

Performances of XBT systems in Mediterranean (2003-2010) Not a fall rate analysis, a small

contribution to the knowledge, maybe

**F.Reseghetti** (ENEA-UTMAR, Lerici) M.Borghini (CNR-ISMAR,Lerici) G.M.R.Manzella (ENEA,Lerici)

II<sup>nd</sup> XBT Fall Rate Meeting Hamburg, 25-27 August 2010 If the theory says... Good Instruments + Good working procedures + Good QC → Good Data...

# The question is: How reliable is a XBT system?

| Probe Type                   | XBT                              | XSV                   | XCID                                                       | XCTD-1         | AXSV**                | AXCTD**                                                   |  |
|------------------------------|----------------------------------|-----------------------|------------------------------------------------------------|----------------|-----------------------|-----------------------------------------------------------|--|
| Sampling Rate                | 10Hz                             | 10Hz                  | 4Hz                                                        | 2.SHz          | 10Hz                  | 4Hz                                                       |  |
| Vertical<br>Recolution       | 60cm<br>(18cm for<br>T-11 FSXBT) | 60cm                  | 100cm                                                      | 17cm           | 60cm                  | 100cm                                                     |  |
| System<br>Accuracy           | <u>+0.2°C</u>                    | <u>+0.25</u><br>m/sec | <u>+0.035°C*</u><br><u>+0.035mS/cm</u><br><u>+0.05 PSU</u> | <u>+0.02°C</u> | <u>+0.25</u><br>m/sec | <u>+0.035°C</u><br><u>+0.035mS/cm</u><br><u>+0.05 PSU</u> |  |
| Temperature<br>Resolution    | 0.01°C                           | -                     | 0.01°C                                                     | 0.01°C         | —                     | 0,01°C                                                    |  |
| Temperature<br>Range         | -2 to 35°C                       | -                     | -2,2 to 30°C                                               | -2 to 35°C     | -                     | -2,2 to 30°C                                              |  |
| Sound Velocity<br>Recolution | —                                | 0.04<br>m/sec         | 0.05<br>m/sec                                              | —              | 0.04<br>m/sec         | 0.04<br>m/sec                                             |  |
| Sound Velocity<br>Range      | —                                | 1405-1560<br>m/sec    | 1405-1560<br>m/sec                                         | -              | 1560<br>m/seo         | 1405-1560<br>m/sec                                        |  |
| Conductivity<br>Recolution   | —                                | _                     | -0.01<br>mS/cm                                             | 0.017<br>mS/cm | _                     | 0.01<br>mS/cm                                             |  |
| Conductivity<br>Range        | -                                | -                     | -20-75<br>mS/cm                                            | 0-70<br>mS/am  | -                     | 20-75<br>mS/cm                                            |  |
|                              |                                  |                       |                                                            |                |                       |                                                           |  |

System Depth Accuracy: 4.6 meters or 2% of depth, whichever is greater.

- Probe motion → parabolic equation (FRE) with (immediately) terminal speed → in average, good approximation, but not always
- (Estimated) Depth → being not directly measured, estimated error → in general reasonable agreement, but not always
  Electronic response (thermal, delay)→ not included in the FRE → few analyses and tests, unknown
- Different recording system/probe types → needed daily calibration with test probes → slightly different recorded values, few analyses and tests, unknown
- Launching position + launching procedures + ship motion → not included in FRE → few analyses and tests, unknown
- •XBT shape/dimensions → industrially constant ⇔ not constant ?→ variations in the motion, few tests, unknown
- Influence of seawater characteristics on the probe dynamics
- → theoretically estimated → few tests, not included in FRE
- Metadata → as needed as data → often absent or incomplete.
- conclusion

## Working hypothesis

- Usually, we **assume** that the presently deployed probes do have the same physical dimensions (they should be the same) as the earlier manufactured XBTs. LM Sippican states this with two exceptions:
- change of the wire coating process (after 1996)
- the addition of a net on the spool within the afterbody.
- Since the late 70's, TSK is the other official manufacturer, and based on the statement of the manufacturers, the probes should be indistinguishable.
- The other well known changes occurred during the XBT age (for instance, the transition from a chart recorder to a digital device, after about 1985) should have had a zeroimpact on the probe motion, but recorded values could be (slightly) different.

