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1. Why balance models?

Balance relation as gravity wave diagnostics

e High-order balance relations?
e Mathematical properties?
e Numerical implementation?

e Data assimilation

Balance models as limiting test case for full models

e Fast rotating limits cause scale separation!

General method for certain singular perturbation problems?

e Systems with strong gyroscopic forces
e Non-relativistic limit of semilinear Klein-Gordon

e Modified equations for variational time integrators?



1.1. Why variational?
Rigid construction

e Understand conservation law structure
e Noether’s theorem persists under model reduction

e For fluids: get conservation of energy and balance model PV

Flexible construction

e Variational balance relations are far from unique
e Use this freedom to get well-posedness in standard setting

e In examples: easy choice is often a good choice



1.2. Idea

Famility of Lagrangians with small parameter «:
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so that 1
ELa [QE] = DqLe(Q67 Qa) - EDQLE(QE7 Q6) =0

Introduce transformation ¢. = ®[g|:

0=s5~ [ 847 Dalgr (D,L.(wg). old) - FDuL. (ald) old) ) a

So Euler-Lagrange equation reads
D®[q]" EL[®[q]] = 0

Now choose ® such that

D®[g]" EL[®[g]] = EL

slow

la] +O("*)



1.3. Turning the construction into a proof

From before:

D®[g]* EL[®[q]] = ELy,, [¢] + "+ ELR[q]

Take a solution g of the slow equation:

EL]

slow

l¢] = 0 by definition

Any derivative of ¢ is O(1)
e Consequently, EL%[q] = O(1)
Then EL.[®[q]] = O(e"*)

Conclusion:

z = ®[q| satisfies the full equation up to an O(¢""!) remainder.

Now use non-variational stability estimates to control the difference q. — =



2. Lagrangian fluid dynamics

For fluids, the configuration space is the group of flow maps 7.

e Lagrangian vs. Eulerian fluid velocity: n = uwon
e Lagrangian vs. Eulerian variation: én = won
e Lagrangian vs. Eulerian transformation: n' = von

Note: Affine Lagrangians (Lagrangians which are linear in the velocity) lead to
kinematic Euler-Lagrange equations in Eulerian variables!



2.1. Example: Rotating shallow water

B
E(Gtu+u-Vu)—|—fuL+?th:0
Oth+V - (hu) =0

e Rossby numbere = U/(fL) < 1
e Burger number Bu = gH /(f?L?)

Semi-geostrophic scaling (aka. Phillips type 2 scaling/frontal geostrophic regime):
Bu=¢

(Quasi-geostrophic regime is Bu = O(1) with h = 1 4+ O(¢); not considered here.)

Eliassen/Hoskins: geostrophic momentum approximation
e(0 +u. - V)V+h, +ur +Vh. =0
e Canonical Hamiltonian system

e Advected PV in geostrophic coordinates (Hoskins, 1975)



2.2. Example ctd.: First order balance models

LE:/hE(R-us—l—%s]us\?—%hg)da:
where V1 - R=f=1
Expansion in ¢
LE:/h(R-u—%h)da:Jre/h(vL-qu§|u|2+%hV-v)da:+O(52)
Degeneracy condition
v=1u"+AVh

Salmon’s (1985) L;-model:

e Any balance model will have u = V*h + O(¢), so A = & implies v = O(¢)

e Forget the transformation!



2.3. First order model dynamics

Set o = e(\ + 3). Then

0q+u-Vg=0
(q—cA)h=f
(1—0(hA+2Vh-V))u=V*[h—eA(2hAh+ |Vh|*)]

What is known:

Derivation: Salmon (1985), O. (2006)
Solution theory: Calik, O., Vasylkevych (2013)

Numerically well-behaved models, consistent initialization is difficult: Dritschel,
Gottwald, O. (WIP)

Justification: open



2.4. The bigger picture
Semigeostrophic equations

e Derivation: Hoskins (1975), O. (2014)
e Solution theory: Cullen, Purser, Gangbo, Feldman, ... (1980s-today)

e Justification: open

Generalizations

e Spatially varying Coriolis parameter: O., Vasylkevych (2013)
e Stratified models: O., Vasylkevych (2013)
¢ Quasigeostrophic scaling, higher order models: O. (2006)

