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Superparametrization = multiscale parametrization

+ Superparametrization (SP) developed for tropical moist
convection: Randall (CSU), Khairoutdinov (Stonybrook),
Arakawa (UCLA), Grabowski (NCAR) — great results there.

- IDEA: Instead of trying to parameterize unresolved
dynamics, compute them on each grid cell

- SP acts like a stochastic parameterization because
feedback to large-scale is chaotic, not a deterministic
function of large scales

- Here, we reduce subgrid model to a stochastic model, and
use cheap methods to obtain fluxes to large scale.



Example ocean application: Deep convection

Resolved Super-parameterization
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Stochastic SP for 2-layer QG

The setting is quasigeostrophic (QG) dynamics in a two-layer model with
equal depths, on a #-plane and forced by imposed baroclinic shear
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Stochastic SP for 2-layer QG

Reynolds averaging™ of governing equations gives

0eq; = =V - (U;q)) + (1Y 0xq; — N;Oxt); — 6jpr V24, — vV°g,

0:q; = —V - (Uq)) — (Wj — (—1YR) - Vqj — U} - VQ; — 0jorV¢; — vV°q;

where [1; = ké — k3(—1Y and Q; = MN;y + q; and:

V- (ujgy) = V- (ujg;) + V- (ujq;)
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* a low-pass filter is more appropriate but gets to the same place eventually.



Point approximation for eddy equation

Apply ‘point approximation’ to get eddy equations for SP:

1. Eddy variables depend on new coordinates 7, X, y.
2. Overbar is re-interpreted as an average over the new coordinates.

3. Large-scale variables have no dependence on the new coordinates.

0:q = —V - (uig)) — (W — (~1Y%) - Vq, — u} - VQ; — 6,prV¢; — vVe¢/

\

0.q) = —V - (Uiq})) — (U; — (—1YR) - Vq} — U} - VQ; — §jorV?; — vVe¢]

One could run an SP based on these equations, and it would allow

baroclinic instability, but it would be too expensive (and probably fail in
some situations — ask lan).



(Gaussian eddy closure

‘Gaussian Closure’ (GC) eddy equations: Replace nonlinear products of
eddy variables by Gaussian additive stochastic forcing F; and deterministic
damping qu’-:

~

0-qh = —V - (uq)) — (U — (~1Y%) - Vgl —u} - VQ; — 6;rVy} — V8¢,

0:q; = F; — I'q; — (Uj — (—1Y&) - Vqj — u} - VQ; — 6,or V¢ — vV°q]

Note: GC assumes turbulent eddy behavior — perhaps problematic with
weakly nonlinear eddies



(Gaussian eddy closure

In Fourier space, eddy equations can be written

f f Wiener process
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(Gaussian eddy closure

In Fourier space, eddy equations can be written
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Need closure for these terms



(Gaussian eddy closure

The equilibrium solution for the covariance, in the absence of mean

gradients, is used as the initial condition. The following properties are
demanded:

@ Isotropic energy spectrum =- zero mean Reynolds stress terms
@ energy spectrum o k—°/3 for k < ky
@ energy spectrum o< k=3 for k > ky

@ eddies do not generate heat flux in the absence of temperature
gradient

@ a constant ratio of barotropic and baroclinic energy at each k

The damping parameter is set equal to the nonlinear inverse eddy
timescale at each k,

Tk = %\//@E(k)

The total energy in the initial condition is a tunable parameter... Various
methods are examined in the papers.



Correlated stochastic plane waves

27T Kmax
u (¥ — ¥1) / / k? sm(e)( ] [z{&“&;}]dr) dk de,
ko
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- If eddies are isotropic, Reynold’s stress terms are O.

+ Heat flux results from anisotropy

-+ Choose random eddy angle along which to integrate
eddy stress terms — resulting fluxes are therefore not

always downgradient



The Algorithm

1. At the beginning of a coarse model time step, evaluate the large-scale
variables that appear in the eddy equations, e.g. shear, vorticity
gradient.

2. Pick a random direction for the eddies.

3. While holding the large-scale terms fixed, evolve the eddies for a fixed
time of length €. This is cheap because eddy dynamics are linear.

4. Compute the eddy PV flux from step 3. This is also cheap because of
simple Fourier analysis.

5. Update the large-scale variables.

0. Re-set the eddy variables to a ‘climatological’ state, i.e. forget the
final state of the eddies from the end of step 3.

/. Repeat



Test in doubly-periodic case

-+ Run eddy-resolving reference simulations with kq= 50 and a
5122 grid.

- Then we run stochastic SP using the same code on a 642 grid —
8X lower resolution.

- The coarse-grid Nyquist wavenumber is 32, which is smaller
than the deformation radius but larger than the peak of the KE
spectrum (which is around k=5).

