

Biases in the XBT data and their corrections: a review

Viktor Gouretski

KlimaCampus, University of Hamburg

Hamburg, 25-27 August 2010

Zentrum für Marine und Atmosphärische Wissenschaften

Max-Planck-Institut für Meteorologie

GKSS Forschungszentrum Geesthacht

Deutsches Klimarechenzentrum

With my special thanks to Franco Reseghetti

Global subsurface database is inhomogeneous

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Profile Type Percentage

MBT

XBT

BOTTLE

CTD

Selected publications on XBT performance - 1

Introduction

Review of selected XBT studies	Arthur D. Little, Inc	1965	Experimental evaluation of XBTs.		
XBT Bias	Magruder	1970	XBT accuracies	FR-velocity, chart recorder description	
sources	Flierl, Robinson	1977	XBT measurement during MODE	XBT depth underestimated	
Olahal	Mc Dowell	1977	On XBT accuracy	XBT depth underestimated	
Global XBT/CTD inter-	Anderson	1980 XBT accuracy studies		Error statistics, warm T-bias, Sippican comments presented	
comparison	Seaver and Kuleshov	r and Kuleshov 1982 Experimental and Analytical XBT error study		Depth error study	
MBT blases	Heinmiller et al	1983	Systematic errors	Depth errors, thermal bias, new FRE	
Reliability of reference data	Green	1984	Bulk dynamics	Analytical depth-error study. Suggested that hydrodynamic drag varies linearly with depth	
plans for the	Hanawa, Yoritaka	1987	Detection of systematic errors	Depth and T-error description	
future	Roemmich, Cornuelle	1987	Calibration of XBT probes	Laboratory T-error study	
Biases and global heat	Wright, Szabados	1989	Evaluation of XBT systems	Depth- and T-error field study, different systems compared	
content anomaly	Sy	1989	DB fall-rate errors	Fall-rate error estimates	
estimates					

Selected publications on XBT performance - 2

Introduction						
Review of	Singer	1990	XBT T7 errors	T7 depth-error study, new FRE		
selected XBT studies	Watts, Mohammed, Fields	1990	XBT systematic depth error	T-7 systematic depth error		
XBT Bias	Baily	1990	The "Bowing" problem	Description of the bowing problem		
Sources	Szabados	1991	Fall rate estimation	FRE evaluated, mixed-layer T-bias reported		
Global XBT/CTD	Hanawa,Yoshikawa	1991	Re-examination of depth-error	A new FRE for T-6 and T-7		
comparison	Wisotzki,Fahrbach	1991	"Polarstern" XBT data	Study of T-differences using Heinmiller et al corrections		
MBT biases	Hallock, Teague	1992	XBT T7 fall rate study	A new T-7 FRE		
Reliability of	Hanawa, Yasuda	1992	XBT T7 Depth-error	A new T-7 FRE		
reference data	Bartz	1992	Development of an expendable sensor	Experimental results for the XBT fall rate		
Summary and plans for the	Budeus, Krause	1993	On cruise XBT calibration	On board XBT-calibration		
future	Kezele, Friesen	1993	XBT Test data, analysis	All important error-related problems posed (FR, thermal bias, FR dependence on ambient T		
Biases and global heat	Boyd, Linzell	1993	T5 T- and Depth-accuracy	A new T-5 FRE		
content anomaly estimates	Hanawa et al	1994	A new fall rate equation	A new T-4/6/7 FRE		
Courrates						

