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1 Introduction 

1.1 Scope of this document 

This document holds the End-to-End ECV Uncertainty Budget (E3UB) prepared by CCI+ Salinity 
team, as part of the activities included in the [WP240] of the Proposal (Task 2 from SoW ref. ESA-
CCI-PRGM-EOPS-SW-17-0032). 

The climate users of CCI+ Sea Surface Salinity (SSS) products need to know precisely their 
uncertainty from statistical indicators as realistic as possible. The simplest way to qualify SSS is 
to associate it with two statistical indicators that are the random error and systematic error. The 
purpose of this document is to provide an estimation of the systematic uncertainties in order to 
correct measured SSS before L3/L4 SSS merging and the way to estimate the L4 SSS random error.  

Uncertainties arise due to many aspects that can be generally grouped into the following primary 
categories: 

• instrument measurement uncertainty: those relating to instrument hardware, 

• retrieval/algorithm uncertainty: those related to model uncertainties and auxiliary data a 
priori error (SST, WS, TEC, galactic correction, sun correction, …), 

• unknown: those uncertainties that are “unknown”. 

For each category standard practice [RD-47] requires an uncertainty budget to be derived 
including all aspects leading to a quantification of a root-sum-square (RSS) estimate of 
uncertainty.  

The traditional way to estimate errors is to consider a statistical approach for the data processing. 
Least square methods allow, under the assumption of Gaussian error of the input data, to 
calculate errors on the model parameters. In theory, at each processing step, errors associated 
with the corresponding parameters are available at the input of the next calculation step.  

However, in practice, there are processing steps in SMOS, SMAP or Aquarius data that do not 
propagate errors. L0-L1 processing does not propagate all the errors related to calibration 
problems or uncertainty on certain parameters (for example, for SMOS there is an uncertainty 
on antenna gains that is not propagated during reconstruction). In addition, the reprocessing of 
the L0→L1 data is not within the scope of this project. However, in some cases, it is possible to 
estimate errors empirically at the end of a processing. 
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1.2 Structure of the document 

The E3UB is structured as follows: 

This document is composed of 4 major sections: 

✓ Section 2: Sensor main characteristics 

✓ Section 3: L1 uncertainty characterization 

✓ Section 4: L2OS uncertainty characterization 

✓ Section 5: L3 and L4 error budget 

L2/L3/L4 data sets will be provided each year and are described in the SRD.  

This is the first version of the E3UB document addressing Year 1 activity. More accomplished 
versions will be proposed in Year 2 and 3 accounting for acquired experience and feedback 
received by the users of the products.  

1.3 References 

1.3.1 Applicable Documents 

ID Document Reference 

AD01 CCI+ Statement of Work SoW 

AD02 Product User Guide (PUG) PUG 

AD03 User Requirement Document (URD) SSS_cci-D1.1-URD-i1r0 

AD04 Product Specification Document (PSD) SSS_cci-D1.2-PSD-v1r4 

AD05 Algorithm Theoretical Baseline Document  SSS_cci-D2.3-
ATBD_L3_L4-i1r0_v1.1 

1.3.2 Reference Documents 

ID Document Reference 

RD01 Boutin, J., N. Martin, N. Kolodziejczyk, and G. Reverdin (2016a), Interannual 
anomalies of SMOS sea surface salinity, Remote Sensing of Environment, 
doi:http://dx.doi.org/10.1016/j.rse.2016.02.053 

 

RD02 Kolodziejczyk, N., J. Boutin, J.-L. Vergely, S. Marchand, N. Martin, and G. 
Reverdin (2016), Mitigation of systematic errors in SMOS sea surface salinity, 
Remote Sensing of Environment, 
doi:http://dx.doi.org/10.1016/j.rse.2016.02.061. 