- Since our coarse grid is larger than the deformation scale, we
need to simultaneously parameterize the downscale cascade of
APE and the inverse cascade of KE.



Test in doubly-periodic case

f-plane, r = 16
ki = kg/4, r=4
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est in doubly-periodic case

f-plane, r = 16 ki =k3/2, r=1
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Time-averaged 1D energy spectra for SP (solid) and
DNS (dashed). KE (blue), APE (green), total (red)



Test in doubly-periodic case

f-plane, r =1
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Heat flux in f-plane case

DNS SP

l l | —— | l l

SP model reproduces heat flux of DNS case,
despite complete absence of small-scale vortices
present in DNS
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Test in channel with ACC topography

+ Compare SP to four variants of Gent-McWilliams in a 2-
layer QG channel model with ACC topography

- Domain size is 20,000 X 2,500 km X 2 km layer depths.
R4 = 12.25 km, and dx = 6.5 km for the eddy-resolving
reference solution.

-+ Coarse model uses same code but has grid 8 times
coarser (dx = 50 km): barely eddy permitting.




Reference simulation
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QG with GM

2f2

s+l + 9] = S0V - (V0 — ) — 2

H,

Wy, hp) — rvz’#z T V2V4¢2

and likewise for layer 1

Flavors of GM
0. K is a tunable constant (Gent McWilliams 90)
1. K = al4sAU (Stone 72)
2

2. K =0 (Ai]) (Cessi 08)

AUY’ . f .
3. K a(ﬁsz Bor = ' ﬁy+ﬁ°Vhb (Held Larichev 96)

S B TN LY

4 K =0 =R AU oH (Visbeck et al 97)



Effective SP diffusivity

One can compute an effective diffusivity 70— )
1\V2 V1

for SP, by restricting to cases where eddy K. =

angle results in down-gradient fluxes: 2U
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Metric for comparison

How do we measure performance of the coarse models?

X The barotropic transport in all models is comparable and too high by
~ 25%; due to under-resolution of topographic form stress.

X All models are tuned to have correct area- and time-averaged zonal
baroclinic shear.

@ We look at RMS error in the time-mean layer interface height
(pattern correlations are extremely high for all models)

@ We look at the local temporal variability of the layer interface height

» Area-averaged temporal standard deviation of the interface height o
RMS error in o

Pattern correlation in o

Relative entropy for climatological distribution of interface height

v
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Flavors of SP

We tested 8 configurations of stochastic SP
@ Short and long eddy evolution times, which also have different ~g.
@ Reynolds stresses included or ignored in large-scale model

@ Large-scale vorticity gradient, 3, and topographic gradient included or
ignored In eddy equations



GM4 (best) results

Time-mean interface height
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SP ‘short’ (best) results

Time-mean interface height
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Summary of results

@ SP models with Reynolds

@ All the models have too little stresses had much better

variability

Models with more-accurate
time-mean typically have
less-accurate variability

Of the GM models GM3 had
best mean and worst variability;
GMO had worst mean and best
variability; GM4 had best
relative entropy

(higher) variability
SP models with long average
had better mean but worse

variability compared to short
average

Best SP models have
comparable mean to best GM
model, but better variability
which leads to best overall
relative entropy/climate fidelity.



Future directions

- |In a nutshell, SP is GM + backscatter

- SP can be improved by including TKE transport equation
to set local energies

- Implementation in PE model with high vertical resolution
could proceed with projection of eddy model onto a few

vertical modes



Domain-averaged measures of skill for the GM parameterizations. The RMS of ¢ and
the RMS errors are measured in meters, the remaining columns are dimensionless.
The RMS of o for the reference simulation is 58 m.

RMSEof77 RMSofo RMSEofo PCofg? Dispersion Rel.

Ent.
GMO 131 44 33 0.80 28 995
GM1 105 33 37 0.77 63 1080
GM?2 95 31 37 0.77 51 719
GM3 78 26 40 0.69 95 617
GM4 112 36 35 0.77 18 362

Domain-averaged measures of skill for stochastic SP. The RMS of ¢ and the RMS errors are measured in meters, the remaining columns are dimensionless. The RMS of ¢ for the
reference simulation is 58 m.

RMSE of 77 RMS of ¢ RMSE of ¢ PC of o2 Dispersion Rel. Ent.
SP-short NRS-f 116 33 37 0.78 64 1417
NRS-B 126 39 33 0.81 25 731
RS-f 104 39 31 0.80 4 62
RS-p 115 42 29 0.81 4 75
SP-long NRS-f 87 28 39 0.76 39 455
NRS-B 87 30 37 0.78 27 382
RS-f 82 32 36 0.74 19 225

RS-p 82 33 35 0.77 22 229