Selected publications on XBT performance - 3

Introduction	Thadathil et al.	2002	Fall rate at extreme temperature	Indication of a slower fall-rate in the Antarctica			
Review of	Kizu, Hanawa	2002	Start –up transients	Start-up transient statistics			
studies	Kizu, Hanawa	2002	Recorder-dependent error	Bowing found for two recorders			
XBT Bias	Kizu, Yoritaka, Hanawa	2005	A new T5 FRE	A new T5 FRE			
Global	Kizu, Ito,Watanabe	2005	T5: Inter-manufacturer differences and Fall-rate temperature dependence	Sippican vs TSK T-5 Fall-rate study			
XBT/CTD inter-	Reseghetti, Borghini Manzella	2007	Factors affecting XBT quality	Causes for XBT bias, T-bias correction			
MBT biases	Gouretski and Koltermann	2007	How much is the ocean warming	XBT T-bias identified on a global scale			
Reliability of	Ishii, Kimoto	2008	Re-evaluation of OHC using XBT corrections	Depth corrected using a linear bias equation			
reference data	Wijffels et al	2008	Changing XBT fall rates and their impact on estimates of Sea level rise	Overall T-bias is attributed to FR changes with time. New depth corrections			
Summary and plans for the future	Reverdin et al	2009	XBT errors during French cruises	Thermal bias identified within the mixed layer			
	diNezio, Goni	2009	Biases between XBT & Argo	Changes in fall-rate with time identified			
Biases and global heat content	Levitus et al	2009	Global heat content anoamaly	Revisited in light of recent bias studies			
anomaly estimates	Ishii and Kimoto	2009	Re-evaluation of OHC using XBT corrections	Bias is attributed to depth error			
아내 弟 Uni	Gouretski, Reseghetti	2010	Depth and T- biases (global analysis)	Global assess of Printing Campusepth- biases			

Flierl and Robinson, 1976: XBTs have systematic errors of up to 15 dbar

E. Anderson (1980) One of the most detailed inter-comparison studies. XBT temperatures found to be warm-biased. Some error causes explained

Siever and Kuleshov, 1982. Analytical and field study of systematic fall-rate errors. XBT accuracy analysis.

FIG. 3. Temperature, viscosity and terminal velocity for streamlined bodies: kinematic viscosity vs temperature (after Horn, 1969), (b) terminal velocity viscosity (after Schlichting, 1955).

global heat

content

anomaly estimates

Heinmiller et al. 1983. Systematic T- and depth errors studied

Overview

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Table 3.	Mean	and	standard	deviation	of X.	BT-CTD
temperati	are diffe	rences	s at selecte	ed depths	for T-4	and T-7
			XBT's			

		XBT-CTD tempe	rature differences
Data set No.	Depth (m)	Mean (°C)	s.d. (°C)
T-4 XBT			
6	25	0.28	0.32
7	25	0.31	0.25
8	25	0.23	0.22
9	25	0.16	0.19
10	25	0.12	0.19
11	25	0.05	0.18
Mean		0.19	0.23
T-7 XBT			5
12	25-125	0.17	0.08
13	250-350	0.10	0.10
14	175-350	0.10	0.11
15	175-375	0.13	0.16
Mean		0.13	0.11

rtical profiles of mean XBT-CTD depth differences ($\bar{\delta}_z$) for T-4 (a) and lines represent 0.02 times CTD depth. Numbers denote data sets (Tab

Szabados and Wright (1989). Study of T- and depth biases. Different acquisition systems compared

Introduction										
Review of selected XBT studies										
XBT Bias sources										
Global XBT/CTD inter- comparison	Table 4.	MEAN THE N	TEMPERATUR	E DIFFEREN S (DEGREES	NCES BETW 5 CELSIUS	EEN THE	XBT	AND	CTD	IN
MBT biases	2	SYSTEM	MEA	<u>N 5</u>	STANDARD	DEVIATI	<u>0N</u>			
Reliability of reference data		IK-9 BATHY DSU ARGOS	.02 .10 07	9 6 4	.04 .06 .08	6 4 3				
Summary and plans for the future					.05	5				
Biases and global heat content anomaly										

