barotropic and baro-
clinic energies. The compensated spectra are approximately flat in each case, but only to a very loose approximation. Rather
than tune the properties of the equilibrium spectrum to match the reference simulations more closely, we use the simpler
assumption of equipartition of barotropic and baroclinic energies (the third property above) to underscore the success of
the method even with an imperfect equilibrium.

The fourth property specifies the partition of kinetic energy between layers. For α = 1, which was used by GM, the
layers have equal energy. Fig. 3(c) shows the ratio of the time- and angle-averaged |ψ̂2|2 and |ψ̂1|2 for each of the three
reference simulations. While the layers have approximately equal energy for large scales, at smaller scales the lower layer
has less energy in all of the reference simulations. This accords with standard quasigeostrophic turbulence theory (which
predicts barotropic large scales) and with the expectation of having lower energy in the lower layer due to bottom friction.
We set α = 1/4 for the weakly supercritical case and α = 1/2 for the moderately and strongly supercritical cases; some
results with α = 1 are also provided for comparison in Section 4. The differences in the results between α < 1 and α = 1
are notable, but small; this, and the fact that we do not further tune α or make it a function of k underscore the robustness
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Gaussian eddy closure

Wiener process



In Fourier space, eddy equations can be written
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(second order cumulant expansion) method used by Tobias and Marston [27] and Srinivasan and Young [28] drops the
eddy–eddy nonlinearity altogether, without replacing it by a stochastic approximation. Sapsis and Majda [29] develop a
modified quasilinear Gaussian approximation that includes a more sophisticated, energy-conserving approximation of the
eddy–eddy nonlinearity; they also show that the CE2 closure necessarily evolves to an incorrect marginally-stable statistical
equilibrium regardless of the external forcing in the Lorenz-96 model [30,31]. A key difference of the current approach,
motivated by Majda and Grote [12], is that the Gaussian stochastic model is developed here only for the small scales in a
multiscale framework based on the point approximation above.

Following GM and [6] we model the eddy variables as spatially-homogeneous random functions in a formally infinite
domain x̃ = (x̃, ỹ) ∈ R2 with the following spectral representation

q′
j =

∫ ∫
q̂ je

ik·x̃ dWk (8)

where Wk is a complex Weiner process and q̂ j depends on k = (kx,ky). The use of formally infinite embedded domains
instead of periodic ones is convenient since it allows a continuum of possible eddy scales, thereby avoiding the difficulty
associated with conventional SP of missing instabilities that occur on a limited range of wavenumbers.

The Fourier transform of the eddy equations is

d
dτ

q̂1 = −i(U 1 · k)q̂1 − (ik × ∇ Q 1)ψ̂1 + A1,k Ẇ1,k −
(
γk + νk8)q̂1,

d
dτ

q̂2 = −i(U 2 · k)q̂2 − (ik × ∇ Q 2)ψ̂2 + A2,k Ẇ2,k + rk2ψ̂2 −
(
γk + νk8)q̂2,

q̂1 = −k2ψ̂1 + k2
d

2
(ψ̂2 − ψ̂1),

q̂2 = −k2ψ̂2 + k2
d

2
(ψ̂1 − ψ̂2) (9)

where k = |k|, W j,k are independent complex Weiner processes E[W j,k W i,k′ ] = δi jδkk′ , and A j,k are complex constants. We
write this as a system for ψ̂1 and ψ̂2

d
(

ψ̂1

ψ̂2

)
= Lk

(
ψ̂1

ψ̂2

)
dτ + σk dW k (10)

where σk is a complex-valued matrix, W k is a vector of independent complex Weiner processes, and

Lk = −
(
γk + νk8)I + Q−1

k

(
−i

[
U 1 · k 0

0 U 2 · k

]
Qk +

[ −ik × ∇ Q 1 0
0 rk2 − ik × ∇ Q 2

])
, (11)

Qk =
[

−
( k2

d
2 + k2) k2

d
2

k2
d

2 −
( k2

d
2 + k2)

]

. (12)

At this point note that the eddy terms that appear in the mean equation, e.g. u′
1ψ

′
2, all consist of the average over x̃

and τ of quadratic products of eddy variables. The spatial average of a quadratic product is related to an integral over the
Fourier coefficients by the Plancherel theorem

∫ ∫
f g dx̃ =

∫ ∫
f̂ ∗ ĝ dk (13)

where ∗ denotes the complex conjugate (and conjugate transpose for vectors and matrices). Furthermore, because the eddies
are spatially homogeneous, the spatial average is equal to an ensemble average. Thus terms in the eddy potential vorticity
flux can be calculated as, e.g.

u′
1

(
ψ ′

2 − ψ ′
1

)
= u′

1ψ
′
2 = i

∫ ∫ (

ϵ

ϵ−1∫

0

E
[
kyψ̂

∗
1 ψ̂2

]
dτ

)

dk =
∫ ∫

ky
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ϵ

ϵ−1∫

0

E
[
I
{
ψ̂1ψ̂

∗
2
}]

dτ

)

dk, (14)

u′
i v ′

i =
∫ ∫

kxky

(

ϵ

ϵ−1∫

0

E
[
|ψ̂i|2

]
dτ

)

dk (15)

where E denotes an ensemble average, I{·} denotes the imaginary part of a complex number, and the average over τ has
length ϵ−1. The formulas of the remaining terms are found in Appendix A. This suggests that, rather than simulate solutions
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of the linear stochastic eddy PDE directly, we instead solve for the evolution of the quadratic products involved in the eddy
potential vorticity flux.
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which is obtained from the Itō formula. Note that Lk depends on the mean variables and their derivatives and thus provides
coupling to the large scales. To evolve Ck according to this equation one must specify an initial condition, γk , and σkσ

∗
k ;

that is, one must specify Ck(τ = 0) and the forcing and damping that model the nonlinear eddy–eddy interaction.
We deal first with the details of the forcing and damping. Following GM we specify γk and σkσ

∗
k by requiring the

solution Ck to relax towards a stable equilibrium with phenomenological properties in the absence of mean variables,
i.e. when U j = ∇ Q j = 0. In the following we (i) detail the properties of the equilibrium covariance (Eqs. (20) and (21)),
(ii) specify under what conditions the system should approach this equilibrium (Eq. (22)), and finally (iii) provide remaining
assumptions to complete the specification of γk and σkσ

∗
k (Eq. (23)). We specify the equilibrium covariance such that

1. it is isotropic (a function only of k = |k|),
2. the energy spectrum is proportional to k−5/3 for k < kd and to k−3 for k ! kd ,
3. the barotropic kinetic energy equals the baroclinic energy at every k,
4. αE[|ψ̂1|2] = E[|ψ̂2|2] with α > 0,
5. E[I{ψ̂1ψ̂
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turbulence on a β-plane (i.e. kβ ≠ 0) is known to develop an anisotropic ‘dumbell’ spectrum, but this affects primarily the
large scales, so isotropy remains an appropriate assumption for the small scales.

The second property, the slope of the energy spectrum, is well known from the phenomenology of quasigeostrophic tur-
bulence. In Fig. 3(a) we plot the time- and angle-averaged energy spectra from the three reference simulations compensated
by the energy spectrum of the equilibrium covariance. Each compensated spectrum is approximately flat (indicating approx-
imately correct spectral slope) for k > 10, and falls off due to viscosity at small scales. Although GM included an exponential
decrease in the equilibrium energy spectrum at small scales, we leave the small-scale spectrum at k−3 to demonstrate that
the results are not sensitive to the small-scale properties of the equilibrium spectrum.
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)
= k2

d

(
|ψ̂1|2 + |ψ̂2|2 − 2R

{
ψ̂1ψ̂

∗
2
})

. (18)

We instead specify the equilibrium to have barotropic kinetic energy equal to baroclinic energy (potential energy plus
baroclinic kinetic energy) at every k,

k2(|ψ̂1|2 + |ψ̂2|2 + 2R
{
ψ̂1ψ̂

∗
2
})

=
(
k2 + k2

d

)(
|ψ̂1|2 + |ψ̂2|2 − 2R

{
ψ̂1ψ̂

∗
2
})

. (19)

The former option implies that R{ψ̂1ψ̂
∗
2 } → 0 as k → kd , which is not consistent with the reference simulations. For com-

parison, Larichev and Held [32] suggest that the barotropic kinetic energy should be approximately five times larger than the
total baroclinic energy at each wavenumber. Fig. 3(b) shows the time- and angle-averaged value of R{ψ̂1ψ̂

∗
2 } for each of the

three reference simulations compensated by the equilibrium spectrum that assumes equipartition of barotropic and baro-
clinic energies. The compensated spectra are approximately flat in each case, but only to a very loose approximation. Rather
than tune the properties of the equilibrium spectrum to match the reference simulations more closely, we use the simpler
assumption of equipartition of barotropic and baroclinic energies (the third property above) to underscore the success of
the method even with an imperfect equilibrium.

The fourth property specifies the partition of kinetic energy between layers. For α = 1, which was used by GM, the
layers have equal energy. Fig. 3(c) shows the ratio of the time- and angle-averaged |ψ̂2|2 and |ψ̂1|2 for each of the three
reference simulations. While the layers have approximately equal energy for large scales, at smaller scales the lower layer
has less energy in all of the reference simulations. This accords with standard quasigeostrophic turbulence theory (which
predicts barotropic large scales) and with the expectation of having lower energy in the lower layer due to bottom friction.
We set α = 1/4 for the weakly supercritical case and α = 1/2 for the moderately and strongly supercritical cases; some
results with α = 1 are also provided for comparison in Section 4. The differences in the results between α < 1 and α = 1
are notable, but small; this, and the fact that we do not further tune α or make it a function of k underscore the robustness
of the method.
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of the linear stochastic eddy PDE directly, we instead solve for the evolution of the quadratic products involved in the eddy
potential vorticity flux.

The covariance of the Fourier coefficients of the eddy streamfunction

Ck = E
[ |ψ̂1|2 ψ̂1ψ̂

∗
2

ψ̂∗
1 ψ̂2 |ψ̂2|2

]
(16)

evolves according to the linear, autonomous ordinary differential equation

d
dτ

Ck = LkCk + CkL∗
k + σkσ

∗
k (17)

which is obtained from the Itō formula. Note that Lk depends on the mean variables and their derivatives and thus provides
coupling to the large scales. To evolve Ck according to this equation one must specify an initial condition, γk , and σkσ

∗
k ;

that is, one must specify Ck(τ = 0) and the forcing and damping that model the nonlinear eddy–eddy interaction.
We deal first with the details of the forcing and damping. Following GM we specify γk and σkσ

∗
k by requiring the

solution Ck to relax towards a stable equilibrium with phenomenological properties in the absence of mean variables,
i.e. when U j = ∇ Q j = 0. In the following we (i) detail the properties of the equilibrium covariance (Eqs. (20) and (21)),
(ii) specify under what conditions the system should approach this equilibrium (Eq. (22)), and finally (iii) provide remaining
assumptions to complete the specification of γk and σkσ

∗
k (Eq. (23)). We specify the equilibrium covariance such that

1. it is isotropic (a function only of k = |k|),
2. the energy spectrum is proportional to k−5/3 for k < kd and to k−3 for k ! kd ,
3. the barotropic kinetic energy equals the baroclinic energy at every k,
4. αE[|ψ̂1|2] = E[|ψ̂2|2] with α > 0,
5. E[I{ψ̂1ψ̂

∗
2 }] = 0.