How realistic is this? Namely... Sippican(Old)=Sippican(New)= =TSK(Old)=TSK(New)?

## Hic Rhodus, hic saltus

The range of the uncertainties of XBT measurements is hard to be quantified.

There are several (partially known) parameters inducing a (larger than unexpected) spread in the results.

But, the harder the play, the more interesting the challenge.



Acknowledgments (alphabetically...) **T. Boyer (NODC, Silver Spring, USA) H.Bryden (SOTON, UK)** L.Cheng (Inst. Atmos. Phys.-CAS, Bejing, China) **M. Gifford (LM Sippican)** V.V.Gopalakrishna (NIO, Dona Paula, Goa, India) V.Gouretski (Univ. Hamburg, Hamburg - Germany) Y.Hashimoto (TSK, Japan) S. Kizu (Dep. Geophysics., Tohoku Univ., Sendai - Japan) S. Latorre (INFN-Milano, Italy) A.Papij (TURO, Australia) **J.Trinanes (NOAA)** S.Wijffels (CSIRO, Australia) **THEN: the captains E.Gentile and V. Lubrano Lavadera and** technicians of RV Urania, the captain I.Schetzberg of the cargo vessel Stadt Weimar, **D.Galletti & E.Molinari (NURC, La Spezia, Italy) for bath tests** A.Peirano (ENEA, Lerici, Italy) for the XBT video

- Since 2003, comparison between CTD casts and co-located and contemporaneous (LM Sippican) XBT probes deployed from a motionless ship (RV URANIA),
- CTD profiles: SEABIRD 911 Plus, calibrated (before and after each cruise) at NURC Laboratory (La Spezia, I). CTD data processed with standard SEABIRD software.
- < 20070101: LM Sippican MK-12, launcher LM3A, junction box, cable, hard-top
- > 20070101: LM Sippican MK21-USB, laptop
- 20100801: QUOLL/TSK/LM SIPPICAN + XBT&XCTD
- ALL T values are "*in-situ*" Temperatures.







## What w

## poor)

E ASSOL TAMENTE VIE SUARICARE FILE E UTILIZIARE SOFTWARE I TO ER (EMULE TORRE TO ER (EMULE TORRE TO ER (EMULE TORRE TO ENTRAVERSO LA CONNESSIONE INTERNET BORDO

15 Martin

## How good can be a CTD profile?

| Nansen | Bott.( 0.01 °C; 1.5-6% | <b>FS) (1897)</b> |
|--------|------------------------|-------------------|
| STD    | (0.1 °C; 0.2 PPT)      | (1957?)           |
| CTD    | (0.001 °C; 0.015% F    | <b>FS) (1967)</b> |
| MBT    | (0.2 °C; > 1% Z)       | <b>(1940)</b>     |
| XBT    | (0.2 °C; 2% Z)         | (1966)            |

CTD is usually adopted as reference instrument ARGOs and GLIDERs use the same sensors as CTD



| Depth | E.R. (O.S.316)     | LBM (O.S.316)    | NIB *              | CIM (SBE23)      | IZOR(SBE23)        |
|-------|--------------------|------------------|--------------------|------------------|--------------------|
| 5 m   | $14.750 \pm 0.140$ | $14.86 \pm 0.12$ | $14.806 \pm 0.037$ | $14.71 \pm 0.03$ | $14.865 \pm 0.080$ |
|       | $37.935 \pm 0.004$ | $38.04 \pm 0.02$ | $37.966 \pm 0.008$ | $37.98 \pm 0.01$ | $37.981 \pm 0.004$ |
| 10 m  | $14.521 \pm 0.017$ | $14.52\pm0.05$   | $14.495 \pm 0.017$ | $14.52\pm0.05$   | $14.602 \pm 0.006$ |
|       | $37.942 \pm 0.001$ | $38.05\pm0.01$   | $37.977 \pm 0.001$ | $37.98 \pm 0.01$ | $37.984 \pm 0.002$ |
| 15 m  | 12.998 ±0.020      | $13.04\pm0.07$   | $13.001 \pm 0.014$ | $12.98\pm0.01$   | $13.006 \pm 0.010$ |
|       | $37.932 \pm 0.002$ | $38.05 \pm 0.01$ | $37.960 \pm 0.004$ | $37.97 \pm 0.01$ | $37.977 \pm 0.001$ |