 

RD03 Evaluation of measurement data – Guide to the expression of uncertainty in 
measurement, JCGM 100:2008 

 

RD04 SMOS ATBD L2OS v3.13, 29 April 2016 SO-TN-ARG-GS-0007 



 

Climate Change Initiative+ (CCI+) 

Phase 1 

End-to-End ECV Uncertainty 

Budget 

Ref.:  ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  19/12/2019 

Version : v1.2 

Page:  15 of 68 

 

© ARGANS Ltd. 2019 

ID Document Reference 

RD05 AQ-014-PS-0017_Aquarius_L2toL3ATBD_DatasetVersion5.0 

Liang Hong, Normal Kuring, Joel Gales and Fred Patt  

 

  

RD06 AQ-014-PS-0018_AquariusLevel2specification_DatasetVersion5.0 

Fred Patt,  Liang Hong 

 

RD07 SMAP_RemSSS_Release_V2.0  

RD08 Meissner, T. and F. J. Wentz, 2016: Remote Sensing Systems SMAP Ocean 
Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 
2.0 validated release. Remote Sensing Systems, Santa Rosa, CA, USA. 
Available online at www.remss.com/missions/smap, doi: 10.5067/SMP20-
2SOCS (L2C files). 

 

RD09 Boutin J., J.-L. Vergely, S. Marchand, F. D'Amico,  A. Hasson, N. Kolodziejczyk, 
N. Reul, G. Reverdin, J. Vialard (2018), New SMOS Sea Surface Salinity with 
reduced systematic errors and improved variability, Remote Sensing Of 
Environment, doi:http://dx.doi.org/10.1016/j.rse.2018.05.022 

 

RD10 Thomas Meissner + Frank Wentz Remote Sensing Systems, Santa Rosa, CA, 
RSS SMAP Salinity: Version 2 Validated Release. Algorithm Theoretical Basis 
Document (ATBD),   September 13, 2016 

RSS Technical Report 
091316  

1.4 Acronyms 

AD  Applicable Document 

ADP   Algorithm Development Plan 

AOPC  Atmospheric Observation Panel for Climate 

AR  Assessment Report (of the IPCC) 

AR6   IPCC Scientific Assessment Report 6 

ATBD   Algorithm Theoretical Basis Document 

Aquarius NASA mission 

C3S   Copernicus Climate Change Service 

CAR   Climate Assessment Report 

CCI The ESA Climate Change Initiative (CCI) is formally known as the Global Monitoring 
for Essential Climate Variables (GMECV) element of the European Earth Watch 
programme 

CCI+ Climate Change Initiative Extension (CCI+), is an extension of the CCI over the 
period 2017–2024 

CDR   Climate Data Record 
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CEOS   Committee on Earth Observation Satellites 

CFOSAT Chinese French Oceanography Satellite 

CGMS   Coordination Group for Meteorological Satellites 

CliC  World Climate Research Programme - Climate and Cryosphere Project 

CLIVAR  WCRP Climate Variability and Predictability project 

CMEMS Copernicus Marine Environmental Monitoring Service 

CMIP   Coupled Model Intercomparison Project 

CMUG   Climate Modelling User Group 

COP   Conference of the Parties 

COWCLIP Coordinated Ocean Wave Climate Project (of JCOMM) 

CR   Cardinal Requirement 

CRDP   Climate Research Data Package 

CRG   Climate Research Group 

CSCDA  Copernicus Space Component Data Access System 

CSWG   Climate Science Working Group 

DARD   Data Access Requirements Document 

DEWG   Data Engineering Working Group 

DOI   Digital Object Identifier 

DPM   Detailed Processing Model 

DTBT3   Database for Task 3 

DUE   Data User Element 

E3UB   End-to-End ECV Uncertainty Budget 

EC   European Commission 

ECMWF  European Centre for Medium Range Weather Forecasts 

ECSAT   European Centre for Space Applications and Telecommunications 
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ECSS   European Cooperation for Space Standardization 

ECV   Essential Climate Variable 

EO   Earth Observation 

EOV  Essential Ocean Variable (of the OOPC) 

