

Mechanical Energy Constraints for Climate

Markus Jochum Niels Bohr Institute, Copenhagen

Danish Researd

ationa

with Alford, Eden, Large, Lindsay, Potemra, Small

- using GCMs to connect theory & observations of diapycnal mixing with climate
- relevant magnitudes
- what does it NOT matter for? (AMOC)
- where does it matter? (tropical upper ocean)

All shown model results are multidecadal averages based on fully coupled CCSM integrations

Danish N Research

Foun

A belief is true, if in the long run it works for all of us, and guides us expeditiously through our semihospitable world.

William James

Danish National Research Foundat

Relevant Magnitudes

Relevant Magnitudes

Danish National Research Foundatio

Gregg et al. 2003

How do we constrain the diffusivity (k)?

- inverse modelling or water mass budget (Munk, Walin, Gordon)
- microstructure measurements (Alford, Dengler, Gregg, Polzin, Rhein)
- tracer release (Ledwell, Watson & Law)
- adjoint techniques (Wunsch, Stammer)
- energy sources/sinks (Munk, Wunsch)

Davies (1994ab): You will never figure it out!

Large scatter, but it appears that for the MOC the details don't seem to matter.

Research Foundati Danish Nationa

Where does it NOT matter?

Residual AMOC in CCSM

40

60

CONT

0.26 TW

100000

200000

300000

400000 -

-20

precip in CCSM

change with observed diff. in Banda Sea

Danish National Research Foundati

Where does it matter?

The North Atlantic Response

0.6 62°N 62°N 0.4 0.2 difference in difference in 58°N 58°N salinity on the temperature on the 1.028 isopycnal 1.028 isopycnal 54°N 54°N -0.2 -0.4 -2 vectors: velocity in 50°N 50°N control on the same -0.6 surface 46°N 46°N -0.8 -6 42°N 42°N -1.2 -7 -1.4 38°N 38°N 65°W 55°W 45°W 35°W 25°W 15°W 65°W 3590 25°W 15°W 45°W

PSI - control

Global impact of Near-Inertial Waves

change in boundary layer depth

Precipitation in CCSM with NIWs

0.34 TW

0.68 TW

CESM, 0.25 degree AGCM, 0.1 degree OGCM: 0.43 TW

Research **Danish Nationa**

Found

color: mean ocean to atmosphere carbon fluxes in control contour lines: OP115-CONT; solid lines indicate atmospheric gain of CO in OP115.

air-sea carbon flux in CONT and the difference with 115 kya (nmol/m2/s)

Research **Danish Nationa**

Foundat

Black: inception scenario with standard diffusivity Red: inception scenario with 20% reduced diffusivity

Conclusions

- observational uncertainties in diffusivity are much larger than the ones resulting from spurious diapycnal mixing

Rese

- we cannot constrain the AMOC through mechanical energy considerations
- in the thermocline diapycnal mixing matters enormously, but cannot be constrained sufficiently by observations
- for the mixed layer we need better information about winds on small spatial and temporal scales
- the way forward seems to be better parameterizations of diffusivities informed by process studies in the tropical thermocline