The first property guarantees that the equilibrium spectrum, and hence the stochastic approximation of the nonlinear
term, does not bias the Reynolds stresses since an isotropic spectrum produces u′

i v ′
i = 0 and (u′

i)
2 = (v ′

i)
2. Quasigeostrophic

turbulence on a β-plane (i.e. kβ ≠ 0) is known to develop an anisotropic ‘dumbell’ spectrum, but this affects primarily the
large scales, so isotropy remains an appropriate assumption for the small scales.

The second property, the slope of the energy spectrum, is well known from the phenomenology of quasigeostrophic tur-
bulence. In Fig. 3(a) we plot the time- and angle-averaged energy spectra from the three reference simulations compensated
by the energy spectrum of the equilibrium covariance. Each compensated spectrum is approximately flat (indicating approx-
imately correct spectral slope) for k > 10, and falls off due to viscosity at small scales. Although GM included an exponential
decrease in the equilibrium energy spectrum at small scales, we leave the small-scale spectrum at k−3 to demonstrate that
the results are not sensitive to the small-scale properties of the equilibrium spectrum.

GM specified that the total kinetic energy in the equilibrium equals twice the available potential energy at each k < kd

k2(|ψ̂1|2 + |ψ̂2|2
)
= k2

d

(
|ψ̂1|2 + |ψ̂2|2 − 2R

{
ψ̂1ψ̂

∗
2
})

. (18)

We instead specify the equilibrium to have barotropic kinetic energy equal to baroclinic energy (potential energy plus
baroclinic kinetic energy) at every k,

k2(|ψ̂1|2 + |ψ̂2|2 + 2R
{
ψ̂1ψ̂

∗
2
})

=
(
k2 + k2

d

)(
|ψ̂1|2 + |ψ̂2|2 − 2R

{
ψ̂1ψ̂

∗
2
})

. (19)

The former option implies that R{ψ̂1ψ̂
∗
2 } → 0 as k → kd , which is not consistent with the reference simulations. For com-

parison, Larichev and Held [32] suggest that the barotropic kinetic energy should be approximately five times larger than the
total baroclinic energy at each wavenumber. Fig. 3(b) shows the time- and angle-averaged value of R{ψ̂1ψ̂

∗
2 } for each of the

three reference simulations compensated by the equilibrium spectrum that assumes equipartition of barotropic and baro-
clinic energies. The compensated spectra are approximately flat in each case, but only to a very loose approximation. Rather
than tune the properties of the equilibrium spectrum to match the reference simulations more closely, we use the simpler
assumption of equipartition of barotropic and baroclinic energies (the third property above) to underscore the success of
the method even with an imperfect equilibrium.

The fourth property specifies the partition of kinetic energy between layers. For α = 1, which was used by GM, the
layers have equal energy. Fig. 3(c) shows the ratio of the time- and angle-averaged |ψ̂2|2 and |ψ̂1|2 for each of the three
reference simulations. While the layers have approximately equal energy for large scales, at smaller scales the lower layer
has less energy in all of the reference simulations. This accords with standard quasigeostrophic turbulence theory (which
predicts barotropic large scales) and with the expectation of having lower energy in the lower layer due to bottom friction.
We set α = 1/4 for the weakly supercritical case and α = 1/2 for the moderately and strongly supercritical cases; some
results with α = 1 are also provided for comparison in Section 4. The differences in the results between α < 1 and α = 1
are notable, but small; this, and the fact that we do not further tune α or make it a function of k underscore the robustness
of the method.

Gaussian eddy closure

Wiener process

Need closure for these terms



Gaussian eddy closureEddy Initial Condition

The equilibrium solution for the covariance, in the absence of mean
gradients, is used as the initial condition. The following properties are
demanded:

isotropic energy spectrum ) zero mean Reynolds stress terms

energy spectrum / k

�5/3 for k < k

d

energy spectrum / k

�3 for k > k

d

eddies do not generate heat flux in the absence of temperature
gradient

a constant ratio of barotropic and baroclinic energy at each k

The damping parameter is set equal to the nonlinear inverse eddy
timescale at each k ,

�
k

= �0

q
k

3
E (k)

The total energy in the initial condition is a tunable parameter... Various
methods are examined in the papers.
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Correlated stochastic plane waves

• If eddies are isotropic, Reynold’s stress terms are 0.!

• Heat flux results from anisotropy!

• Choose random eddy angle along which to integrate 
eddy stress terms — resulting fluxes are therefore not 
always downgradient

I. Grooms, A.J. Majda / Journal of Computational Physics 271 (2014) 78–98 87

In general, one must take care to specify the entries of σkσ
∗
k in such a way that it is symmetric and positive definite; the

above approach guarantees this provided that the equilibrium covariance is a covariance matrix. As in GM, we close the
system by requiring γk to be isotropic and proportional to the nonlinear eddy timescale at each k

γk = γk =
{

γ0(k/kd)
2/3 for k < kd,

γ0 for k ! kd.
(23)

As in GM, we set γ0 = 30 so that it is slightly more than sufficient to damp the linear instability of the imposed shear.
We emphasize that this choice doesn’t guarantee saturation of the eddy statistics, because mean shear (and associated eddy
instability) can become much larger than the imposed shear in the course of a simulation. Note that the choice of γk only
specifies σkσ

∗
k and not σk so the properties of the stochastic approximation to the nonlinear terms in the eddy PDE (7) are

not completely defined.
The initial condition for the covariance evolution equation (17) is naturally taken to be the equilibrium covariance. One

might alternatively set the initial condition to zero, but we have not explored this option. In conventional SP, the initial
condition of the eddies is tracked from one large-scale time step to the next; this could be done in the present context
provided that Ck is tracked at a finite number of points in k. As an alternative to tracking Ck one might reset the shape
of Ck to the equilibrium at each time step, but change the coefficient A to account for local changes in eddy energy. This
alternative is discussed further in Section 3.4.

The covariance evolution equation (17) can be written as a linear vector equation in the form

d
dτ

ck = Mkck + Σk (24)

where

ck = E
[(

|ψ̂1|2,R
{
ψ̂1ψ̂

∗
2
}
,I

{
ψ̂1ψ̂

∗
2
}
, |ψ̂2|2

)]
,

Σk is a vector containing the real and imaginary components of the elements of σkσ
∗
k , and Mk is the linear coefficient

matrix. The form of the linear propagator Mk is listed in Appendix A. The time-average of the covariance evolution, assuming
that the equilibrium covariance is used as the initial condition, can be evaluated via

ϵ

ϵ−1∫

0

ck(τ )dτ =
[
φ1(Mk/ϵ) + 2γk

ϵ
φ2(Mk/ϵ)

]
ck,eq,

φ1(A) = A−1[eA − I
]
,

φ2(A) = A−2[eA − I − A
]
= A−1[φ1(A) − I

]
. (25)

Note that the above formula for the time average is only valid when Mk is nonsingular. However, Mk is singular only on a
set of measure zero in k, which does not affect the eddy terms integrated over k.

The closure for the eddy terms in the mean Eqs. (2) can be calculated from their definitions by evaluating the time
average from (25) and the Plancherel integral over k by a quadrature. It is convenient to record the integrals defining the
eddy terms in polar form with (kx,ky) = k(cos(θ), sin(θ)); for example,

u′
1

(
ψ ′

2 − ψ ′
1

)
=

2π∫

0

kmax∫

k0

k2 sin(θ)

(

ϵ

ϵ−1∫

0

E
[
I
{
ψ̂1ψ̂

∗
2
}]

dτ

)

dk dθ, (26)

u′
i v ′

i = 1
2

2π∫

0

kmax∫

k0

k3 sin(2θ)

(

ϵ

ϵ−1∫

0

E
[
|ψ̂i|2

]
dτ

)

dk dθ . (27)

The polar-form integrals defining the remaining eddy terms are listed in Appendix A.
We note finally that the length of the time average ϵ−1 is tied to the length of the coarse-grid time step in conventional

SP. This is natural since the state of the eddies is tracked from one coarse-grid time step to the next. In the current
formulation the eddies are re-set to the equilibrium covariance at every time step, and the length of a coarse-grid time step
is generally too short to allow meaningful evolution of the eddies away from their artificial initial condition. We therefore
allow ϵ−1 to be larger than the coarse grid step size to give the eddies a longer time to react. Decoupling ϵ from the
coarse-grid time step introduces a new tunable parameter, which is not ideal. It would be less arbitrary to set ϵ such that
the eddy evolution timescale is shorter than or comparable to the shortest decorrelation time of the mean variables that
appear in the eddy equation; however, lacking that information ϵ is left here as a tunable parameter.



The AlgorithmThe Algorithm

1. At the beginning of a coarse model time step, evaluate the large-scale
variables that appear in the eddy equations, e.g. shear, vorticity
gradient.

2. Pick a random direction for the eddies.

3. While holding the large-scale terms fixed, evolve the eddies for a fixed
time of length ✏�1. This is cheap because eddy dynamics are linear.

4. Compute the eddy PV flux from step 3. This is also cheap because of
simple Fourier analysis.

5. Update the large-scale variables.

6. Re-set the eddy variables to a ‘climatological’ state, i.e. forget the
final state of the eddies from the end of step 3.

7. Repeat

13 / 39



Test in doubly-periodic case

• Run eddy-resolving reference simulations with kd = 50 and a 
5122 grid.!

• Then we run stochastic SP using the same code on a 642 grid — 
8X lower resolution.!

• The coarse-grid Nyquist wavenumber is 32, which is smaller 
than the deformation radius but larger than the peak of the KE 
spectrum (which is around k=5).!

• Since our coarse grid is larger than the deformation scale, we 
need to simultaneously parameterize the downscale cascade of 
APE and the inverse cascade of KE.!



Stochastic Superparameterization
Background for QG

The growth rates of linear instability versus k
x

(k
y

= 0).
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Test in doubly-periodic case
We run tests in three scenarios

“High Latitude” f -plane, r = 16

“Mid Latitude” k

2
� = k

2
d

/4, r = 4

“Low Latitude” k

2
� = k

2
d

/2, r = 1

For brevity I will focus on f -plane results.
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Test in doubly-periodic caseFigure 1: Snapshots of upper layer potential vorticity q1 from the stochastic SP simulations

at high (left), medium (center), and low latitudes (right).

Figure 2: Time-averaged 1D energy spectra for the high-resolution DNS (dashed) and

stochastic SP (solid) solutions at high latitude (� = 0, r = 16). Total energy in red,

kinetic in blue, and potential in green.

2

Figure 6: Time-averaged 1D energy spectra for the high-resolution DNS (dashed) and

stochastic SP (solid) solutions at low latitude (� = k2
d/2, r = 1). Total energy in red,

kinetic in blue, and potential in green.
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Time-averaged 1D energy spectra for SP (solid) and !
DNS (dashed).  KE (blue), APE (green), total (red)



Test in doubly-periodic case

Fig. 2. Snapshots of upper layer potential vorticity q1 from the reference simulations at high (left), medium (center), and low latitudes (right).

are solved on horizontally periodic embedded domains. How-
ever, reduction to one fixed horizontal dimension is not pos-
sible here, since the advective nonlinearity responsible for the
turbulence reduces to zero in one horizontal coordinate. Fur-
thermore, we consider a coarse resolution grid of 64⇥64 points
with a Nyquist wavenumber of 32. In this case embedded do-
mains that completely fill the large-scale computational grid
have a minimum wavenumber of 64, and will not resolve any of
the linear instability because 64 > k

d

; the sparse-space meth-
ods of [6] are thus not applicable to this problem. Rather,
the embedded domains in a deterministic SP implementation
would have to cover more area than the entire large-scale do-
main in order to minimally interact with the large scales, re-
sulting in a complete loss of computational e�ciency.