estimates

Bartz 1992

Introduction										
Review of selected XBT studies	AD-A261 128 EA TECH INC. FAX 503-757-7027 TELEX 25851 P.O. Box 779 Corvallis, Oregon 97339 503-7	9 CTEK 757-9716	Ź							
XBT Bias sources	PROGRESS REPORT TO OFFICE OF NAVAL RESEARCH	The 13, 1992 data stat time. V photogr this firs	e following tab 2. The first for tts at 11:13.34 iewing the vic apher to keep t test.	ole lists de ur probes . This wa leo data, up, conse	ata for the fi a were not v as our first to it is obvious equently data	rst expenda ideo taped, est using a that the pr a is incomp	able probe they were flash strob obes were lete for sev	drop test of on the both e to provid dropped to veral probe	om when e accurat o fast for deploym	, September the video e probe launch the ents during
Global XBT/CTD				Table 1	First exper	dable prob	e drop test	on Sunday	Į	
inter-	FOR CONTRACT NO: N00014-90-C-0123	Probe	Type/Mod	Wire (Y/N)	Weight (gm)	C of G inches	Start seconds	Stop seconds	Spin RPM	Drop Rate meters/sec
comparison	TITLE: Development of an Expendable Particle Sensor	H S 16	no video no video no video							4 probes are on
MBT biases	ITEM NO: 0001AG	13 12	no video XBT-5	Y	980	2.85	no flash	7.59	360	bottom
	DATE: 30 November 92	15 14	XBT-5 XBT-5/M2	N N	720 716	2.19	19.37 33.19 ?	23.35	360 360	4.84
Reliability of	B 1993	17	XBT-5	N V	717	2.18	46.36 ? 57.45 ?	64.26	214	2.87
reference data	Repert Bour	18	XBT-4/M1 XBT-4	Y	719 608	2.05	no flash 97.17	90.01 missed	360	
Summon	Principal Investigator	19 8	XBT-4/M2 XBT-7	Y Y	715 717	2.00 2.10	no flash no flash	104.28 109.29		
plans for the		9 5	XBT-7 XBT-4	Y Y	719 715	2.10 2.05	118.31 131.16	121.52 134.25	450 400	5.73 6.10
future	Approved for public releases Distribution United	22 20	AXBT AXBT	N Y	702 839	0.75	144.23 no flash	157.52 168.12	N/A N/A	1.42
.		23	AXBT	N Y	699 845	1.05	no flash no flash	181.50	N/A N/A	
Blases and global heat content anomaly estimates	1									

Hallock and Teague, 1992. A new T-7 FRE presented

Introduction

FIG. 4. Depth error $(Z_{CTD} - Z_{XBT})$ for selected features. XBT depths calculated with the Sippican FRE. Different symbols denote different LAS's.

40

estimates

Budeus and Krause (1993) On board calibration method

probes, measured during Polarstern cruise ARK 7/2.

anomaly estimates

Kezele and Friesen, 1993. Analysis of the concurrent XBT and CTD tests. Potential errors identified

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

XBT Test Data Comparison and Analysis

Concurrent XBT and CTD Tests Yield Basis for Analysis of Errors—Source of Discrepancies Potentially Identified

By Dusko B. Kezele Hydrodynamics Engineer and Gary Friesen

Program Manager Sparton of Canada Ltd.

W ith the end of the Cold War approaching. Sparton of Canada Ltd. (SOC)—a division of Sparton Corp. (Jackson, Michigan)—was brought to the oceanographic community with a focus towards a diversified product line and a broader customer base. The expendable bathythermograph (XBT) was a logical first undertaking given SOC's history in the production of the AN/SSQ-36 (air-launched XBT).

The existing X BT design, accepted as a standard within the community, had long been the only practical technology available that could provide a vertical temperature profile to a vessel underway. However, much of the product implementation effort confirmed that the concept (a fine bifilar wire despooling from a spinning probe as it falls through the water column) is effective but may need to be improved.

Predicting the depth of the probe from elapsed time via a fall rate equation has been the focus of controversy and is a topic worthy of discussion.