Beyond fluids

e Nonlinear oscillator in magnetic field: exponential asymptotics by Cotter and
Reich (2006), variational proofs by Gottwald and O. (2014)

e The semilinear Klein-Gordon equation (to follow)

e Analysis of variational time-integrators



3. PDE case study: semilinear Klein—-Gordon equation

h: . h? mc?
UV— — AU+ — U =
2mc? 2m v 2 + (1) b

Modulated wave function

¢ _ \Ijelmhc t
Then
T L Ly T W
2mc? 2m N

Non-relativistic limit ¢ — oo

e Convergence to NLS in energy space (Machihara, Nakanishi, Ozawa, Masmudi,
2000s)

e Structurally a “semigeostrophic” limit

e Can we use variational methods to derive a hierarchy of “balance models” for
slow motion in the weakly relativistic regime?



3.1. Setup
Lagrangian (non-dimensionalized)

i 1
L{u, @) = /(g a2 + %ua — 5 luaf? + V(u,u)) d
T

Full model as first order system

O fu\ _ (0 1 uy | 0

ot \v) \Afe i/e) \wv g(u)/e
Notation: g(u) = f(|ul*)u where V (u,w) = 3 F(|ul?) with F’ = f.
Eigenoperators of linear part

Ly =i

Anatz for fast variable — remove linear slow motion to all orders

w=uv—il_u— Fit!(u)



3.2. Recurrence relation for slow vector field

Slow-fast splitting

=il _u+ F3} (u)+e"*! foi(u) +w

W = (i Y . DF"+1(U)) w+ L (g(w) +i(1 — eL_) 7))

c slow c slow

—iDF" N (w)L_u — DFE?H (w) Fit (u)

slow slow slow

Construction of the slow vector field

1++v1—4eA
2
is positive, self-adjoint, first-order with compact inverse M. Thus,

fo(u) =iMg(u)

feoss =M (DAWL w =i Y Dhuftw)

J+k=t

M1l=1—¢cL =

No recurrent loss of regularity! Persistence of L?-smallness of w can be achieved to
any order in € uniformly in the reqularity class of the initial data.



3.3. Variational asymptotics for linear Klein-Gordon

Quadratic action functional

1 1
S = 2 (Tue, uc) + 5 (Tue,uc) + 5 (A, uc)

where (-, -) is the space-time inner product and 7" = i 9 is formally self-adjoint.

ot

Degeneracy condition: Can we choose u. = ¢(¢T, eA)u such that

S, = L (e T2+ T + A) §(eT, eA)u, up

. %((T+ AG(=A))u, u)

Le., find generating functions ¢(&,n) and 6(n), analytic near the origin, with

(E+E+n)d°(En) =E+nb(n)

It can be shown that there is a unique choice, namely

_1—y/1—4y B 4
9(77)_—277 and ¢(€,n)——1+€k(n> A Py 7



3.4. Expansion of the linear transformation

e When plugging the linear transformation into the potential, we need to expand

e Can we do this without losing derivatives?

Naive expansion
Let K be the compact operator with symbol k. Then

d(eT, eA) = % = VK Z (_]2> e (TK)

On solutions of the slow equation, T'K is a zero order operator,
but its operator norm is O(¢~!) unless we lose derivatives

Better expansion — use lower order “balance”

VE A with M= !

W eh) = TR~ ize@ s LM VI-2A

On solutions of the slow equation, (7'+ L_)M is of zero order uniformly!



3.5. Shadowing theorem

Let u denote a solution of the slow Euler—Lagrange equation u(0) € H?. Let u. solve the full
Euler-Lagrange equation consistently initialized via

ue(0) = Dy, [ul] o
. d
1:(0) = E@n[u] o

Then for every fixed T' > 0 there exist g > 0 and ¢ = c(u(0),T") such that for all 0 < e < g,

sup |Jue(t) — @p[u®)]|| 2 < ce™tt
t€[0,T]

Proof

Note that all operators are bounded — proceed as in finite dimensions.

Conclusion

Hamiltonian PDE asymptotics without “loss of derivatives”



	Why balance models?
	Why variational?
	Idea
	Turning the construction into a proof

	Lagrangian fluid dynamics
	Example: Rotating shallow water
	Example ctd.: First order models
	First order model dynamics
	The bigger picture

	PDE case study: semilinear Klein–Gordon equation
	Setup
	Recurrence relation for slow vector field
	Variational asymptotics for linear Klein–Gordon
	Expansion of the linear transformation
	Shadowing theorem