To overcome these deficiencies of deterministic SP in this
problem, we replace the nonlinear, deterministic eddy equa-
tions (4) by the following quasi-linear, stochastic model

@

⌧

q

0
j

=
⇥
F � �q0

j

⇤
� (u

j

� (�1)j)@
x̃

q

0
j

� u0
j

·rQ

j

� �

j2rr̃2
 

0
j

� ⌫r̃8
q

0
j

[5]

where F is additive stochastic forcing and � is a positive-
definite pseudo-di↵erential operator. This approximation is
fundamental to our method, and assumes that the eddies are
turbulent; our method should not be expected to work in sit-
uations with weakly nonlinear or non-turbulent eddies.

The stochastically-approximated eddy equation (5) has
constant coe�cients in x̃ and ỹ so the evolution of Fourier
modes is decoupled. To overcome the di�culties imposed
by using periodic embedded domains (e.g. that the discrete
Fourier spectrum may miss unstable eddy modes, as discussed
above and in [18, 8]) we represent the eddy variables as ho-
mogeneous random functions in formally infinite domains, and
make use of the stochastic Fourier transform

q

0
j

=

ZZ
q̂

j,k

e

ik·x̃dW
j,k

. [6]

The average (·), which includes a spatial average, becomes
equivalent to an ensemble average, i.e. (·) is a determinis-
tic quantity. Our method therefore produces a deterministic
model of the eddy terms in the mean equations; we show below

how to make a stochastic approximation of this deterministic
closure whose mean value reduces to the deterministic closure.

The eddy equations for a single Fourier mode are

dq̂
j,k

= �
h
�

k

+ ⌫k

8 + i(u
j

· k � (�1)jk
x

)
i
q̂

j,k
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⇥
(ik ⇥rQ

j
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j2rk
2⇤
 ̂

j,k

d⌧ + �

j,k

dW
j,k

[7]

where k = |k|, and W

j,k

are independent, complex Weiner
processes. We write this as a linear system of Itō stochastic
di↵erential equations for  ̂

j,k

, and use Itō’s lemma to derive
a real linear system of four ordinary di↵erential equations for
the covariance

d
d⌧

c
k

= M
k

c
k

+ ⌃
k

,

c
k

= E
h
(| ̂1,k|2,R{ ̂1,k ̂

⇤
2,k}, I{ ̂1,k ̂

⇤
2,k}, | ̂2,k|2)

i

⌃
k

= E
⇥
(|�1,k|2,R{�1,k�

⇤
2,k}, I{�1,k�

⇤
2,k}, |�2,k|2)

⇤
[8]

where E denotes the expectation, R and I denote the real
and imaginary parts of a complex number, and ⇤ the complex
conjugate. The linear propagator M

k

incorporates the local
values and gradients of the large-scale variables, so the eddy
statistics will respond to local large-scale conditions; the form
of M

k

is given in the supplementary material. We note that
the size of c

k

is the square of the number of dependent vari-
ables in the system. Systems with more dependent variables
(e.g. systems with more vertical layers) will thus have larger
c
k

, but the form of equation (8) will remain the same.
The utility of this equation stems from the fact that the

eddy terms in the mean equation are derivable as integrals
over the Fourier covariance, via Plancherel’s theorem; for ex-
ample,
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i
dkd⌧. [9]

Thus, to compute the eddy terms in the mean equations one
must specify an initial condition for c

k

, an integration length
for the time average ✏�1, the autocorrelation of the stochastic
forcing ⌃

k

, and the additional damping �
k

.
A ‘zero-order’ approach is adopted whereby the eddies

are required to relax towards a specified equilibrium in the
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Figure 1: Snapshots of upper layer potential vorticity q1 from the stochastic SP simulations

at high (left), medium (center), and low latitudes (right).

Figure 2: Time-averaged 1D energy spectra for the high-resolution DNS (dashed) and

stochastic SP (solid) solutions at high latitude (� = 0, r = 16). Total energy in red,

kinetic in blue, and potential in green.
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Fig. 3. Time series of the heat flux generated by high-resolution DNS (left) and stochastic SP (right) solutions at high latitude (� = 0, r = 16).

Fig. 4. Time-series of zonally-averaged zonal barotropic velocity at low latitude (� = k2
d

/2, r = 1) from the high-resolution DNS (left) and stochastic SP (right)
solutions. Time increases to the right; the grayscale is the same in both figures.
than repeatedly calculate similar values for the eddy terms at
every time step and grid point of the coarse simulation, we
pre-compute the eddy terms as functions of the three scalar
parameters, using 101 equispaced nodes for each scalar pa-
rameter. The range of values of the three scalar parameters
over which solutions are pre-computed is chosen to encom-
pass the variation seen in the low-resolution simulations. The
eddy terms in the mean equation are evaluated using linear
interpolation based on these pre-computed values.

The large-scale equations (2) are solved using the same
methods as the high-resolution reference simulations, but on
a grid of 64⇥64 points and with a fixed time step of 2⇥10�4.
The eddy terms are evaluated using new random directions
at the beginning of each time step, and are held constant for
the duration of the step. The inflated hyperviscous Reynolds
number ⌫ = 2 ⇥ 10�10 and the time step 2 ⇥ 10�4 are kept
the same in all three test cases, leaving A as the only tunable
parameter. After minimal tuning, the results of the stochas-
tic superparameterization algorithms are presented for the
low-latitude case using A = 1.5 ⇥ 103, for the mid-latitude
case using A = 6 ⇥ 103, and for the high-latitude case using
A = 2⇥ 104.

Results.The most striking feature of the high-latitude test
case (� = 0, r = 16) is the appearance of strong vortex cores
(Fig. 2, left panel) which are unresolved on the coarse grid
(Fig. S1, left panel). However, the net poleward heat flux
(proportional to the domain integral of v

t

 

c

) is generated
primarily by dynamics at larger scales, as discussed by [14],
and these scales are resolved on the coarse grid. Figure 3

demonstrates that the time series of the heat flux generated
by the coarse-resolution stochastic SP solution in the high-
latitude case (right half) has a nearly identical character to
that generated by the high-resolution reference solution (left
half), despite the complete lack of small-scale vortex cores on
the coarse grid. The time-averaged 1D energy spectra of the
high-resolution and stochastic SP solutions also show good
agreement (Fig. S2).

The reference solution in the mid-latitude test case (� =
k

2
d

/4, r = 4) includes strong vortex cores and intermittently
broken barotropic zonal jets (Fig. 2, center panel); these
jets constitute a barrier to transport and limit the poleward
(meridional) heat flux, resulting in a net flux an order of mag-
nitude smaller than the high-latitude simulation (Fig. S3).
Figure 5 compares the time-averaged 1D energy spectra for
the stochastic SP solution and the reference solution at mid-
latitudes, demonstrating good agreement between kinetic and
potential energies, and a peak at k = 4 corresponding to the
four barotropic zonal jets that develop. Although the total
energy content is similar, the peak of the kinetic energy spec-
trum in the stochastic SP solution is weaker than the reference
solution; the jets in the stochastic SP solution are also more
intermittent (Fig. S4). The result is that the heat flux gen-
erated by the stochastic SP solution is about 50% too large
(Fig. S3). Generating a heat flux correct to within 50% on a
grid with 1/64 as many points constitutes a resounding suc-
cess; it is likely, however, that the result could be improved
by allowing variation of the A across the large-scale domain.

The low-latitude case (� = k

2
d

/2, r = 1) is particularly
di�cult because (i) the band of linear instability responsi-
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Heat flux in f-plane case

DNS SP

SP model reproduces heat flux of DNS case,!
despite complete absence of small-scale vortices!
present in DNS



• Compare SP to four variants of Gent-McWilliams in a 2-
layer QG channel model with ACC topography!

• Domain size is 20,000 X 2,500 km X 2 km layer depths. 
Rd = 12.25 km, and dx = 6.5 km for the eddy-resolving 
reference solution.!

• Coarse model uses same code but has grid 8 times 
coarser (dx = 50 km):  barely eddy permitting.

Test in channel with ACC topography

layers were first described by Treguier (1989), and are only
problematic in the coarse-resolution models which are unable to
resolve the boundary layers, resulting in numerical instability.
The model topography is shown in Fig. 1(a); the model’s idealized
version of Drake Passage appears in the rightmost quarter of the
figure.

The streamfunction wi is defined by the solution to the elliptic
potential vorticity inversion problem

q1 ¼ r2w1 þ
2f 2

0

g0H
ðw2 $ w1Þ $

2f 2
0

gH
w1 ð3Þ

q2 ¼ r2w2 þ
2f 2

0

g0H
ðw1 $ w2Þ ð4Þ

where g is the gravitational acceleration, and g0 is the reduced grav-
ity. Boundary conditions are required to uniquely specify the solu-
tion wi; they are presented in Appendix A.

The model equations are simulated at high resolution on an
equispaced grid of 3072& 385 points, which gives a grid spacing
of Dx ¼ Dy ¼ 6:51 km, approximately half the baroclinic deforma-
tion radius Ld ¼ 12:25 km. Note that the baroclinic deformation
radius for this model is approximately

Ld '
ffiffiffiffiffiffiffiffi
g0H

p

2jf 0j
: ð5Þ

The barotropic deformation radius
ffiffiffiffiffiffi
gH

p
=f 0 is finite, but at 1981 km

it is too large to have a significant impact on the dynamics.
The second-order spatial discretization is described by Nadeau

and Straub (2009); the jacobian advection terms are discretized
using the method of Arakawa (1966). The eddy-resolving model
uses third-order Adams–Bashforth time integration with a step
size of 15 min, and uses a multigrid method to solve the potential
vorticity inversion.

2.2. Eddy-resolving results

The eddy-resolving simulation is run from rest to a statistically
steady state, as measured by the equilibration of the total energy
and area-averaged zonal baroclinic shear. The simulation takes
approximately 150 years to equilibrate, and statistics are
computed based on daily observations over a 10 year period. The
total (barotropic) volume transport equilibrates to 200 ± 9 Sv
(1 Sv = 106 m3/s), where 9 Sv is the standard deviation of the tem-
poral fluctuations. The mean zonal baroclinic shear, defined as the
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Fig. 1. Results from the eddy-resolving reference simulation. Axes are labeled in units of kilometers. Panels show: (a) topography hb (meters), (b) mean interface height g
(meters), (c) mean shear amplitude ju1 $ u2j (m/s), (d) growth rate of local baroclinic instability (days$1), (e) eddy kinetic energy (m2/s2; color saturates at 0:08), and (f)
standard deviation of coarse-grained interface height r (meters; color saturates at 250).
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QG with GM

area-averaged difference between the zonal velocity in the upper
and lower layers, equilibrates to 0:70! 0:003 cm/s.

