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Introduction

Performance increase of supercomputers [Dongarra, 2014] affords
Earth System Models (ESMs) to expand the range of included
processes (e.g. increase in spatial resolution [Spall, 2010] or
incorporation of additional physical and geochemical
processes [Stepanek and Lohmann, 2012]).
Here, we present the lattice Boltzmann method (LBM), as a novel
modeling approach for some of the new processes included in ESMs.
During the last two decades, LBM has been developed and
successfully applied to many engineering fluid flow problems
[Guo and Shu, 2013].

LBM :: Core Ideas

I relatively new class of numerical methods, inspired by kinetic theory
; simple algorithms:
1. often explicit formulation
2. easy to parallelize
3. convenient handling of complex geometries

I historically related to Lattice Gas Cellular Automata (LGCA), but
evolved separately, overcoming some limitations of LGCAs

I bottom-up approach to numerical modelling:
1. formulate simple, discrete mesoscopic model. . .
2. . . . such that the desired macroscopic equations are recovered

LBM :: Basic Algorithm

I discretize physical space (; the “lattice”/”mesh”) and time
I discretize velocity space ; ∀ node of the lattice, we associate a finite set of probability

distribution functions (PDFs)
I PDFs evolve according to simple rules: local collision (e.g. relaxation towards local

Maxwell distribution), followed by spatial streaming

fa(~x + ~eaδt, t + δt) = fa(~x, t)︸ ︷︷ ︸
Streaming

−
[fa(~x, t)− f eq

a (~x, t)]
τ︸ ︷︷ ︸

Collision

, (1)

where a ∈ [0, β − 1] is an index spanning the (discretized) momentum space and τ is a
relaxation parameter (related to simulated viscosity)

I equilibrium PDFs based on local Maxwell-Boltzmann distribution
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where the weights wa are lattice-dependent, and ρ, ~u are first moments of discrete PDFs
I multi-scale analysis shows O(δ2

x, δ
2
t )-accurate recovery of Navier-Stokes equations

LBM algorithms relevant to Earth System Science (ESS)

The method has been successful in modeling complex phenomena, e.g.:
I multi-phase and multi-component flows [Sankaranarayanan et al., 2003]
I melting processes [Huber et al., 2008]
I porous media [Ahrenholz et al., 2006]
I direct numerical simulation (DNS) of turbulence [Peng et al., 2010]

Sample discretizations of velocity-space
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Figure : Illustration of space- and velocity-space-discretization
for a 2D lattice.

Figure : Illustration of velocity-space-discretization for a 3D
lattice.

New modeling-framework (GeLB) ::
Motivation

I a wide variety of LBM algorithms exist. . .
I . . . but, experimentation and inter-comparison

is not trivial (changing core algorithm and,
especially, boundary-conditions ; effectively
rewrite of the software)

I technical side-issues (parallelization, efficient
I/O, flexible geometry) increase the amount of
work

GeLB :: Basic Architecture

Components of GeLB:
I Core-library (C++), which supports parallelization,

efficient I/O, simulation-restart, etc.
I source-to-source compiler, which takes as input

simulation-description files (readable for non-specialist)
and produces a C++ program that uses the GeLB-Core
library

I simulation-description is expressed using a small set of
abstractions (Initializer, Dynamics, Gauge)

Initializer

Dynamics

Gauge

Figure : Roles of Initializer, Dynamics,
and Gauge in GeLB

GeLB :: Sample results (preliminary)

Figure : 2D Rayleigh-Benard
convection (Ra = 1900)

Figure : 3D lid-driven cavity,
Re = 1.03E4 (Smagorinsky LES)

Conclusions and Outlook

I extensive model-validation
for benchmark-problems

I DNS simulations of
double-diffusive instability

I addition of GPGPU
parallel-execution backend
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