ESGF  Earth System Grid Federation 

ESM  Earth System Model 

EU  European Union 

FCDR   Fundamental Climate Data Record 

FIDUCEO  Fidelity and uncertainty in climate data records from Earth Observations 

FOV  Field Of View 

FP7  EU Framework Programme 7 

FRM   Fiducial Reference Measurements 

GAIA-CLIM  Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring 

GEO   Group on Earth Observations 

GCOS   Global Climate Observing System 

GCW  Global Cryosphere Watch 

GMECV Global Monitoring of Essential Climate Variables - element of the European Earth 
Watch programme. 

GNSS Global Navigation Satellite System 

GOOS Global Ocean Observing System 

H2020   Horizon 2020 programme 

Hs  Significant Wave Height (see also SWH) 

H-SAF   EUMETSAT's Hydrology Satellite Applications Facility 

HDD   Hard disk 

IOC   Intergovernmental Oceanographic commission (of UNESCO) 

IODD   Input Output Data Definition 
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IP   Implementation Plan 

IPCC   Intergovernmental Panel on Climate Change 

ISAS    In Situ Analysis System (LOPS) 

ISDB   in situ database (of Fiducial Reference Measurements and satellite 
measurements) 

JAXA   Japan Aerospace Exploration Agency 

JCOMM Joint Commission on Oceanography and Marine Meteorology 

KO   Kick-off 

MOOC   Massive Open Online Course 

NASA   National Aeronautics and Space Administration 

NOAA   National Oceanic and Atmospheric Administration 

NOP   Numerical Ocean Prediction 

NWP   Numerical Weather Prediction 

Obs4MIPs  Observations for Model Intercomparison Projects 

ODP   Open Data Portal 

OOPC   Ocean Observation Panel for Climate 

OTT  Ocean Target Transform 

Pi-MEP  Pilot Mission Exploitation Platform 

PMP   Project Management Plan 

PSD   Product Specification Document 

PUG   Product User Guide 

PVASR   Product Validation and Algorithm Selection Report 

PVIR   Product Validation and Intercomparison Report 

PVP   Product Validation Plan 

QA4EO  Quality Assurance Framework for Earth Observation 
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QSR   Quarterly Status Report 

R&D   Research and Development 

RTM  Radiative Transfer Model 

RCP   Representative Concentration Pathways 

RD   Reference Document 

SAF   Satellite Applications Facility 

SAR   Synthetic aperture Radar 

SISS   Satellite and In situ [Working Group] 

SLP   Sea Level Pressure 

SMAP   Soil Moisture Active Passive [mission of NASA) 

SMOS   Soil Moisture and Ocean Salinity [satellite of ESA] 

SoW   Statement of Work 

SRAL   SAR Radar Altimeter (of Sentinel-3) 

SRD   System Requirements Document 

SSD   System Specification Document 

SSS   Sea Surface Salinity 

SST  Sea Surface Temperature 

SVR   System Verification Report 

SWIM   Surface Waves Investigation and Monitoring (instrument of CFOSAT) 

SWH   Significant Wave Height (see also Hs) 

TB  Brightness Temperature 

TBC  To Be Completed 

TOPC   Terrestrial Observation Panel for Climate 

TR   Technical Requirement 
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UCR/CECR Uncertainty Characterisation Report (formerly known as the Comprehensive Error 
Characterisation Report) 

UNFCCC  United Nations Framework Convention on Climate Change 

URD   User Requirements Document 

USB   Universal Serial Bus 

USGS   United States Geological Survey 

VOS   Volunteer Observing ships 

WCRP   World Climate Research Programme 

WGClimate  Joint CEOS/CGMS Working Group on Climate 

WMO   World Meteorological Programme 

WS  Wind Speed 

WWA   World Wave Atlas (of FUGRO) 
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2 Sensor main characteristics 

2.1 Introduction 

This section presents the main characteristics of SMOS, SMAP and Aquarius sensors. It provides 
information about revisit time and mean footprint resolution.  