Low. Speed 0.2 - 0.3 m/s

#### CTD inter-comparison, May 2003 – Adriatic Sea

| Depth | E.R.               | LBM              | NIB                | CIM              | IZOR               |
|-------|--------------------|------------------|--------------------|------------------|--------------------|
| 5 m   | $14.647 \pm 0.112$ | $14.84\pm0.05$   | $14.733 \pm 0.014$ | $14.95 \pm 0.3$  | $14.977 \pm 0.032$ |
|       | $37.934 \pm 0.003$ | $38.02\pm0.01$   | $37.987 \pm 0.017$ | $37.98 \pm 0.1$  | $37.978 \pm 0.001$ |
| 10 m  | $14.519 \pm 0.006$ | $14.58\pm0.01$   | $14.519\pm 0.006$  | $14.55\pm0.02$   | $14.569 \pm 0.025$ |
|       | $37.936 \pm 0.011$ | $38.06\pm0.01$   | $37.980 \pm 0.002$ | $37.98 \pm 0.01$ | $37.984 \pm 0.001$ |
| 15 m  | $13.024 \pm 0.015$ | $13.06 \pm 0.02$ | $13.056 \pm 0.004$ | $13.01 \pm 0.03$ | $13.032 \pm 0.002$ |
|       | $37.935 \pm 0.005$ | $38.03\pm0.01$   | $37.970 \pm 0.003$ | $37.98 \pm 0.01$ | $37.984 \pm 0.002$ |

Low. Speed 0.4 - 0.5 m/s

| Depth | E.R.               | LBM              | NIB                | CIM              | IZOR               |
|-------|--------------------|------------------|--------------------|------------------|--------------------|
| 5 m   | $14.703 \pm 0.098$ | $14.82\pm0.15$   | $14.718 \pm 0.017$ | $14.92\pm0.07$   | $14.935 \pm 0.065$ |
|       | $37.886 \pm 0.043$ | $38.05 \pm 0.01$ | $37.968 \pm 0.003$ | $37.98 \pm 0.01$ | $37.978 \pm 0.001$ |
| 10 m  | $14.514 \pm 0.027$ | $14.52\pm0.07$   | $14.519 \pm 0.013$ | $14.57\pm0.01$   | $14.593 \pm 0.007$ |
|       | $37.935 \pm 0.009$ | $38.05\pm0.01$   | $37.974 \pm 0.006$ | $37.98 \pm 0.01$ | $37.986 \pm 0.002$ |
| 15 m  | $13.003 \pm 0.010$ | $13.00\pm0.01$   | $13.018 \pm 0.018$ | $13.00\pm0.03$   | $13.024 \pm 0.010$ |
|       | $37.915 \pm 0.009$ | $38.05\pm0.01$   | $37.971 \pm 0.002$ | $38.00\pm0.01$   | $37.995 \pm 0.002$ |

Low. Speed 1.0 m/s

#### **EUROFLEETS research cruise**

**RV Urania** (within the EU project **EUROFLEETS** <u>http://www.eurofleets.eu/np4/home.html</u>) has carry out an inter-comparison among sensors of oceanographic instruments (July 31, 2010 - August 16, 2010). The ship has traveled across the Western Mediterranean Sea from Sicily toward Strait of Gibraltar and beyond.

#### **EUROFLEETS research cruise**

- -) **SEABIRD** 911 plus CTD with:
  - -) 2 sensors for Temp/Cond/Oxy/F
  - -) 1 sensor as Transmissometer
- -) IDRONAUT automatic recording CTD with:
  - -) 2 sensors for Temp/Cond
  - -) 1 sensor for Oxygen
- -) CHELSEA Fluorometer (1 sensor)
- -) AANDERAA Oxygen fast (2 sensors)
- -) L-ADCP 2 sensors + 2 hull-mounted ADCP (at 75 and 300 kHz)
- -) LM Sippican MK21-USB with LM Sippican DB+T5 probes
- -) TSK MK150n, with T7+XCTD-1 + XCTD-2 probes
- -) **TURO** QUOLL recorder for expendable probes
- On board instrumentation also includes: Salinometer, Winkler, HPLC,...