The height of the layer interface is H=2þ g where
g ¼ ðf 0=g0Þðw2 & w1Þ; note that the area average of g is zero because
of the boundary conditions on PV inversion (Appendix A). The time
average of g is shown in Fig. 1(b). It exhibits large variations up to
!1 km, and has an RMS height of 473 m. The local mean shear
(ju1 & u2j / jrgj) shown in Fig. 1(c) reaches a maximum of approx-
imately 20 cm/s, which implies that the slope of the layer interface
remains mild despite the relatively large amplitude of g. The net
baroclinic shear of 0.7 cm/s is somewhat small compared to the
baroclinicity of the real ACC (see e.g. Firing et al., 2011). It could
be increased by increasing the amplitude of the topography or by
increasing the Ekman drag coefficient r, but the former would take
the model even further from the regime of applicability of the
quasigeostrophic approximation and the latter could result in
unrealistic frictionally-dominated dynamics. The parameter
choices here attempt to make the model as realistic as possible
within the constraints of a two-layer QG channel.

Fig. 1(d) shows the growth rate of local baroclinic instability
computed using the time-mean shear and PV gradient. Regions of
strong growth rate largely coincide with regions of strong shear.
Fig. 1(e) shows the eddy kinetic energy (EKE) based on a time aver-
age, i.e.

EKE ¼ 1
2

X

i

juij2t & jut
i j

2 ð6Þ

where the overbar ð'Þt denotes a time average (the superscript t is
used to distinguish the time average from the division onto large
scales in Section 3.2). Regions of high EKE do not coincide with
regions of strong shear and strong baroclinic instability; rather,
regions of strong EKE tend to lie downstream of such regions. Sig-
nificant movement of eddy energy has also been found by
Grooms et al. (2013) in a QG basin model. This suggests that param-
eterizations that infer an eddy velocity scale from the local shear
will be in error, and that it may be advantageous to develop param-
eterizations that account for large-scale movement of eddy energy
(Eden and Greatbatch, 2008; Marshall and Adcroft, 2010; Grooms
et al., 2012; Grooms and Majda, 2014). None of the parameteriza-
tions tested here incorporate such effects.

Fig. 1(f) shows the variability of the large-scale part of the inter-
face height deviation g. Specifically, g is coarse-grained by cell-
averaging from the eddy-resolving 3072( 385 grid to the coarse-
model 384( 49 grid, and Fig. 1(f) shows the standard deviation
of the time series of the coarse-grained g at each point on the
384( 49 coarse-model grid. The temporal variability of the
large-scale part of g is quite large, with standard deviations in
excess of 200 m. This underscores the strong temporal variability
of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.

3. Deterministic and stochastic parameterizations

3.1. Gent–McWilliams parameterizations

Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
of mesoscale eddy parameterizations in most IPCC-class climate
models (Kuhlbrodt et al., 2012).

In the context of two-layer QG dynamics, the GM parameteriza-
tion becomes extremely simple: subgridscale eddies smooth the

large-scale layer interface height. The interface height is
H=2þ ðf 0=g0Þðw2 & w1Þ, and the large-scale QG dynamics are mod-
eled by

@tq1 þ J½w1; q1 þ by* ¼ 2f 2
0

g0H
r ' jrðw2 & w1Þð Þ & 1

q0H1
@ysxðyÞ

þ m2r4w1 ð7Þ

@tq2 þ J½w2; q2 þ by* ¼ 2f 2
0

g0H
r ' jrðw1 & w2Þð Þ & f 0

H2
J½w2; hb*

& rr2w2 þ m2r4w2 ð8Þ

Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is

1: j ¼ aLdDU

where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 & u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set

2: j ¼ a ðDUÞ2

r

In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ&1 with T ¼ Ld=DU. The result is

3: j ¼ a ðDUÞ3

b2L3
d

As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography

beff ¼ bŷ þ f 0

H
rhb

!!!!

!!!! ð9Þ

Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by

ffiffiffiffiffi
Ri
p

=jf 0j. In the two-layer context we
approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0=H

p

and using j@zuj + 2DU=H, which leads to

1
T
¼ jf 0jffiffiffiffiffi

Ri
p ¼ DU

ffiffiffiffiffiffiffiffi
2f 2

0

g0H

s

: ð10Þ

They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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area-averaged difference between the zonal velocity in the upper
and lower layers, equilibrates to 0:70! 0:003 cm/s.

The height of the layer interface is H=2þ g where
g ¼ ðf 0=g0Þðw2 & w1Þ; note that the area average of g is zero because
of the boundary conditions on PV inversion (Appendix A). The time
average of g is shown in Fig. 1(b). It exhibits large variations up to
!1 km, and has an RMS height of 473 m. The local mean shear
(ju1 & u2j / jrgj) shown in Fig. 1(c) reaches a maximum of approx-
imately 20 cm/s, which implies that the slope of the layer interface
remains mild despite the relatively large amplitude of g. The net
baroclinic shear of 0.7 cm/s is somewhat small compared to the
baroclinicity of the real ACC (see e.g. Firing et al., 2011). It could
be increased by increasing the amplitude of the topography or by
increasing the Ekman drag coefficient r, but the former would take
the model even further from the regime of applicability of the
quasigeostrophic approximation and the latter could result in
unrealistic frictionally-dominated dynamics. The parameter
choices here attempt to make the model as realistic as possible
within the constraints of a two-layer QG channel.

Fig. 1(d) shows the growth rate of local baroclinic instability
computed using the time-mean shear and PV gradient. Regions of
strong growth rate largely coincide with regions of strong shear.
Fig. 1(e) shows the eddy kinetic energy (EKE) based on a time aver-
age, i.e.
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where the overbar ð'Þt denotes a time average (the superscript t is
used to distinguish the time average from the division onto large
scales in Section 3.2). Regions of high EKE do not coincide with
regions of strong shear and strong baroclinic instability; rather,
regions of strong EKE tend to lie downstream of such regions. Sig-
nificant movement of eddy energy has also been found by
Grooms et al. (2013) in a QG basin model. This suggests that param-
eterizations that infer an eddy velocity scale from the local shear
will be in error, and that it may be advantageous to develop param-
eterizations that account for large-scale movement of eddy energy
(Eden and Greatbatch, 2008; Marshall and Adcroft, 2010; Grooms
et al., 2012; Grooms and Majda, 2014). None of the parameteriza-
tions tested here incorporate such effects.

Fig. 1(f) shows the variability of the large-scale part of the inter-
face height deviation g. Specifically, g is coarse-grained by cell-
averaging from the eddy-resolving 3072( 385 grid to the coarse-
model 384( 49 grid, and Fig. 1(f) shows the standard deviation
of the time series of the coarse-grained g at each point on the
384( 49 coarse-model grid. The temporal variability of the
large-scale part of g is quite large, with standard deviations in
excess of 200 m. This underscores the strong temporal variability
of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.

3. Deterministic and stochastic parameterizations

3.1. Gent–McWilliams parameterizations

Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
of mesoscale eddy parameterizations in most IPCC-class climate
models (Kuhlbrodt et al., 2012).

In the context of two-layer QG dynamics, the GM parameteriza-
tion becomes extremely simple: subgridscale eddies smooth the

large-scale layer interface height. The interface height is
H=2þ ðf 0=g0Þðw2 & w1Þ, and the large-scale QG dynamics are mod-
eled by
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Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is

1: j ¼ aLdDU

where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 & u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set

2: j ¼ a ðDUÞ2
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In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ&1 with T ¼ Ld=DU. The result is

3: j ¼ a ðDUÞ3
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As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography
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Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by
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=jf 0j. In the two-layer context we
approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N +
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They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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g ¼ ðf 0=g0Þðw2 & w1Þ; note that the area average of g is zero because
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where the overbar ð'Þt denotes a time average (the superscript t is
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will be in error, and that it may be advantageous to develop param-
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(Eden and Greatbatch, 2008; Marshall and Adcroft, 2010; Grooms
et al., 2012; Grooms and Majda, 2014). None of the parameteriza-
tions tested here incorporate such effects.

Fig. 1(f) shows the variability of the large-scale part of the inter-
face height deviation g. Specifically, g is coarse-grained by cell-
averaging from the eddy-resolving 3072( 385 grid to the coarse-
model 384( 49 grid, and Fig. 1(f) shows the standard deviation
of the time series of the coarse-grained g at each point on the
384( 49 coarse-model grid. The temporal variability of the
large-scale part of g is quite large, with standard deviations in
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of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.
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Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
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Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is
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where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 & u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set
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r

In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ&1 with T ¼ Ld=DU. The result is
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As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography
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Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by
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=jf 0j. In the two-layer context we
approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N +
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They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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scale, otherwise it equals the distance to the nearest point where
1=T is less than 10% of its maximum on the domain. We therefore
consider the scheme

4: j ¼ a L2
z

T

where T is defined by (10). When computing T for this scheme, we
set values larger than 1 day equal to 1 day, and when computing Lz

values larger than 10 coarse grid points are truncated; this is qual-
itatively consistent with implementations in ocean general circula-
tion models (e.g. MOM3.0: Pacanowski and Griffies, 2000). When
computing distances Lz we use the standard Euclidean distance
rather than the more complicated algorithm in MOM3.0.

These five schemes constitute a representative sample of exist-
ing parameterizations of the diffusivity j; we refer to them as
GM0–GM4. The first four are essentially monomials in the baro-
clinic shear DU, and the numbering scheme is chosen to reflect
the exponent so that e.g. GM0 corresponds to j / ðDUÞ0 and
GM2 corresponds to j / ðDUÞ2. The GM3 scheme is based on the
Held and Larichev (1996) scheme, and is the only scheme to incor-
porate the effect of topography, albeit in an ad hoc manner. The
GM4 scheme is essentially the parameterization of Visbeck et al.
(1997) applied in the two-layer QG setting. For all schemes we
implement cutoffs so that values of j less than 50 m2/s are set to
50 m2/s, and values greater than 2000 m2/s are set to 2000 m2/s;
this is qualitatively consistent with typical implementations in
ocean general circulation models.

3.2. Stochastic superparameterization

Stochastic superparameterization (SP) has been formulated for
two-layer QG dynamics and tested in eddy-permitting scenarios
by Grooms and Majda (2013, 2014). This section reviews the for-
mulation of stochastic SP and discusses its properties.

3.2.1. Coarse grid model
The coarse model equations in stochastic SP take the form

@tq1 þ J½w1; q1 þ by& ¼ 'r ( u01q01
! "

' 2
q0H

@ysðyÞ þ m2r4w1 ð11Þ

@tq2 þ J½w2; q2 þ by& ¼ 'r ( u02q02
! "

' 2f 0

H
J½w2; hb& ' rr2w2

þ m2r4w2 ð12Þ

where the eddy PV flux divergence is further decomposed as

r ( u0iq
0
i

! "
¼ ð'1Þi 2f 2

0

g0H
r ( u0iðw

0
1 ' w02Þ

# $
þ ð@2

x ' @
2
yÞu0iv 0i

þ @xy ðv 0iÞ
2 ' ðu0iÞ

2
# $

ð13Þ

The overbar ð(Þ here denotes a formal projection onto large scales,
and the prime 0 denotes small-scale eddy variables. This is an exact
re-writing of the standard eddy PV flux divergence that is obtained
from a Reynolds decomposition, separating it into the flux of that
part of PV corresponding to the interface height (e.g. u01ðw

0
2 ' w01Þ)

and the curl of the divergence of the Reynolds stress (Marshall
et al., 2012; Grooms and Majda, 2013; Grooms and Majda, 2014).
The former component is conceptually related to heat flux, and will
be referred to as such hereafter despite the loose physical connec-
tion. The GM parameterizations of the previous section can be writ-
ten in this form by setting the Reynolds stress terms to zero

(u0iv 0i ¼ 0; ðu0iÞ
2 ¼ ðv 0iÞ

2) and making the heat flux downgradient

u01ðw
0
2 ' w01Þ ¼ 'jrðw2 ' w1Þ. The importance of the Reynolds

stresses in addition to the heat flux was emphasized in the asymp-
totic analysis of Grooms et al. (2012).