2.2 SMOS 

The main SMOS characteristics are: 

✓ Interferometric radiometer with center frequency of 1.41 GHz and bandwidth of 27 MHz 

✓ Data time coverage: 2010-now 

✓ sub-cycle of 18 days 

✓ Exact repetitive cycle : 149 days 

✓ Earth Incidence Angle:  0-60°. 

✓ Local ascending/descending time: 6 AM/PM. 

✓ four polarizations 

✓ 3-dB (half power) footprint size: between 40 and 100 km (according to the incidence 
angle) 

✓ Global coverage : 3 days 

2.3 SMAP 

The main SMAP characteristics are: 

✓ Radiometer (6-meter mesh antenna) with center frequency of 1.41 GHz and bandwidth 
of 24 MHz 

✓ Exact repetitive cycle of 8 days 

✓ aft and fore acquisition 

✓ Data time coverage: 04/2015 to now 

✓ Conical scanning at 14.6 rpm. Scan time:  4.1 sec  

✓ Earth Incidence Angle:  40°. 

✓ Local ascending/descending time: 6 PM/AM. 

✓ four polarizations 

✓ 1000 km wide swath. 
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✓ 3-dB (half power) footprint size: 40 km. 

✓ Global coverage : 3 days 

2.4 Aquarius 

The main Aquarius characteristics are: 

✓ Radiometer (3 beams) with center frequency of 1.413 GHz and bandwidth of 25 MHz. 

✓ Exact repeat cycle of 8 days 

✓ Almost global coverage : 7 days 

✓ Data time coverage: 08/2011 to 06/2015. 

✓  Earth incidence angles: 28.7, 37.8, and 45.6°. 

✓ Footprints for the beams are: 74 km along track x 94 km cross track, 84x120 km and 
96x156 km yielding a total cross track of 390 km. 

✓ Measurement every 1.44s (about every 10 km). 

✓ Distance between beam swaths of about 100 and 150 km (across track).  

✓ Local ascending/descending time: 6 PM/AM. 

✓ TH and TV 

✓ Aligned with a scatterometer (1.26 GHz); both instruments polarimetric. 

2.5 AMSR 

Not considered in year 1.  
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3 L1 uncertainty characterization 

3.1 Introduction 

L1 processing is very complex and requires specific expertise. At our level, it is not possible to 
review all L0-L1 processing methods. The purpose of this project is to replay L2 from existing L1 
products. It is therefore not our objective to re-estimate TB errors but to take what comes out of 
the L0-L1 and work with them, as long as we have sufficient information to properly propagate 
TB errors to level 2. TBs at the L1 processing output may have systematic errors that are not 
corrected at L0-L1.  

Remaining differences between forward model predictions and TB data from SMOS, Aquarius or 
SMAP are still found after instrumental calibration.  These differences may exhibit seasonal 
patterns varying from ascending to descending passes, due mainly to errors in the thermal 
model/monitoring of the instrument, Radiative Transfer Model (RTM) inaccuracies, input 
auxiliary EO data , …etc. 

3.2 SMOS sensor 

SMOS is an L-band interferometer that measures the Fourier transform of the scene. Level 1 
processing is the passage of visibilities (which integrate antenna gains) to the Fourier transform 
of TB then the passage of data TB in the frequency space domain to the physical space domain. 
These different processing require knowledge of antenna gains, with, as an additional difficulty, 
a spatial sampling of the observed frequencies lower than Shannon's sampling. Since the scene 
has infinite frequencies, this poses specific difficulties for the passage into physical space domain. 
In the following, this operation is called reconstruction 

Complex calibrations for thermal drifts based on Noise Injection Radiometer data and several on-
board thermistor measurements are used to calibrate the visibilities. Short-term calibration is 
regularly performed at raw level to compensate for high variability drifts. In addition, cold-sky 
calibration is performed at several occasions in a year when the satellite sensor is rotated upward 
sky during dedicated manoeuvres (used for the so-called Flat Target Transformation). Yet, 
systematic and seasonal image reconstruction errors are still found in the reconstructed level 1 
data despite raw data calibration. This can occur, for example, due to the instrument response 
to a very strong L-band source in the field of view, such as the sun image and its tails corrupting 
the quality of the reconstructed brightness but also because of image reconstruction systematic 
errors (noise floor, aliasing, instrument impulse response function, antenna pattern 
uncertainties).  