#### In Mediterranean, H95 method could have problems



## Full wire acquisition

- •Acquisition with free terminal depth for different XBT types.
- •No evident differences in the last part of the acquisition.
- •Statistically speaking, results are good up to the wire break.
- •Depending on the probe batch, and within the same batch, a certain variability

| XBT       | Max                   | Real      | Depth    | AT       | <at></at>       | Range            | Average                  | Range   | No.  |
|-----------|-----------------------|-----------|----------|----------|-----------------|------------------|--------------------------|---------|------|
| Туре      | Speed                 | Speed     | (m)      | (s)      | (s)             | (s)              | Depth                    | (m)     | XBT  |
|           | (kn)                  | (kn)      |          |          |                 |                  | (m)                      |         |      |
| Τ4        | 30                    | 0         | 460      | 70.5     | $87.3\pm2.0$    | 83.0-90.7        | $567\pm12$               | 540-588 | 22   |
| Τ4        | 30                    | 21-27     | 460      | 70.5     | $80.6\pm1.1$    | 76.8-84.9        | $525\pm7$                | 500-552 | 230  |
| T6        | 15                    | $\leq 10$ | 460      | 70.5     | $85.2\pm4.1$    | 77.7-90.5        | $554\pm26$               | 506-587 | 11   |
| <b>T5</b> | <mark>(1830)</mark> : | = 354.    | 9 ± 11.3 | 3 s (320 | ).9-368.0 s)    | <b>2194</b> ± 63 | <mark>m (2004-2</mark> 2 | 266 m)  | 27   |
| T7        | 15                    | ≤15       | 760      | 118.3    | $142.5\pm2.2$   | 138.6-150.9      | $908\pm14$               | 884-958 | 68   |
| Τ7        | 15                    | 17        | 760      | 118.3    | $136.3\pm1.4$   | 133.2-138.2      | $870\pm9$                | 851-881 | 15   |
| DB        | 20                    | 0         | 760      | 118.3    | $143.9\pm2.4$   | 139.3-148.5      | $916\pm14$               | 888-944 | 18   |
| DB        | 20                    | $\leq 20$ | 760      | 118.3    | $140.9\pm1.8$   | 126.3-149.6      | $898 \pm 11$             | 809-951 | 1312 |
| DB        | 20                    | 21        | 760      | 118.3    | $137.6\pm1.9$   | 136.3-140.5      | $878\pm12$               | 870-896 | 4    |
| DB        | 20                    | 22        | 760      | 118.3    | $134.2\pm2.2$   | 130.9-140.3      | $857\pm13$               | 837-894 | 27   |
| DB        | 20                    | 23        | 760      | 118.3    | $127.5\pm2.3$   | 124.3-132.8      | $817\pm14$               | 797-849 | 35   |
| DB        | 20                    | 24        | 760      | 118.3    | $122.1\pm2.9$   | 115.6-127.0      | $783\pm18$               | 743-813 | 31   |
| DB        | 20                    | 25        | 760      | 118.3    | $118.0\pm2.3$   | 113.0-123.8      | $758\pm14$               | 727-794 | 48   |
| DB        | 20                    | 26        | 760      | 118.3    | $114.2\pm2.5$   | 109.3-118.6      | $735\pm15$               | 704-762 | 37   |
| DB        | 20                    | 27        | 760      | 118.3    | $111.1 \pm 1.2$ | 109.8-113.5      | $716\pm8$                | 707-730 | 9    |









Is the height of the launching platform a factor influencing the entry speed and the probes motion in the upper part?

- Height 2.5 m: in MFSTEP the height varies from 4 to 14 m (with recent ships participating SOOP..from 25 to 31m).
- XBT probe should reach a stationary regime in seawater after ~ 1.5 s (~ 10 m), or a little bit more.
- Test: 10 pairs of probes were dropped from two different height (2.5 m and 8 m), within 5 minutes, during the same CTD cast.
- Comparison between twin profiles.
- dT/dz profiles: always,
  - in green the former,
  - in blue the latter



