3.2.2. Stochastic subgridscale model
Stochastic SP obtains the components of the eddy PV flux diver-

gence from local models of the eddy dynamics. Specifically, the
unresolved eddies at each location on the coarse-grid domain are
modeled by QG dynamics on local, pseudo-physical subdomains
embedded into the coarse grid; the dynamics on each subdomain
is independent of the dynamics on all the other subdomains. This
multiscale strategy (SP) has been used to parameterize ocean
mixed-layer convection by Campin et al. (2011) and a variety of
atmospheric phenomena (reviewed by Majda and Grooms, 2014).
The SP approach is also related to the finding by Pavan and Held
(1996) that the PV flux diagnosed from idealized channel simula-
tions can sometimes be well approximated by the PV flux gener-
ated by doubly-periodic QG simulations.

A major difference between stochastic SP and conventional SP is
that stochastic SP does not make use of simulations of nonlinear
eddy dynamics on local, horizontally periodic subdomains. Instead,
the unresolved eddies at each point of the physical domain are
modeled as homogeneous random functions on infinite subdo-
mains, obeying quasi-linear, stochastic QG equations where damp-
ing and Gaussian additive forcing replace the nonlinear advection
terms. The eddy equations are of the form

@tq01 ¼ F 01 ' Cq01 ' u1 (rq01 ' u01 (rðq1 þ byÞ ' m4r6w01 ð14Þ
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Eddy variables are denoted by 0 to distinguish them from coarse-
model variables. The terms that replace the eddy-eddy nonlinear
advection are F 0i, a spatially-correlated Gaussian white noise, and
C, a positive-definite pseudodifferential operator. Similar stochastic
models of quasigeostrophic turbulence are discussed by DelSole
(2004) and Srinivasan and Young (2012), though not in a multiscale
setting. The PV inversion (Eqs. (3) and (4)) is the same as for the
coarse-grid equations, except that the barotropic deformation
radius is approximated as infinite in the eddy equations for conve-
nience (infinite barotropic deformation radius corresponds to the
limit g !1).

Although the equations are written using the same coordinates
(t; x, and y) as the coarse-grid equations, each coarse-grid location
actually has its own eddy microcosm where the eddies evolve on
distinct space and time coordinates (Majda and Grooms, 2014).
The components of the eddy PV flux are defined as space and time
averages over the eddy subdomains, and because the eddies within
a single subdomain are homogeneous the spatial average is equiv-
alent to the statistical average. From the perspective of the eddy
dynamics the coarse-grid variables are constant. The eddy equa-
tions are then linear in the eddy variables and have constant coef-
ficients, so their solution can be written down in closed form using
Fourier analysis (for details see Grooms and Majda, 2013, 2014). A
key assumption here is that the topography hb has no small-scale
component. Topographic variation on the small scales would
require additional modeling beyond the scope of the present inves-
tigation. We have chosen to use a smoothed large-scale topogra-
phy, as described in Section 2.1, in order to be consistent with
this assumption.

The multiscale formulation is most appropriate for situations
where there is a scale separation between the coarse-grid and sub-
grid scale dynamics. In such situations, multiple-scales asymptot-
ics can be used to motivate multiscale equations coupling the
large- and small-scale dynamics (e.g. Majda, 2007a,b; Grooms
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area-averaged difference between the zonal velocity in the upper
and lower layers, equilibrates to 0:70! 0:003 cm/s.

The height of the layer interface is H=2þ g where
g ¼ ðf 0=g0Þðw2 & w1Þ; note that the area average of g is zero because
of the boundary conditions on PV inversion (Appendix A). The time
average of g is shown in Fig. 1(b). It exhibits large variations up to
!1 km, and has an RMS height of 473 m. The local mean shear
(ju1 & u2j / jrgj) shown in Fig. 1(c) reaches a maximum of approx-
imately 20 cm/s, which implies that the slope of the layer interface
remains mild despite the relatively large amplitude of g. The net
baroclinic shear of 0.7 cm/s is somewhat small compared to the
baroclinicity of the real ACC (see e.g. Firing et al., 2011). It could
be increased by increasing the amplitude of the topography or by
increasing the Ekman drag coefficient r, but the former would take
the model even further from the regime of applicability of the
quasigeostrophic approximation and the latter could result in
unrealistic frictionally-dominated dynamics. The parameter
choices here attempt to make the model as realistic as possible
within the constraints of a two-layer QG channel.

Fig. 1(d) shows the growth rate of local baroclinic instability
computed using the time-mean shear and PV gradient. Regions of
strong growth rate largely coincide with regions of strong shear.
Fig. 1(e) shows the eddy kinetic energy (EKE) based on a time aver-
age, i.e.

EKE ¼ 1
2

X

i

juij2t & jut
i j

2 ð6Þ

where the overbar ð'Þt denotes a time average (the superscript t is
used to distinguish the time average from the division onto large
scales in Section 3.2). Regions of high EKE do not coincide with
regions of strong shear and strong baroclinic instability; rather,
regions of strong EKE tend to lie downstream of such regions. Sig-
nificant movement of eddy energy has also been found by
Grooms et al. (2013) in a QG basin model. This suggests that param-
eterizations that infer an eddy velocity scale from the local shear
will be in error, and that it may be advantageous to develop param-
eterizations that account for large-scale movement of eddy energy
(Eden and Greatbatch, 2008; Marshall and Adcroft, 2010; Grooms
et al., 2012; Grooms and Majda, 2014). None of the parameteriza-
tions tested here incorporate such effects.

Fig. 1(f) shows the variability of the large-scale part of the inter-
face height deviation g. Specifically, g is coarse-grained by cell-
averaging from the eddy-resolving 3072( 385 grid to the coarse-
model 384( 49 grid, and Fig. 1(f) shows the standard deviation
of the time series of the coarse-grained g at each point on the
384( 49 coarse-model grid. The temporal variability of the
large-scale part of g is quite large, with standard deviations in
excess of 200 m. This underscores the strong temporal variability
of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.

3. Deterministic and stochastic parameterizations

3.1. Gent–McWilliams parameterizations

Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
of mesoscale eddy parameterizations in most IPCC-class climate
models (Kuhlbrodt et al., 2012).

In the context of two-layer QG dynamics, the GM parameteriza-
tion becomes extremely simple: subgridscale eddies smooth the

large-scale layer interface height. The interface height is
H=2þ ðf 0=g0Þðw2 & w1Þ, and the large-scale QG dynamics are mod-
eled by

@tq1 þ J½w1; q1 þ by* ¼ 2f 2
0

g0H
r ' jrðw2 & w1Þð Þ & 1

q0H1
@ysxðyÞ

þ m2r4w1 ð7Þ

@tq2 þ J½w2; q2 þ by* ¼ 2f 2
0

g0H
r ' jrðw1 & w2Þð Þ & f 0

H2
J½w2; hb*

& rr2w2 þ m2r4w2 ð8Þ

Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is

1: j ¼ aLdDU

where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 & u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set

2: j ¼ a ðDUÞ2

r

In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ&1 with T ¼ Ld=DU. The result is

3: j ¼ a ðDUÞ3

b2L3
d

As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography

beff ¼ bŷ þ f 0

H
rhb

!!!!

!!!! ð9Þ

Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by

ffiffiffiffiffi
Ri
p

=jf 0j. In the two-layer context we
approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0=H

p

and using j@zuj + 2DU=H, which leads to

1
T
¼ jf 0jffiffiffiffiffi

Ri
p ¼ DU

ffiffiffiffiffiffiffiffi
2f 2

0

g0H

s

: ð10Þ

They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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area-averaged difference between the zonal velocity in the upper
and lower layers, equilibrates to 0:70! 0:003 cm/s.

The height of the layer interface is H=2þ g where
g ¼ ðf 0=g0Þðw2 & w1Þ; note that the area average of g is zero because
of the boundary conditions on PV inversion (Appendix A). The time
average of g is shown in Fig. 1(b). It exhibits large variations up to
!1 km, and has an RMS height of 473 m. The local mean shear
(ju1 & u2j / jrgj) shown in Fig. 1(c) reaches a maximum of approx-
imately 20 cm/s, which implies that the slope of the layer interface
remains mild despite the relatively large amplitude of g. The net
baroclinic shear of 0.7 cm/s is somewhat small compared to the
baroclinicity of the real ACC (see e.g. Firing et al., 2011). It could
be increased by increasing the amplitude of the topography or by
increasing the Ekman drag coefficient r, but the former would take
the model even further from the regime of applicability of the
quasigeostrophic approximation and the latter could result in
unrealistic frictionally-dominated dynamics. The parameter
choices here attempt to make the model as realistic as possible
within the constraints of a two-layer QG channel.

Fig. 1(d) shows the growth rate of local baroclinic instability
computed using the time-mean shear and PV gradient. Regions of
strong growth rate largely coincide with regions of strong shear.
Fig. 1(e) shows the eddy kinetic energy (EKE) based on a time aver-
age, i.e.

EKE ¼ 1
2

X

i

juij2t & jut
i j

2 ð6Þ

where the overbar ð'Þt denotes a time average (the superscript t is
used to distinguish the time average from the division onto large
scales in Section 3.2). Regions of high EKE do not coincide with
regions of strong shear and strong baroclinic instability; rather,
regions of strong EKE tend to lie downstream of such regions. Sig-
nificant movement of eddy energy has also been found by
Grooms et al. (2013) in a QG basin model. This suggests that param-
eterizations that infer an eddy velocity scale from the local shear
will be in error, and that it may be advantageous to develop param-
eterizations that account for large-scale movement of eddy energy
(Eden and Greatbatch, 2008; Marshall and Adcroft, 2010; Grooms
et al., 2012; Grooms and Majda, 2014). None of the parameteriza-
tions tested here incorporate such effects.

Fig. 1(f) shows the variability of the large-scale part of the inter-
face height deviation g. Specifically, g is coarse-grained by cell-
averaging from the eddy-resolving 3072( 385 grid to the coarse-
model 384( 49 grid, and Fig. 1(f) shows the standard deviation
of the time series of the coarse-grained g at each point on the
384( 49 coarse-model grid. The temporal variability of the
large-scale part of g is quite large, with standard deviations in
excess of 200 m. This underscores the strong temporal variability
of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.

3. Deterministic and stochastic parameterizations

3.1. Gent–McWilliams parameterizations

Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
of mesoscale eddy parameterizations in most IPCC-class climate
models (Kuhlbrodt et al., 2012).