To compensate for these distortions in the image, a vicarious calibration is performed at level 2 
by evaluating a mean spatial difference in the antenna coordinate frame between SMOS antenna 
TBs and a radiative transfer forward model of the brightness obtained along specific orbits in the 
middle of the Pacific. The forward model is derived using climatology of SSS or analysed in situ 
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data (ISAS fields) interpolated along the half orbits used for calibration. The Tb adjustment is 
named the Ocean Target Transformation (OTT).  

Following this correction, it is possible to empirically validate the errors on TBs against the 
expected radiometric noise. These errors are in accordance with the expected radiometric noise, 
as soon as the various unmodeled contributions have been filtered (RFI, sun effect, etc.). On the 
other hand, there are reconstruction biases that are not corrected by the OTT, which then 
generates biases in the estimated parameters. For the time being, L1 processing do not make it 
possible to avoid such biases. However, the Gibbs 2 treatment currently being implemented 
should reduce coastal and ice edge biases. 

In SMOS Level 2 processing, an empirical adjustment based on evaluated mean biases (between 
forward model and objectively analysed observations) found after averaging long periods of 
acquisition (4-5 years) is made on the input brightness depending on the target location, 
polarization, imaging position within the instrument field of view and passes type. Here again, 
these corrections depend on a reference SSS field (ISAS, HYCOM, climatology). This empirical 
correction improves the signal biases along the coast line but cannot correct for moving edges 
such as sea-ice border. New promising corrections are underway at Level 1 (so-called Gibbs-2). 

3.3 SMAP and Aquarius sensors 

To correct for residual drifts after raw data calibration, NASA algorithms thus use the median 
difference between Aquarius (or SMAP) data and forward radiative transfer model simulations 
of the brightness temperature obtained by using HYCOM model SSS or Argo SSS (depending on 
the release) as a forcing parameter. The difference is then averaged globally and the mean 
difference evaluated daily is used for post-calibration adjustments.  

In addition, for SMAP (it is more complicated than for Aquarius: the SMAP antenna has some 
non-negligible emissivity), the antenna temperature predicted from thermal model has probably 
some errors, and a latitudinal correction has to be applied in addition to the globally average one. 
This makes the SMAP calibration mode similar to the calibration for SMOS based on the OTT. 

Sharp brightness transition in the satellite pixels mixing open ocean and land masses, or sea ice, 
generate Gibbs like phenomena produced by the sharp truncation of the Fourier Transform of 
the signal. In addition, uncertainties in the modelled side-lobes of the radiometer antenna 
patterns used for image reconstruction/antenna temperature  provide some signal leakage of 
the brighter sources (land, sea ice) into the lighter source (pure ocean). These so-called “land 
contamination” or “ice-contamination” need to be corrected for the input TB to retrieve an 
unbiased SSS as close as possible from the coast lines or ice-edges.  A method of contrasting half-
space is currently used in NASA algorithms to adjust antenna pattern corrections when Aquarius 
or SMAP pass through two sharply contrasted (in the TB sense) semi-infinite surface (from sea to 
land, for instance).  