# 2008: 3 probes sequentially deployed from 2 platforms on the same CTD cast.(H95 FRE)



| <b>Depth (m) - Temperature (°C)</b> |               |              | Deptl      | Depth (m) - Temperature (°C) |         |     | <b>Depth (m) - Temperature (°C)</b> |         |  |
|-------------------------------------|---------------|--------------|------------|------------------------------|---------|-----|-------------------------------------|---------|--|
| 0.0                                 | 17.54         | 1516.69      | 0.0        | 17.64                        | 1517.00 | 0.0 | 18.24                               | 1518.73 |  |
| 0.7                                 | 16.38         | 1513.25      | 0.7        | <b>16.48</b>                 | 1513.56 | 0.7 | <b>16.74</b>                        | 1514.34 |  |
| 1.3                                 | 15.98         | 1512.06      | 1.3        | 16.14                        | 1512.54 | 1.3 | 16.25                               | 1512.89 |  |
| 2.0                                 | 15.84         | 1511.64      | 2.0        | 16.04                        | 1512.25 | 2.0 | <b>16.10</b>                        | 1512.44 |  |
| 2.7                                 | 15.82         | 1511.58      | 2.7        | 16.01                        | 1512.16 | 2.7 | 16.06                               | 1512.32 |  |
| 3.3                                 | 15.81         | 1511.58      | 3.3        | 15.99                        | 1512.13 | 3.3 | 16.05                               | 1512.29 |  |
| 4.0                                 | 15.82         | 1511.60      | 4.0        | 15.99                        | 1512.14 | 4.0 | 16.03                               | 1512.27 |  |
| Dept                                | th (m) - Temp | erature (°C) | Depth      | Depth (m) - Temperature (°C) |         |     | <b>Depth (m) - Temperature (°C)</b> |         |  |
| 0.0                                 | 22.72         | 1523.25      | 0.0        | 23.10                        | 1524.23 | 0.0 | 20.54                               | 1525.17 |  |
| 0.7                                 | 22.72         | 1523.27      | 0.7        | 22.89                        | 1523.70 | 0.7 | <b>19.87</b>                        | 1523.34 |  |
| 1.3                                 | 22.83         | 1523.56      | 1.3        | 22.68                        | 1523.18 | 1.3 | 19.57                               | 1522.53 |  |
| 2.0                                 | 22.86         | 1523.66      | 2.0        | 22.58                        | 1522.92 | 2.0 | <b>19.46</b>                        | 1522.24 |  |
| 2.7                                 | 22.88         | 1523.72      | 2.7        | 22.23                        | 1522.01 | 2.7 | 19.43                               | 1522.16 |  |
| 3.3                                 | 22.87         | 1523.69      | 3.3        | <b>21.61</b>                 | 1520.38 | 3.3 | 19.41                               | 1522.12 |  |
| 4.0                                 | 22.84         | 1523.63      | <b>4.0</b> | 21.13                        | 1519.08 | 4.0 | 19.41                               | 1522.12 |  |
|                                     |               |              |            | <b>†</b>                     |         |     |                                     |         |  |
|                                     |               |              |            |                              |         |     |                                     |         |  |
|                                     |               |              |            |                              |         |     |                                     |         |  |

- If this is only a depth error, the difference is very strong, because (dT/dz)<sub>Max</sub> can occur at ~ 25-35 m depth, therefore 2.0m/30.0 m ~ 7 % (even if the depth error in upper region is 5 m)
- The shift does not vary in the same way below the thermocline down to 100 m depth: frequently, it reduces or remains constant.

**YOUTUBE SECTION** 

# 2010: 3 probes sequentially deployed from a ship participating SOOP



| Probes<br>(nr.) | Fall Time<br>Range (s) | <time><br/>(s)</time> | <t><br/>Water</t> | Depth<br>Sippican | Depth<br>H95 | Depth<br>Measured |
|-----------------|------------------------|-----------------------|-------------------|-------------------|--------------|-------------------|
|                 |                        |                       |                   | (m)               | (m)          | <b>(m)</b>        |
| 3 DB            | 2.1-2.2                | 2.1                   | 14.2°             | 13.58             | 14.04        | 15.20 ± 0.20      |
| 3 DB            | 2.2-2.3                | 2.2                   | 15.4°             | 14.23             | 14.71        | 15.00 ± 0.20      |

#### Difference at the thermocline (Sippican FRE)



#### **Difference at the thermocline** (Sippican FRE)



Is the probe motion in near surface layer well described by the standard FRE?

