Impact of energetic currents and the wind field on internal waves and diapycnal mixing in the Atlantic

Janna Köhler

with contributions from M. Walter, C. Mertens and M. Rhein Institute of Environmental Physics, University of Bremen

Internal waves and diapycnal mixing

Energy input into internal wave field

• e.g. wind, tides, flowtopography interactions

Distribution of energy in wavenumber space

wave-wave interactions

Internal waves are **energy** source for diapycnal mixing

- e.g. Kelvin-Helmholtz instabilities
- breaking of internal waves induced by (rough) topography

http://www-frd.fsl.noaa.gov/mab/scatcat/

Spatial variability

Temporal variability

Sources and magnitude of temporal variability in internal wave energy?

FFZ (Faraday Fracture Zone):

Wind (flow/ stratification)

Move (Meridional Overturning Variability Experiment):

Interaction DWBC topographie

(Köhler et al. 2014 in JPO)

The MOVE array

How does the DWBC influence the internal wave field and subsequently diapycnal mixing rates?

Velocity and temperature timeseries

Vertical displacements

- internal waves vertically displace isopycnals as they propagate
- calculation of vertical displacements ξ from temperature timeseries:

$$\xi = \frac{\mathrm{T} - \mathrm{T}_{\mathrm{low}}}{d\mathrm{T}_{\mathrm{low}}/d\mathrm{z}}$$

- high vertical displacements during strong flow indicate an increase in internal wave energy during these times
- -> used to calculate available potential energy (APE): $APE = \frac{1}{2}N^2\xi^2$

Variability in APE spectra

of half-overlapping 28-day segments

- above DWBC: small, almost constant increase in APE during strong flow
- in DWBC: significant increase in APE particularly in near-inertial frequencies

Variability in APE spectra

• below DWBC: increase in APE in near-inertial frequencies still visible, but not as pronounced as in DWBC

Timeseries of internal wave APE (f-N)

- internal wave APE and flow speed correlate especially during phases of strong changes in DWBC strength
- energy in the internal wave field varies by up to factor of 3

Variability in kinetic energy spectra

Generation of near-inertial waves

- generation of near-inertial waves by interaction of strong current with bottom topography (Nikurashin and Ferrari 2010)
- vertical energy propagation estimated from spectral analyses of shipboard velocity measurements
- good agreement with generation at DWBC core depth

Diapycnal diffusivities K_o from finescale parameterization

• diapycnal mixing is significantly elevated during phases of a strong DWBC

Diapycnal diffusivities K_Q

- mean diapycnal diffusivities during strong DWBC phases are elevated more than 1000m above bottom
- increase by a factor of 10
- local dissipation of internal wave energy

IW energy at the subpolar front

- 3 moorings close to the Faraday Fracture Zone (FFZ) since 2009
- 3 to 6 RCMs per mooring
- CTD/LADCP profiles

Velocity timeseries

Mean velocity spectra

- dominant peaks at inertial and M₂ tidal frequency
- energy decreases from North to South
- integration of individual spectra f ± 0.3

Timeseries of near inertial energy

Energy in near inertial waves

Timeseries of near inertial energy

Wind energy input

Energy in near inertial waves

Rotary spectra

- increase in clockwise component during high energy phases
- counterclockwise component stays constant

Differences in background conditions

Outlook: Local vs. remote energy dissipation at depth

- Closely spaced T/p-measurements at GFZ (north of FFZ)
- will be recovered this June
- timeseries of mixing rates from Thorpe scales in relation to IW energy

Summary and Conclusions

Flow-topographie interaction in DWBC

- flow-topography interaction transfers energy to near-inertial waves
- energy in the internal wave field varies by up to factor of 3
- considerable temporal variability of diapycnal mixing rates by at least an order of magnitude

Wind induced variability in the NAC

- energy in the internal wave field varies by up to factor of 6
- near inertial energy variability dominated by changes in wind
- IW energy decreases within the NAC
- breaking of waves generated at mixed layer base?

Open Questions

- What proportion of the generated internal wave energy is dissipated locally and how much is radiated away from the source region?
- What are the energy pathways from sources to sinks?
- What is the role of the continental slope in generating, reflecting, and dissipating internal tides?