First developed in the early 1960s for the U.S. Navy as a temperature survey tool, the XBT's primary function was (and still is) to locate the seasonal thermocline with an accuracy of $\pm 0.1^{\circ}$ C and ± 2 percent in depth without the need to slow ship speed. However, the XBT has also come to be extensively used in the oceanographic community as a research tool. This application spurred a need for improved XBT accuracy, particularly in depth. Recently, Sparton of Canada was granted a qualification as an XBT supplier to the Navy as a result of extensive at-sea tests and a comprehensive facility evaluation by Navy personnel. Initial tests were conducted December 1991 through January 1992 (Continued on page 18)

	8			SOC PROBE USN PROBE USN DEPTH TOLERANCE	DATA DATA	and the second
						10.00
			0		1	and the second
				i		and a state
	/	la a pa		0 •8▲8■ 0	0	C. C. State of C.
/		D		000		L'alland
/			р . 			A State
/	•		*\ 0m			ALC: No. 1

FEBRUARY 1993 / SEA TECHNICI CON LA

Depth errors should be completely decoupled from any analysis of T-accuracy

236 depth-error data points

Both Sparton and Sippican probes Fall faster than Sippican FRE

Z_{spar}=6,609t – 0.0016 t2 Z_{Sin}=6,573t-0.0018t2

The variybility of fluid properties can affect the XVBT drag coeff.

The precise "C_D versus Re" curve remains unknown for XBTs

FRE is not valid above ~10m

No globally applicable FR model can be developed without detailed hydrodynamic drag data

Boyd and Linzell (1993). Thermal bias estimates for T-5. New T-5 FRE

NOTES AND CO

0.5

1.0

Temperature Difference (°C)

0.0

500 1000 1500 **`b`** 2000 RANGE ROVER -----EI. --FIG. 6. Mean temperature difference versus depth for the CTD-

XBT profile pairs in this study. Panel (a) was computed using uncorrected temperatures and the manufacturer's fall-rate equation. Panel (b) was computed using the temperature corrections and cubic all-rate equation from this study.

Universität Hamburg

content

anomaly

estimates

Hanawa, Rual, Bailey, Sy, Szabados (1994, 1995). A comprehensice depth-error study. New FRE for T4,T6 and T7. Data from nine geographical regions

Fig. 1. Locations where the XBT/CTD comparison experiments were conducted (see also Table 1). The dashed line at 5°S in the western Pacific shows the limit between the wep and swtp data sets.

Biases and

global heat

content anomaly estimates

Hanawa et al. 1995. Indication of possible diffrent FR for Sippican and **TSK probes**

Fig. 10. Mean Sippican, and TSK, T-7 and T-4/T-6 AB points and their two-standard-error-ofthe-mean ellipses on the a-b plane (same scales as Fig. 8, see Table 1 for detailed information).

anomaly estimates

Thadathil et al 2002

FIG. 9. Analytical depth errors for different latitudes from the tropical to polar regions along with the corresponding temperature profiles. Solid lines represent depth error and dashed lines represent temperature.

Kizu and Hanawa (2002). Estimates of the near-surface layer thickness where transient effects are importent

📕 Universität Hamburg

Reseghetti, Borghini and Manzella (2007). A new data correction method including both temperature and depth corrections. Importance of system response time demonstrated

Introduction

Biases and global heat content anomaly estimates Fig. 6. Comparison between mean temperature difference (with one standard deviation) with data processing as in Manzella et al. (2003), i red, and after the application of ETC correction, in blue: in (a) T4 probes, and in (b) DB probes. The plots have different scales.

UH H Universität Hamburg

Gouretski and Koltermann, 2007. Global inter-comparison of collocated binned XBT and CTD/bottle temperatures. First evidence of the total warm bias on the global scale (for Hanawa et al. FRE!)

Wijffels et al., 2008 confirmed G&K2007 results and suggested corrections. Bias is attributed solely to the fall-rate time-variations

Universität Hamburg

Reverdin et al (2009)

Summary and plans for the future

Biases and global heat content anomaly estimates FIG. 2. Comparison of near-surface temperature from XBTs with corrected intake temperatures. For each cruise, the average difference and its associated error are indicated as a function of average intake temperature (see Tables 1 and 2). Notice that for the two "coldest" cruises Ovide2002 and Ovide2004, the intake temperature was corrected based on comparison with nonsimultaneous CTD measurements. The values for the two 2007 cruises Egee5 and Egee6, which exhibit smaller differences, have not been plotted.