### Test in shallow water H = 2.5m

### The impact angle varies from 0° to 90° Poor statistics, but results are...

| Probes<br>(nr.) | Fall Time<br>Range (s) | <time><br/>(s)</time> | <t><br/>Water<br/>column<br/>(°C)</t> | Depth<br>Sippican<br>(m) | Depth<br>H95<br>(m) | Depth<br>Measured<br>(m) |
|-----------------|------------------------|-----------------------|---------------------------------------|--------------------------|---------------------|--------------------------|
| 4 DB            | 1.1-1.3                | 1.2                   | <b>19.0</b> °                         | 7.76                     | 8.03                | $7.55\pm0.10$            |
| 3 DB            | 2.5-2.7                | 2.6                   | <b>22.5°</b>                          | 16.81                    | 17.38               | 15.30 ± 0.10             |
| 6 DB            | 2.2-2.6                | 2.4                   | <b>17.0</b> °                         | 15.52                    | 16.05               | 15.40 ± 0.10             |
| 8 DB            | 4.1-4.4                | 4.2                   | <b>17.7</b> °                         | 27.14                    | 28.05               | 27.30 ± 0.10             |
| 3 DB            | 4.5-4.7                | 4.6                   | 21.5°                                 | 29.73                    | 30.73               | <b>27.60</b> ± 0.10      |
| 3 DB            | 7.4-7.6                | 7.5                   | <b>13.0°</b>                          | 48.42                    | 50.06               | 47.20 ± 0.20             |

#### February 2008: different systems ...















Calibrations

## MK21-USB vs. MK150n vs. QUOLL

|        | K      |        | 9.0    | -      | K      | E ASSEL TAMENTE VIE<br>SCARICARE FILE E<br>UTILIZIARE SOFTWARE<br>TO FER (EMULE TORR<br>ETL I ATTRAVERSOL)<br>CONNESSIONE INTERNET<br>BORDO |
|--------|--------|--------|--------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------|
| TEST   | QUOLL  | QUOLL  | MK21   | MK21   | TSK    | TSK                                                                                                                                         |
| PROBE  |        |        | USB    | USB    | MK150N | MK150N                                                                                                                                      |
| (°C)   | Start  | End    | Start  | End    | Start  | End                                                                                                                                         |
|        | cruise | cruise | cruise | cruise | cruise | cruise                                                                                                                                      |
| 12.755 | 12.759 | 12.760 | 12.63  | 12.64  | 12.751 | 12.749                                                                                                                                      |
|        | ±0.001 | ±0.002 | ±0.01  | ±0.01  | ±0.001 | ±0.002                                                                                                                                      |
| 27.953 | 27.955 | 27.956 | 27.81  | 27.84  | 27.946 | 27.947                                                                                                                                      |
|        | ±0.001 | ±0.002 | ±0.01  | ±0.01  | ±0.001 | ±0.002                                                                                                                                      |
|        |        |        |        |        |        | < PUL                                                                                                                                       |

#### **Comparison with ARGO**



Figure 1: Spatial distribution of the float/XBT pairs considered in the Mediterranean Sea.

#### Further details in R.Barbanti-P.M.Poulain, rel 61/2005 OGA 3<sup>12</sup>

#### **Comparison with ARGO**



Further details in R.Barbanti-P.M.Poulain, rel 61/2005 OGA 3<sup>43</sup>

#### **Comparison with ARGO**





During the period July 2004 to July 2005, almost 7000 pairs of XBT and float CTD temperature measurements were found with distances less than 10 days and 20 km. All these observations were collected as part of the MFSTEP program throughout the Mediterranean Sea. Our statistical analyses reveal that the XBT temperatures obtained with Sippican Deep Blue probes are systematically warmer than the float Sea-Bird CTD readings, but that the offset is generally less than 0.1 °C which is the nominal accuracy of the XBT measurements.











#### uncertainty on XBT wire length 1 cm/10 m uncertainty on XBT wire weight 0.002 g/10m













**Optimist: sunrise** 



#### **Pessimist: sunset**

Thank You very much for Your attention

## That's all

ENEA has no funds for operational oceanography activities, and I've no project funding that activity. Moreover, I've used probes for XBT tests, subtracting them from the SOOP activity in Mediterranean Sea. Anyway, my storage room has no more than 70 probes (a mix of DB-T5-T5/20, with the addition of 12 historical T4 probes)