In the CCI+SSS project, we will develop algorithms using the same SSS reference field (in situ fields 
such as ISAS ) used to vicariously calibrate the Level 1 data used as input for the three sensor 
Level 2 algorithms. To ensure satellite and in situ SSS consistency for these calibration steps, we 
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will ensure that the satellite data used to evaluate the corrections can be safely compared to in 
situ observations (i.e., removal of data acquired in presence of rain, or, in zones with high SSS 
horizontal/vertical/temporal variability).  We will thus analyse the consistency of the SSS fields 
from the 3 sensors in the pixels as a function of distances from coasts and sea ice edges, as 
function of latitude and time and propose corrections to adjust for large-scale inter-sensor 
differences and on a reference in situ fields (ISAS field). 

3.4 RFI filtering 

SMOS, Aquarius and SMAP missions operate in the L-band protected spectrum (1400-1427 MHz) 
that is nevertheless now known to be vulnerable to radio-frequency interference (RFI). Areas 
affected by RFI might experience data loss or result in inaccurate soil moisture and ocean salinity 
retrieved values. To alleviate this situation, several strategies were put into place to filter the 
data from RFI perturbed measurements. As SMOS, launched in 2009, was the first satellite to 
operate in L-band, it does not have any on-board hardware/software to filter RFI, so that RFI 
filtering/mitigation only rely on data post-acquisition processing. This issue is significantly less 
important for SMAP (and to a least extent for Aquarius), as they are (were) equipped with on-
board frequency/time-domain-based RFI filters.   

Over the ocean, SMOS data are contaminated by RFI emitted principally from land. The impact 
on the reconstructed brightness temperature can be positive or negative and is not limited to 
the location of the on-ground antenna causing the interference but affects measurements as 
soon as there is the line of sight between the instrument and the RFI source (Corbella, Martin-
Neira, Oliva, Torres, & Duffo, 2012). Due to the interferometer principle from a Y-shape antenna, 
the contamination is not circular symmetric in SMOS images, but presents six main tails spreading 
from the RFI source. In the case of SMAP and Aquarius, the RFI contamination is different as they 
operate real-aperture radiometer and on-board data filtering with enhanced detection 
capabilities. To protect against RFI, Aquarius employs rapid sampling (10 ms, milliseconds) and a 
“glitch” detection algorithm that looks for outliers among the samples. Samples identified as RFI 
are removed, and the remainder is averaged to produce an RFI-free signal for the salinity retrieval 
algorithm. The RFI detection algorithm appears to work well over the ocean with modest rates 
for false alarms (5%) and missed detection but RFI are still detected in Aquarius (Le Vine and De 
Matthaeis, 2014). 

SMAP takes a multidomain approach to RFI mitigation by utilizing an innovative onboard digital 
detector back end with digital signal processing algorithms to characterize the time, frequency, 
polarization, and statistical properties of the received signals. Almost 1000 times more 
measurements than what is conventionally necessary are collected to enable the ground 
processing algorithm to detect and remove interferences. A strategy to provide probability maps 
and or flags of the RFI contamination for each CCI Level 2 product from SMOS, SMAP and 
Aquarius will be proposed in order to ease a further estimate of each dataset uncertainty and 
allow an RFI tracking  during the multi-sensor Level 3 merging process.   
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4 L2OS uncertainty characterization 

4.1 Introduction 

SSS random uncertainties are provided in the L2OS products. These errors can be assessed by 
comparing estimated SSS and reference SSS (in-situ). The random and systematic uncertainties 
can be obtained in a relative way by comparing average products from different sensors and orbit 
type (ascending or descending).  

4.2 Methods 

4.2.1 Random error estimation 

4.2.1.1 Introduction 

The uncertainty on the data can be obtained in different ways. The redundancy of the error 
estimation is essential since the different calculation methods have their advantages and their 
limits. In addition, redundancy allows detecting possible problems relating to specific operating 
points. 

4.2.1.2 Error propagation 

The basic uncertainties on salinity correspond to that provided in salinity level 2 products.  