In the context of two-layer QG dynamics, the GM parameteriza-
tion becomes extremely simple: subgridscale eddies smooth the

large-scale layer interface height. The interface height is
H=2þ ðf 0=g0Þðw2 & w1Þ, and the large-scale QG dynamics are mod-
eled by

@tq1 þ J½w1; q1 þ by* ¼ 2f 2
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Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is

1: j ¼ aLdDU

where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 & u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set

2: j ¼ a ðDUÞ2

r

In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ&1 with T ¼ Ld=DU. The result is

3: j ¼ a ðDUÞ3

b2L3
d

As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography

beff ¼ bŷ þ f 0
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Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by

ffiffiffiffiffi
Ri
p

=jf 0j. In the two-layer context we
approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0=H
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and using j@zuj + 2DU=H, which leads to
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T
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They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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area-averaged difference between the zonal velocity in the upper
and lower layers, equilibrates to 0:70! 0:003 cm/s.

The height of the layer interface is H=2þ g where
g ¼ ðf 0=g0Þðw2 & w1Þ; note that the area average of g is zero because
of the boundary conditions on PV inversion (Appendix A). The time
average of g is shown in Fig. 1(b). It exhibits large variations up to
!1 km, and has an RMS height of 473 m. The local mean shear
(ju1 & u2j / jrgj) shown in Fig. 1(c) reaches a maximum of approx-
imately 20 cm/s, which implies that the slope of the layer interface
remains mild despite the relatively large amplitude of g. The net
baroclinic shear of 0.7 cm/s is somewhat small compared to the
baroclinicity of the real ACC (see e.g. Firing et al., 2011). It could
be increased by increasing the amplitude of the topography or by
increasing the Ekman drag coefficient r, but the former would take
the model even further from the regime of applicability of the
quasigeostrophic approximation and the latter could result in
unrealistic frictionally-dominated dynamics. The parameter
choices here attempt to make the model as realistic as possible
within the constraints of a two-layer QG channel.

Fig. 1(d) shows the growth rate of local baroclinic instability
computed using the time-mean shear and PV gradient. Regions of
strong growth rate largely coincide with regions of strong shear.
Fig. 1(e) shows the eddy kinetic energy (EKE) based on a time aver-
age, i.e.

EKE ¼ 1
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where the overbar ð'Þt denotes a time average (the superscript t is
used to distinguish the time average from the division onto large
scales in Section 3.2). Regions of high EKE do not coincide with
regions of strong shear and strong baroclinic instability; rather,
regions of strong EKE tend to lie downstream of such regions. Sig-
nificant movement of eddy energy has also been found by
Grooms et al. (2013) in a QG basin model. This suggests that param-
eterizations that infer an eddy velocity scale from the local shear
will be in error, and that it may be advantageous to develop param-
eterizations that account for large-scale movement of eddy energy
(Eden and Greatbatch, 2008; Marshall and Adcroft, 2010; Grooms
et al., 2012; Grooms and Majda, 2014). None of the parameteriza-
tions tested here incorporate such effects.

Fig. 1(f) shows the variability of the large-scale part of the inter-
face height deviation g. Specifically, g is coarse-grained by cell-
averaging from the eddy-resolving 3072( 385 grid to the coarse-
model 384( 49 grid, and Fig. 1(f) shows the standard deviation
of the time series of the coarse-grained g at each point on the
384( 49 coarse-model grid. The temporal variability of the
large-scale part of g is quite large, with standard deviations in
excess of 200 m. This underscores the strong temporal variability
of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.

3. Deterministic and stochastic parameterizations

3.1. Gent–McWilliams parameterizations

Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
of mesoscale eddy parameterizations in most IPCC-class climate
models (Kuhlbrodt et al., 2012).

In the context of two-layer QG dynamics, the GM parameteriza-
tion becomes extremely simple: subgridscale eddies smooth the

large-scale layer interface height. The interface height is
H=2þ ðf 0=g0Þðw2 & w1Þ, and the large-scale QG dynamics are mod-
eled by
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Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is

1: j ¼ aLdDU

where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 & u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set

2: j ¼ a ðDUÞ2

r

In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ&1 with T ¼ Ld=DU. The result is

3: j ¼ a ðDUÞ3

b2L3
d

As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography

beff ¼ bŷ þ f 0
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Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by

ffiffiffiffiffi
Ri
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=jf 0j. In the two-layer context we
approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N +
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and using j@zuj + 2DU=H, which leads to
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They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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The height of the layer interface is H=2þ g where
g ¼ ðf 0=g0Þðw2 & w1Þ; note that the area average of g is zero because
of the boundary conditions on PV inversion (Appendix A). The time
average of g is shown in Fig. 1(b). It exhibits large variations up to
!1 km, and has an RMS height of 473 m. The local mean shear
(ju1 & u2j / jrgj) shown in Fig. 1(c) reaches a maximum of approx-
imately 20 cm/s, which implies that the slope of the layer interface
remains mild despite the relatively large amplitude of g. The net
baroclinic shear of 0.7 cm/s is somewhat small compared to the
baroclinicity of the real ACC (see e.g. Firing et al., 2011). It could
be increased by increasing the amplitude of the topography or by
increasing the Ekman drag coefficient r, but the former would take
the model even further from the regime of applicability of the
quasigeostrophic approximation and the latter could result in
unrealistic frictionally-dominated dynamics. The parameter
choices here attempt to make the model as realistic as possible
within the constraints of a two-layer QG channel.

Fig. 1(d) shows the growth rate of local baroclinic instability
computed using the time-mean shear and PV gradient. Regions of
strong growth rate largely coincide with regions of strong shear.
Fig. 1(e) shows the eddy kinetic energy (EKE) based on a time aver-
age, i.e.
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where the overbar ð'Þt denotes a time average (the superscript t is
used to distinguish the time average from the division onto large
scales in Section 3.2). Regions of high EKE do not coincide with
regions of strong shear and strong baroclinic instability; rather,
regions of strong EKE tend to lie downstream of such regions. Sig-
nificant movement of eddy energy has also been found by
Grooms et al. (2013) in a QG basin model. This suggests that param-
eterizations that infer an eddy velocity scale from the local shear
will be in error, and that it may be advantageous to develop param-
eterizations that account for large-scale movement of eddy energy
(Eden and Greatbatch, 2008; Marshall and Adcroft, 2010; Grooms
et al., 2012; Grooms and Majda, 2014). None of the parameteriza-
tions tested here incorporate such effects.

Fig. 1(f) shows the variability of the large-scale part of the inter-
face height deviation g. Specifically, g is coarse-grained by cell-
averaging from the eddy-resolving 3072( 385 grid to the coarse-
model 384( 49 grid, and Fig. 1(f) shows the standard deviation
of the time series of the coarse-grained g at each point on the
384( 49 coarse-model grid. The temporal variability of the
large-scale part of g is quite large, with standard deviations in
excess of 200 m. This underscores the strong temporal variability
of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.

3. Deterministic and stochastic parameterizations

3.1. Gent–McWilliams parameterizations

Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
of mesoscale eddy parameterizations in most IPCC-class climate
models (Kuhlbrodt et al., 2012).

In the context of two-layer QG dynamics, the GM parameteriza-
tion becomes extremely simple: subgridscale eddies smooth the

large-scale layer interface height. The interface height is
H=2þ ðf 0=g0Þðw2 & w1Þ, and the large-scale QG dynamics are mod-
eled by

@tq1 þ J½w1; q1 þ by* ¼ 2f 2
0

g0H
r ' jrðw2 & w1Þð Þ & 1

q0H1
@ysxðyÞ

þ m2r4w1 ð7Þ

@tq2 þ J½w2; q2 þ by* ¼ 2f 2
0

g0H
r ' jrðw1 & w2Þð Þ & f 0

H2
J½w2; hb*

& rr2w2 þ m2r4w2 ð8Þ

Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is

1: j ¼ aLdDU

where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 & u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set

2: j ¼ a ðDUÞ2

r

In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ&1 with T ¼ Ld=DU. The result is

3: j ¼ a ðDUÞ3

b2L3
d

As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography

beff ¼ bŷ þ f 0

H
rhb

!!!!

!!!! ð9Þ

Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by

ffiffiffiffiffi
Ri
p

=jf 0j. In the two-layer context we
approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0=H

p

and using j@zuj + 2DU=H, which leads to

1
T
¼ jf 0jffiffiffiffiffi

Ri
p ¼ DU

ffiffiffiffiffiffiffiffi
2f 2

0

g0H

s

: ð10Þ

They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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excess of 200 m. This underscores the strong temporal variability
of the large-scale part of g, which is particularly difficult for coarse
models to reproduce. It also suggests that the time-mean EKE
shown in Fig. 1(f) is not entirely due to subgrid scales.

3. Deterministic and stochastic parameterizations

3.1. Gent–McWilliams parameterizations

Mesoscale eddies and their important effects are not resolved
by coarse models, and need to be parameterized. There are many
approaches to parameterizing mesoscale eddies; we consider five
variations on the popular GM parameterization (Gent and
McWilliams, 1990), since the GM parameterization forms the basis
of mesoscale eddy parameterizations in most IPCC-class climate
models (Kuhlbrodt et al., 2012).

In the context of two-layer QG dynamics, the GM parameteriza-
tion becomes extremely simple: subgridscale eddies smooth the
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Note that the coarse model equations use a Laplacian vorticity dif-
fusion instead of biharmonic, consistent with standard practice in
coarse-resolution ocean modeling.

There are many ways to specify the quasi-Stokes diffusivity
coefficient j: we test five parameterizations of j, based on
schemes from the literature. The first is the simplest, namely

0: j is a tunable constant; independent of space and time:

Since j has dimensions of length squared over time, one might
make a mixing-length approximation by setting j / VL for some
velocity scale V. The simplest scheme of this form is

1: j ¼ aLdDU

where Ld ¼ 12:25 km is the deformation radius, DU ¼ ju1 & u2j is
the magnitude of the velocity jump across the interface, and a is a
tunable constant. This scheme is loosely similar to a parameteriza-
tion proposed by Stone (1972).

Scheme 1 generates a j that is linear in DU, and one can
construct schemes that are quadratic and cubic in DU. For the
quadratic scheme we set

2: j ¼ a ðDUÞ2
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In our setting with constant r this scheme is essentially just a qua-
dratic in DU, but the dependence on r and quadratic dependence on
DU are similar to the parameterization of Cessi (2008).

Held and Larichev (1996) proposed a parameterization for j
based on the phenomenology of doubly-periodic simulations of
two-layer quasigeostrophic turbulence on a b-plane. Their method
uses a length scale L / ðbTÞ&1 with T ¼ Ld=DU. The result is

3: j ¼ a ðDUÞ3

b2L3
d

As suggested by Held and Larichev (1996), and as implemented in
the coarse-resolution MOM3.0 ocean model (Pacanowski and
Griffies, 2000), we replace b by an ‘effective’ value that incorporates
the effect of topography

beff ¼ bŷ þ f 0
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Visbeck et al. (1997), inspired partly by Green (1970), proposed
a scheme for j based on the dimensional form j / L2=T where the
time scale T is given by
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approximate the Richardson number Ri ¼ N2=j@zuj2 using the the
two-layer approximation to the buoyancy frequency N +
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They proposed setting the length scale L to be the ‘width of the
baroclinic zone’ Lz, defined as follows: In locations where 1=T is less
than 10% of its maximum on the domain, Lz is set equal to the grid
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Effective SP diffusivity
One can compute an effective diffusivity 
for SP, by restricting to cases where eddy 
angle results in down-gradient fluxes:

are allowed to evolve while the coarse-grid variables are held fixed,
denoted !!1. The effects of these parameters and some qualitative
properties of stochastic SP are discussed in the next subsection.