DiNezio and Goni (2009). XBT vs Argo comparison. Hanawa et al. FRE no more actual for the period 2000-07.

Introduction

Review of

studies

XBT Bias sources

Global XBT/CTD

intercomparison

MBT biases

Reliability of

plans for the

Biases and

global heat

content anomaly

estimates

future

XBT Bias sources:

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

• Fall rate equation : Z_{xbt} = at - bt²

(uncertainty in coefficients, overall validity questionable)

- Probe characteristics (slight manufacturing differences in thermistor, probe weight, probe shape/size)
- Wire (different type of insulation)
- Acquisition system (strip-chart/digital recorders,ETC,...)
- Launch conditions (height, air temperature, sea-ice, ship-wake ...)

Ambient conditions during the fall (viscosity~water temperature)

Comparison of binned XBT and CTD data BINNING OF THE ORIGINAL T-PROFILES: 111kim x 111km x 1month

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates • Prevailing positive bias in weakly stratified waters (b,d)

• Negative biases in the tropics (strong thermocline) (a,c)

Total T-bias at 300 m level /T_{XBT} - T_{CTD}

Globally-averaged T-blas plotted vs depth and time

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Veen

Year

(Gouretski&Reseghetti, 2010)

Depth [m]

Time-averaged T-bias plotted vs depth and temperature at 10 m

(from Gouretski&Reseghetti, 2010)

UH Universität Hamburg

content anomaly estimates

Time-averaged T-bias plotted vs depth and latitude

•

Common geographic pattern: correlation with vertical temperature gradient

Latitude

estimates

THERMAL BIAS PROBLEM

Introduction

Review of selected XBT studies

XBT Bias sources

Global **XBT/CTD** intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Versus Depth and time

Depth-averaged

(from Gouretski&Reseghetti, 2010)

BIAS MODEL

UH

🛱 Universität Hamburg

Introduction	Bias (T _{XBT} – T _{ref}) of the individual XE	BT binned profile:						
Review of selected XBT studies	$\mathbf{b}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{t}) = \mathbf{b}_{T}(\mathbf{x},\mathbf{y},\mathbf{t}) + \boldsymbol{\zeta}(\mathbf{z},\mathbf{t}) \cdot \gamma(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{t}) + \boldsymbol{\varepsilon}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{t}).$							
XBT Bias	 Spatially averaged total T-bias: 	$B(z,t) = B_{T}(t) + \zeta(z,t) \cdot G(z,t),$						
sources		z – actual depth						
Global XBT/CTD inter- comparison		t –time						
companison		$B_{T}(t)$ – thermal bias						
MBT biases		γ,G– vertical T-gradient						
Reliability of		ζ– depth error						
relefence data	 Depth correction factor: s(z,t)= 	z/z _x (z,t)						
Summary and plans for the future		z_x – XBT depth						
Biases and global heat content anomaly estimates	• Total bias: $B(z,t) = B_T(t) + z_x(t)$	(z,t) · [1 - s(z,t)] · G(z,t)						

Optimal depth correction factor

Changes of the depth correction factor with time

Analytical approximation for the depth correction factor

Stretching approximation parameters vs time

T4/T6: Stretching approximation parameters

T7/DB: Stretching approximation parameters

Fall-rate uncertainty problem: side by side XBT vs CTD intercomparisons

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

64 side-by-side intercomparisons available from the literature

Depth overestimation in the upper layer has been observed

KlimaCampus

Why depth is overestimated near the surface?

inter-

future

Direct measurements of the XBT fall velocity

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

(from Gouretski&Reseghetti, 2010)

Conclusion: Fall rate reduction is not enough to explain the apparent depth underestimation in the upper layers ! Further tests needed to improve statistics