Level 2 algorithms are used to propagate the TB noise characterized by the radiometric accuracy, 
the error of all geophysical parameters (wind speed, surface temperature, etc.) on the salinity. 
The propagation methods generally assume a Gaussian statistic, a linearization of the direct 
model in the vicinity of the solution and least square type retrieval. We will see to what extent 
this approach is common to all sensors. The final error obtained depends on the a priori errors 
on the parameters. In order to homogenize L2 errors from the different sensors (SMOS, SMAP, 
Aquarius), a review of error propagation methods has been carried out. We then propose a 
strategy to standardize the error calculation and the a priori errors to be assigned to the 
geophysical parameters. This strategy of standardizing the error calculation must be in phase 
with the standardization of the auxiliary data and the uniformization of the direct and inverse 
models on the set of sensors. Note that for the time being, model errors are not propagated in 
L2 SSS. After that, when computing L3 products by combining different SSS, it is possible to use 
the L2 error in order to weight properly the SSS before average.  

Basically, the theoretical SSS a posteriori error depends on the radiometric accuracy (𝜎𝑇𝐵) and 
the error on the auxiliary data. If these two error sources are given, the SSS error also depends 
mainly on the sensitivity of TB according to the SSS. This sensitivity increases with the SST. This 
means that the SSS error, 𝜎𝑆𝑆𝑆, increases at high latitudes. The relation is as follows: 
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𝜎𝑆𝑆𝑆 = 𝜎𝑇𝐵. (
1

∂TB
∂SSS

(SST)
) Eqn 4-1 

This yields, according to a 
∂TB

∂SSS
(SST) estimation: 

𝜎𝑆𝑆𝑆 =
𝜎𝑇𝐵

0.015. 𝑆𝑆𝑇 + 0.25
 

Where 0.015. 𝑆𝑆𝑇 + 0.25 is an approximation of 
∂TB

∂SSS
(SST). SSS errors due to WS uncertainties 

and SST uncertainties could be added quadratically to this relation after propagation.   

4.2.1.3 Error from external data comparison 

The error balance obtained by propagation does not generally include the errors on the models 
themselves (model of galactic noise, roughness, solar contamination, etc.). In order to estimate 
the true errors and to validate the errors obtained by propagation, it is necessary to compare the 
satellite SSS data with in-situ measurements. This can be done directly with SSS L2. It is however 
preferable to average the L2 data of the sensors before comparison in order to reduce the noise 
level and to have an estimation of the bias. The comparison with the external data is carried out 
on L2 and L3 products. It is then possible to map the error in order to highlight any problem areas. 
This approach has been performed sensor by sensor (L2) and after aggregation of different 
sensors (L3 and L4). 

4.2.1.4 Error from self-consistency analysis 

We have 3 sensors that provide independent measurements. Two comparisons can be made, 
depending on the period: SMOS-Aquarius over the period 2012-2015, SMOS-SMAP over the 
period 2015-2020 and SMOS-SMAP-Aquarius over the period April to June 2015. Note that if we 
standardize the direct and auxiliary data, the random and systematic errors on the SSS data will 
not be completely independent. On the other hand, this could make possible to qualify errors 
related to the unexpected behaviour of the instruments (drift, problem of reconstruction, 
contamination by RFI ...). 

Finally, it is possible to compare SSS by triple collocation by adding the in-situ data products. The 
difficulty of this inter-comparison lies in the fact that the spatial resolution of SSS in situ and 
satellite are not identical (error of representativity to be taken into account) and that the satellite 
salinities are affected by correlated errors (due to the use of common auxiliary data). However, 
it is possible to estimate a minimum error level on the sensors. 
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4.2.1.5 Qualitative estimation of error and identification of outliers 

In some cases, we know that the estimation of the error at L2 is uncertain (especially if one 
identifies problems of convergence in retrieval algorithms). In this case, it is important to identify 
the outlier SSS and flag it accordingly. In addition, some statistical indicators for TB residues may 
show that the error obtained by propagation is underestimated. It is then possible to empirically 
re-evaluate the SSS errors upwards. Finally, it is possible to use data history to identify areas 
where SSS is most likely erroneous (RFI maps, seasonal maps of solar or galactic contamination, 
etc.). 