3.2.3. Some qualitative properties of stochastic SP
Consider the response of the stochastic eddy model to the

imposition of a zonal baroclinic shear, ignoring the effects of
topography and b, and let the eddies be functions only of the hor-
izontal coordinate n ¼ x cosðhÞ þ y sinðhÞ. The eddy equations take
the form

@tq01 ¼ F 01 ! Cq01 ! U cosðhÞ@nq01 !
4U cosðhÞf 2

0

g0H
@nw

0
1 ! m4@

6
nw
0
1 ð18Þ

@tq02 ¼ F 02 ! Cq02 þ U cosðhÞ@nq02 þ
4U cosðhÞf 2

0

g0H
@nw

0
2 ! r@2

nw
0
2 ! m@6

nw
0
2

ð19Þ

The equations are linear with an additional damping and forcing,
and as usual for linear dynamics there will be some critical value
of U cosðhÞ dependent on the damping. For U cosðhÞ larger than
the critical value the solutions will grow exponentially without sat-
uration; for smaller values the solutions will decay to some nonzero
equilibrium due to the additional forcing term. In neither case is the
long-term behavior physically meaningful because it is unrealistic
to keep the large-scale shear fixed for an infinite amount of time.
The range of stable shear is largely controlled by the constant c0:
for large c0 the eddy dynamics will be linearly stable for a wide
range of shear.

The components of the eddy PV flux are computed from the
behavior of the eddy equations over a fixed amount of time of
length !!1. Since a spatial average is equivalent to an integral over
the wavenumbers, all wavenumbers contribute to the eddy PV flux.
However, for sufficiently long averaging times the most unstable
modes will dominate, which makes it similar to parameterizations
that compute the subgridscale flux based on the most unstable lin-
ear modes (e.g. Killworth, 1997; Eden, 2011, 2012), a major differ-
ence being that in stochastic SP all scales in a randomly-chosen
direction are allowed to contribute, not just the most unstable
mode.

Consider the behavior of the eddy heat flux u01ðw
0
2 ! w01Þ. Since the

velocity is orthogonal to the gradient of the streamfunction, the
eddies can only flux orthogonal to h : u0i ¼ !@yw

0
i ¼ ! sinðhÞ@nw

0
i and

v 0i ¼ @xw
0
i ¼ cosðhÞ@nw

0
i. Since h is sampled from a uniform distribu-

tion the eddy flux almost always has a component across the
large-scale gradient. This is a marked contrast with the GM param-
eterizations described above, which model the eddy flux as being
always purely downgradient:!jrðw2 ! w1Þ. (Note that it is possible
to construct anisotropic GM parameterizations that flux across the
mean gradient; see Smith and Gent, 2004).

It is possible to diagnose an ‘effective’ j from stochastic SP by
considering the heat flux generated by the stochastic eddy model
in response to a local mean shear. Although, as noted above, sto-
chastic SP generates fluxes across the mean gradient, we define
the effective j for the case where h is parallel to the shear (orthog-
onal to the gradient rðw2 ! w1Þ). In this case the stochastic SP
model generates no cross-gradient flux. The effective j is given by

jeff ¼ !
v 01ðw

0
2 ! w01Þ
2U

ð20Þ

It is a nonlinear function of the local shear 2U, which equals DU in
the notation of the foregoing section. The eddy damping constant c0
(which controls the amplitude of C) sets the range of DU that are
linearly stable. For values of the shear that are linearly stable the
effective j is small; as the shear increases the eddies become unsta-
ble and the effective j rises sharply. The sharpness of the rise is

controlled by !!1, the length of time over which the eddies are
allowed to respond to the fixed shear: the rise is sharper for longer
averaging times.

These properties are evident in Fig. 2, which shows the effective
j generated by stochastic SP as a function of DU for two averaging
times: short, !!1 ¼ 14:2 days, and long, !!1 ¼ 70:9 days. The value
of c0 for the short averaging time is !=2, and for the long time is
6!=7. These particular choices are discussed further in the next
subsection. Fig. 2 also shows j for the first four GM parameteriza-
tions in Section 3.1 for comparison; the GM3 parameterization
uses b ¼ 1:5& 10!11 s!1 and no topography. For the short averag-
ing time, and over the range of shear shown, the effective j is
approximately linear, similar to the GM1 scheme. For the long
averaging time the effective j increases sharply with shear, similar
to the GM3 scheme. The onset of the sharp rise could be moved to
larger shear by increasing c0, leading to a wider range of linearly
stable shear. Note that stochastic SP does not produce negative j
in this setting, although stochastic SP can generate negative j in
the presence of b and topographic slopes. The cutoff shown in
the behavior of the long-average SP in Fig. 2 is similar to the upper
cutoff of 2000 m2/s imposed on the GM schemes: values of DU
greater than 5:41 cm/s are scaled back to 5:41 cm/s before being
used to calculate the eddy PV flux (discussed more below). Because
stochastic SP does not generate j directly it is not possible to con-
figure it to have a cutoff of exactly 2000 m2/s like the GM schemes.

Stochastic SP is set up so that it produces a heat flux only in
response to large-scale shear or PV gradients; in the absence of
these the eddies remain at their stable initial condition, which by
construction generates no heat flux. In contrast, stochastic SP gen-
erates nonzero Reynolds stresses regardless of the presence or
absence of large-scale shear; large-scale conditions only alter the
character of the Reynolds stress. The eddy initial condition is con-
structed such that the Reynolds stresses average to zero when
averaged over h; this is because an isotropic spectrum by definition

has ðu0Þ2 ¼ ðv 0Þ2 and u0v 0 ¼ 0. But for a single value of h the
Reynolds stress terms are quite large. For the eddy initial condition

the terms ðv 0iÞ
2 ! ðu0iÞ

2 and u0iv 0i, which appear in the mean Eq. (13),
are proportional to cosð2hÞ and sinð2hÞ, respectively. These are

Fig. 2. Quasi-Stokes diffusivity j and effective diffusivity (20) as functions of the
baroclinic shear DU for GM1 (solid), GM2 (dashed), GM3 (dots), SP-short (circles),
and SP-long (x). Values of a for the GM models are the optimally tuned values listed
in Section 4.1; values of A for stochastic SP are the optimally tuned-values for SP-
short and SP-long listed in Section 4.1. Units of DU are m/s, and units of j are m2/s.
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are allowed to evolve while the coarse-grid variables are held fixed,
denoted !!1. The effects of these parameters and some qualitative
properties of stochastic SP are discussed in the next subsection.

3.2.3. Some qualitative properties of stochastic SP
Consider the response of the stochastic eddy model to the

imposition of a zonal baroclinic shear, ignoring the effects of
topography and b, and let the eddies be functions only of the hor-
izontal coordinate n ¼ x cosðhÞ þ y sinðhÞ. The eddy equations take
the form
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The equations are linear with an additional damping and forcing,
and as usual for linear dynamics there will be some critical value
of U cosðhÞ dependent on the damping. For U cosðhÞ larger than
the critical value the solutions will grow exponentially without sat-
uration; for smaller values the solutions will decay to some nonzero
equilibrium due to the additional forcing term. In neither case is the
long-term behavior physically meaningful because it is unrealistic
to keep the large-scale shear fixed for an infinite amount of time.
The range of stable shear is largely controlled by the constant c0:
for large c0 the eddy dynamics will be linearly stable for a wide
range of shear.

The components of the eddy PV flux are computed from the
behavior of the eddy equations over a fixed amount of time of
length !!1. Since a spatial average is equivalent to an integral over
the wavenumbers, all wavenumbers contribute to the eddy PV flux.
However, for sufficiently long averaging times the most unstable
modes will dominate, which makes it similar to parameterizations
that compute the subgridscale flux based on the most unstable lin-
ear modes (e.g. Killworth, 1997; Eden, 2011, 2012), a major differ-
ence being that in stochastic SP all scales in a randomly-chosen
direction are allowed to contribute, not just the most unstable
mode.

Consider the behavior of the eddy heat flux u01ðw
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i. Since h is sampled from a uniform distribu-

tion the eddy flux almost always has a component across the
large-scale gradient. This is a marked contrast with the GM param-
eterizations described above, which model the eddy flux as being
always purely downgradient:!jrðw2 ! w1Þ. (Note that it is possible
to construct anisotropic GM parameterizations that flux across the
mean gradient; see Smith and Gent, 2004).

It is possible to diagnose an ‘effective’ j from stochastic SP by
considering the heat flux generated by the stochastic eddy model
in response to a local mean shear. Although, as noted above, sto-
chastic SP generates fluxes across the mean gradient, we define
the effective j for the case where h is parallel to the shear (orthog-
onal to the gradient rðw2 ! w1Þ). In this case the stochastic SP
model generates no cross-gradient flux. The effective j is given by

jeff ¼ !
v 01ðw

0
2 ! w01Þ
2U

ð20Þ

It is a nonlinear function of the local shear 2U, which equals DU in
the notation of the foregoing section. The eddy damping constant c0
(which controls the amplitude of C) sets the range of DU that are
linearly stable. For values of the shear that are linearly stable the
effective j is small; as the shear increases the eddies become unsta-
ble and the effective j rises sharply. The sharpness of the rise is

controlled by !!1, the length of time over which the eddies are
allowed to respond to the fixed shear: the rise is sharper for longer
averaging times.

These properties are evident in Fig. 2, which shows the effective
j generated by stochastic SP as a function of DU for two averaging
times: short, !!1 ¼ 14:2 days, and long, !!1 ¼ 70:9 days. The value
of c0 for the short averaging time is !=2, and for the long time is
6!=7. These particular choices are discussed further in the next
subsection. Fig. 2 also shows j for the first four GM parameteriza-
tions in Section 3.1 for comparison; the GM3 parameterization
uses b ¼ 1:5& 10!11 s!1 and no topography. For the short averag-
ing time, and over the range of shear shown, the effective j is
approximately linear, similar to the GM1 scheme. For the long
averaging time the effective j increases sharply with shear, similar
to the GM3 scheme. The onset of the sharp rise could be moved to
larger shear by increasing c0, leading to a wider range of linearly
stable shear. Note that stochastic SP does not produce negative j
in this setting, although stochastic SP can generate negative j in
the presence of b and topographic slopes. The cutoff shown in
the behavior of the long-average SP in Fig. 2 is similar to the upper
cutoff of 2000 m2/s imposed on the GM schemes: values of DU
greater than 5:41 cm/s are scaled back to 5:41 cm/s before being
used to calculate the eddy PV flux (discussed more below). Because
stochastic SP does not generate j directly it is not possible to con-
figure it to have a cutoff of exactly 2000 m2/s like the GM schemes.