FALL-RATE DEPENDENCE ON TEMPERATURE

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Zonally-averaged T-bias

Zonally-averaged Temperature

Latitude

FALL RATE DEPENDENCE ON TEMPERATURE

Introduction

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

KlimaCampus

PARAMETERIZATION OF THE TEMPERATURE (viscosity) EFFECT

anomaly estimates

Original and residual bias for different bias models: T-4/T-6

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Total T-bias

Bias reduction

(from Gouretski&Reseghetti, s2010) KlimaCampus

Deptph [m9

Original and residual bias for different bias model: T-7/DB

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Total T-bias

Bias reduction

(from Gouretski&Reseghetti, 2010)

Optimal stretching and T-bias fo T5 probes: preliminary results

Zero thermal bias, optimal depth correction for T-4/t-6

BIASES IN THE MBT DATA

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Depth correction factor

Thermal bias

(Gouretski&Reseghetti, 2010)

Total T-bias in MBT Data

Introduction			
Review of selected XBT studies			
XBT Bias sources			
Global XBT/CTD inter- comparison	Total T-bias	Bias reduction	
MBT biases	0 100 200	(sp 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Original data
Reliability of reference data			Corrected data
Summary and plans for the future	19601970198019900 5 10 15 20 25 –80 –40 0 40 80 Year T _{10m} Latitude	1960 1970 1980 1990 0 5 10 15 20 25 –80 –40 0 40 80 Year T _{10m} Latitude	
Biases and global heat content anomaly estimates	(Gou	retski&Reseghetti, 2010)	

MBT laboratory calibrations

Consistency of the CTD&Botlle Dataset

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates Yearly T-difference (Bottle – CTD) as the median of all collocated bins

(Gouretski&Reseghetti, 2010)

🖁 Universität Hamburg

Summary-1

٠

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Consensus (probably) exists on:

- 1) XBT data may have both depth- and thermal bias
- 2) Sippican FRE for T-4, T-6, T-7 and DB underestimates the fall rate below the near- surface layer, depth overestimation for T-5 probes
 - 3) Thermal bias is not-negligible and can explain part of time variations in the total T-bias. This bias varies with time.
 - 4) Depth-varying depth-correction factor required
- 5) Fall-rate is dependent on the ambient water temperature
- 6) Fall-rate is time dependent
 - 7) Biases may depend on acqusition system
-?

Summary -2

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Open questions:

- 1) How variable were the fall-rate characteristics since 1967?
- 2) Is thermal bias temperature-dependent?
- 3) Do Sippican and TSK probes have different FREs?
- 4) Performance of strip-chart recorders essentially unknown
- 5) Fall-rate dependence on small manufacturing differences (probe weight, size, thermistor, ...) to be confirmed
- 6) Fall rate dependence on launch height still unclear
- 7) Ship-wake & ocean current influence on the fall rate unknown
- 8) Better parameterization for the fall-rate dependance on ambient temperature needed

.....?

- Can we develop (agree upon) a new FRE(s) which we can recommend to use instead of Hanawa et. al. 1994,1995 FRE?
- Is it possible to provide a single new FRE, or do we have to treat strip-chart recoreded and digitally-recorded data separately?
- Can we agree upon a correction method for the XBT data?

Global Heat Content and Biases in the XBT Data

Sampled 2x2-degree boxes

Layer mean global T-anomaly

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

UH H Universität Hamburg Manuscript in preparation

Estimating sampling error from GECCO reanalysis

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

KlimaCampus

🕂 🍂 Universität Hamburg

Estimates of the residual bias

Introduction

Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

Manuscript in preparation

Global T-anomaly: Original vs corrected data

Manuscript in preparation

CONCLUSIONS

Introduction Review of selected XBT studies

XBT Bias sources

Global XBT/CTD intercomparison

MBT biases

Reliability of reference data

Summary and plans for the future

Biases and global heat content anomaly estimates

- Research quality profile data set is needed to reduce uncertainties in the heat content estimates
- Growing databases open a possibility for re-evaluation of the data quality and for the assessement of systematic errors
- Progress in understanding XBT biases achieved, but both the metadata for the historical collection and dedicated tests and CTD/XBT inter-copmparisons needed
- Further close cooperation between research groups important to estimate the effect of methodological differences