Stochastic SP is set up so that it produces a heat flux only in
response to large-scale shear or PV gradients; in the absence of
these the eddies remain at their stable initial condition, which by
construction generates no heat flux. In contrast, stochastic SP gen-
erates nonzero Reynolds stresses regardless of the presence or
absence of large-scale shear; large-scale conditions only alter the
character of the Reynolds stress. The eddy initial condition is con-
structed such that the Reynolds stresses average to zero when
averaged over h; this is because an isotropic spectrum by definition

has ðu0Þ2 ¼ ðv 0Þ2 and u0v 0 ¼ 0. But for a single value of h the
Reynolds stress terms are quite large. For the eddy initial condition

the terms ðv 0iÞ
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2 and u0iv 0i, which appear in the mean Eq. (13),
are proportional to cosð2hÞ and sinð2hÞ, respectively. These are

Fig. 2. Quasi-Stokes diffusivity j and effective diffusivity (20) as functions of the
baroclinic shear DU for GM1 (solid), GM2 (dashed), GM3 (dots), SP-short (circles),
and SP-long (x). Values of a for the GM models are the optimally tuned values listed
in Section 4.1; values of A for stochastic SP are the optimally tuned-values for SP-
short and SP-long listed in Section 4.1. Units of DU are m/s, and units of j are m2/s.
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One can then compare 
all flavors of GM with SP:
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How do we measure performance of the coarse models?

X The barotropic transport in all models is comparable and too high by
⇡ 25%; due to under-resolution of topographic form stress.

X All models are tuned to have correct area- and time-averaged zonal
baroclinic shear.

We look at RMS error in the time-mean layer interface height
(pattern correlations are extremely high for all models)

We look at the local temporal variability of the layer interface height
I Area-averaged temporal standard deviation of the interface height �
I RMS error in �
I Pattern correlation in �
I Relative entropy for climatological distribution of interface height

Relative entropy for climatological distribution of interface height (see
next slide)

31 / 39

Metric for comparison



We tested 8 configurations of stochastic SP

Short and long eddy evolution times, which also have di↵erent �0.

Reynolds stresses included or ignored in large-scale model

Large-scale vorticity gradient, �, and topographic gradient included or
ignored in eddy equations

34 / 39

Flavors of SP



GM4 (best) results

(a) y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1000

2000

−200

0

200

(b) y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1000

2000

0

10

20

x

(c) y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1000

2000

0

500

1000

Best GM scheme (GM4): (a) time-mean interface error, (b) �/�
M

, (c)
relative entropy.

37 / 39

Time-mean interface height

Normalized STD

Relative entropy
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SP ‘short’ (best) results



Summary of Results

All the models have too little
variability

Models with more-accurate
time-mean typically have
less-accurate variability

Of the GM models GM3 had
best mean and worst variability;
GM0 had worst mean and best
variability; GM4 had best
relative entropy

SP models with Reynolds
stresses had much better
(higher) variability

SP models with long average
had better mean but worse
variability compared to short
average

Best SP models have
comparable mean to best GM
model, but better variability
which leads to best overall
relative entropy/climate fidelity.
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Summary of results



Future directions

• In a nutshell, SP is GM + backscatter!

• SP can be improved by including TKE transport equation 
to set local energies!

• Implementation in PE model with high vertical resolution 
could proceed with projection of eddy model onto a few 
vertical modes



the coarse models represent the form stress to within 98% accu-
racy, but the error is enough to change the net transport by nearly
25% due to the large cancellation with wind stress input.

This difficulty motivated the use of equal layers: while it might be
more realistic to use a thicker lower layer, doing so magnifies the
errors in the coarse-model transport. Similarly, this difficulty partly
motivated the use of relatively fine (though still non-eddying)
resolution: the barotropic transport degrades even further at
coarser resolutions making the model dynamics less and less
accurate.

4.3. Deterministic parameterizations

The domain-averaged measures of skill for the deterministic
parameterizations are reported in Table 2. The first column shows
the RMS error in the time-mean interface height; there is a clear
trend of improved performance as j becomes a steeper function
of the local shear. For example, the GM0 scheme has j / ðDUÞ0

and has the largest RMS error for the time mean, whereas the
GM3 scheme has j / ðDUÞ3 and has the smallest RMS error for
the time mean.

The second through fifth columns show different measures of
skill for the coarse-model variability: the RMS of r and the RMS
errors in r, the pattern correlation of r2, and the area-averaged
dispersion component of the relative entropy, respectively. In con-
trast to the behavior of the mean, there is a clear trend of decreased
accuracy in representing the variability as j becomes a steeper
function of the local shear. In the GM4 scheme, based on Visbeck
et al. (1997), j is a nonlocal function of the large-scale shear, and
exhibits poor skill in the mean, but good skill in the variability: it
has the best dispersion component of relative entropy, and is sec-
ond only to GM0 for RMS errors in r and pattern correlation of r2.
There is thus a trade-off between accuracy in the mean and accu-
racy in the variability where the model with the best mean (GM3)
has the worst variability and the models with the best variability
(GM0 and GM4) have the worst mean.

The sixth column shows the area-averaged relative entropy,
which is essentially a weighted combination of the errors in the
mean and variance. In every case the relative entropy is dominated
by the signal, meaning that errors in the mean are worse than
errors in the variance. Furthermore, the relative entropy is
dominated by the contributions from a few locations; for example
the median relative entropy for the GM4 scheme is only 8% of its
mean.

Since the errors in the mean dominate those in the variability it
might be expected that the scheme with the best mean (GM3)
would have the best relative entropy. But the scheme with the best
relative entropy is actually the GM4 scheme, which has moderate
errors in both the mean and the variability; the GM3 scheme has
the second-best relative entropy. The GM4 scheme has by far the
best overall relative entropy of the GM schemes. Since it has a rel-
atively poor time-mean structure, this suggests that the locations
where the mean is in error have large temporal variability both
in the GM4 scheme and in the eddy-resolving simulation.

Fig. 3 shows the spatial structure of the error measures for the
GM4 scheme, which has the best overall relative entropy. The
mean bias gt # gt

M is shown in Fig. 3(a), the ratio r=rM is shown
in Fig. 3(b), and the relative entropy is shown in Fig. 3(c). There
is no clear correlation between mean bias and relative entropy;
instead, regions of high relative entropy are correlated with regions
where the model variability is too low. The model variance is
significantly smaller than the true variance over most of the
domain; in fact, the model variance is only larger than the true
variance over 7% of the domain. Comparison with Fig. 1 suggests
that there does not appear to be a simple explanation for the errors
in terms of the local topographic gradient or the local mean shear.

4.4. Stochastic superparameterization

Table 3 shows the domain-averaged measures of skill for the
stochastic SP simulations. The columns are the same as in Table 2.
As with the GM parameterizations the configuration where the
effective j increases sharply with shear (SP-long) has a better
time-mean layer interface structure than the configuration where
j increases less sharply (SP-short). The range of accuracy of the
mean, as measured by the RMS error, is similar to the range of
behavior of the GM models in the previous section with the best
GM model comparable to the best SP model and the worst GM
model comparable to the worst SP model.

The range of accuracy of the variability for the stochastic SP
schemes is also similar to the range of accuracy for the GM models
of the previous section, although the best SP models have better
variability than the best GM models. In particular, the SP-short
configurations that include Reynolds stress feedbacks to the coarse
grid equations have very accurate variability as measured by the
RMS errors in r (29 and 31 meters), pattern correlations of r2

(0.80 and 0.81), and relative entropy dispersion (4 for both). For
comparison, the best RMS error and pattern correlation for the
GM models is 33 meters and 0.80 (GM0), and the best relative
entropy dispersion is 18 (GM4).

As in the GM schemes, the total relative entropy for stochastic
SP is dominated by the signal – the squared error in the mean
weighted by the variance. The relative entropy is also dominated
by the contributions from a few localized regions: Fig. 4(c) shows
the spatial structure of the relative entropy for SP-short-RS-f which
is dominated by contributions from the top left (north side, just
downstream of Drake Passage), and bottom right (within Drake
Passage), and along the lower boundary (see Fig. 1(a) for the struc-
ture of the underlying topography). The median relative entropy
for SP-short-RS-f is 12 while its mean is 62 and Fig. 4(c) shows that
it rises as high as 1000, further indicating that the average relative
entropy reflects the contribution from just a few locations.
Although the relative entropy is dominated by the signal, the con-
figurations with the smallest RMS error in the mean (SP-long-RS)
do not have the best relative entropy. Instead, as with the GM
schemes, configurations with moderate mean accuracy and good
variability (SP-short-RS) have the best overall relative entropy.

For a given averaging time (SP-short or SP-long) the configura-
tions with Reynolds stresses perform better than those without.
For configurations with Reynolds stresses, the SP configurations
with short averaging time have better overall performance than
the SP configurations with the long averaging time because of
the improved variability. In contrast, for SP configurations without
Reynolds stresses the best results are obtained using the long aver-
aging time, primarily due to improvements in the structure of the
mean. The SP-⁄-b configurations, where the eddies feel the full
coarse-grid PV gradient including topography, b, and the relative
vorticity gradient, typically have better variability than the SP-⁄-f
configurations where the eddies only feel the mean shear. At short

Table 2
Domain-averaged measures of skill for the GM parameterizations. The RMS of r and
the RMS errors are measured in meters, the remaining columns are dimensionless.
The RMS of r for the reference simulation is 58 m.

RMSE of g RMS of r RMSE of r PC of r2 Dispersion Rel.
Ent.

GM0 131 44 33 0.80 28 995
GM1 105 33 37 0.77 63 1080
GM2 95 31 37 0.77 51 719
GM3 78 26 40 0.69 95 617
GM4 112 36 35 0.77 18 362
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averaging times the SP-⁄-b configurations have worse accuracy on
the mean, but there is no difference at long averaging times.

In summary, there is a trade-off between accuracy in the mean
and accuracy in the variability, as with the GM schemes. SP-long,
and SP-⁄-f have better accuracy in the mean than SP-short, and
SP-⁄-b, but the latter have better variability. The best overall
accuracy, as measured by the relative entropy, is achieved by
models with moderate accuracy in the mean and good accuracy
in the variability: SP-short-RS-f and SP-short-RS-b.

Fig. 4 shows the spatial structure of the error measures for the
SP-short-RS-f scheme, which has the best overall relative entropy.
The mean bias !gt ! !gt

M is shown in Fig. 4(a), the ratio r=rM is shown
in Fig. 4(b), and the relative entropy is shown in Fig. 4(c). The results
are qualitatively similar to the results for the GM4 scheme in Fig. 3,
the primary difference being that the variability of the stochastic
method is increased, leading to decreased relative entropy. Never-
theless, the variability is still too small over most of the domain:
the model variability is too large on only 8% of the domain.

(a)

(b)

(c)

Fig. 3. Skill of the GM4 scheme: (a) time-mean bias in meters (color scale saturates at 300 m), (b) r=rM , and (c) relative entropy. Axes are labeled in units of kilometers.

Table 3
Domain-averaged measures of skill for stochastic SP. The RMS of r and the RMS errors are measured in meters, the remaining columns are dimensionless. The RMS of r for the
reference simulation is 58 m.

RMSE of g RMS of r RMSE of r PC of r2 Dispersion Rel. Ent.

SP-short NRS-f 116 33 37 0.78 64 1417
NRS-b 126 39 33 0.81 25 731
RS-f 104 39 31 0.80 4 62
RS-b 115 42 29 0.81 4 75

SP-long NRS-f 87 28 39 0.76 39 455
NRS-b 87 30 37 0.78 27 382
RS-f 82 32 36 0.74 19 225
RS-b 82 33 35 0.77 22 229

(a)

(b)

(c)

Fig. 4. Skill of the SP-short-RS-f scheme: (a) time-mean bias in meters (color scale saturates at 300 m), (b) r=rM , and (c) relative entropy. Axes are labeled in units of
kilometers.
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