4.2.2 Systematic error estimation 

4.2.2.1 Introduction 

Estimating systematic errors is much more difficult than estimating errors. In fact, in most Level 
2 products, the systematic error is not directly estimated. There are two types of systematic 
errors: relative systematic differences (inter-sensor or intra-sensor) and absolute systematic 
errors (in comparison with ’truth’). The systematic errors should be corrected with identical 
techniques for the 3 sensors, this being an essential prelude before combining the data of the 
various sensors.  

4.2.2.2 Estimation of relative systematic differences 

The solution to this problem is not to estimate absolute SSS, but rather to analyse salinity 
anomalies. This approach has been applied to SMOS and has yielded very good results (Boutin et 
al, 2016). In particular, specific algorithms allow correcting the relative across track  systematic 
errors (Kolodziejczyk et al. 2016) and ascending-descending latitudinal biases. This type of 
algorithm will be extended to the other sensors and it will thus be possible to estimate the 
relative biases for all the sensors. 

Moreover, the bias also depends on the operating point and the sensitivity of SSS to TB. Some 
biases related to TB bias can be corrected a posteriori, for example in relation to SST. 

In order to characterize the bias, we can distinguish 2 types of bias: 

- a coastal bias independent of time which is related to the instrument function (reconstruction 
problem for SMOS and pollution by the existence of side lobes for SMAP and Aquarius). Even 
though the land emissivity is expected to vary seasonally, it is so large compared to ocean 
emissivity (~a factor 2) that at first order it can be considered as constant. 

- a seasonal latitudinal bias that depends on sun and galactic noise contamination and possibly 
other instrumental drifts that are considered here periodic over a period of one year.  

We consider that latitudinal bias is independent of the basin (Atlantic, Pacific or Indian Ocean) 
and that it applies in addition to coastal bias in an additive way.  
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The general formulation of the bias, for a given grid node at the position (lat,lon) is as follows: 

SSSobs(X, t, orb, lat, lon) = SSS(t) − bc(X, orb, lat, lon) − bl(X, orb, t_month, lat) Eqn 4-2 

with bc, coastal bias and bl latitudinal bias. SSS_obs is the observed salinity, SSS(t) corresponds 
to the unbiased SSS sought.  X corresponds to a subset of data that is assigned in the same way 
through the bias. In the case of Aquarius, this may be the considered antenna beam or, in the 
case of SMOS, the position of the measurement in the swath, in the case of SMAP the aft and 
fore views.  

It is possible to calculate bc and bl independently starting with the calculation of bl on open sea 
areas taken far from the coast. Then, a latitudinal correction is applied to the coastal pixels. From 
these latitudinal bias corrected data, we can estimate bc. Since the number of independent 
subsets of data is relatively large, the different biases can be estimated in a self-referenced way, 
i.e. there is no need for an external reference when considering anomalies and not absolute 
salinities. Note that the Eqn 4-2 requires a simultaneous estimation of SSS(t) (or anomalies with 
respect to a reference salinity given by the measurements themselves) and biases bc and bl since 
we do not use an external reference that gives us SSS(t). This is a very important point because, 
in this situation, we estimate the L4 products, represented by SSS(t) at the same time as we 
characterize the biases. The error propagation occurs at the time of this estimate. In view of this 
remark, an estimation method should be proposed. We have chosen to perform a Bayesian least 
square method that includes a time correlation length. We can process each grid node 
independently of each other and thus maintain the native spatial resolution of the sensors.  

The resolution of this equation will follow the method described in the paper by Kolodziejczyk et 
al. 2016 which presents an application on SMOS.  

An improvement of this correction has been proposed, in particular as regards the inclusion of 
SST. This approach remains valid for all L-band sensors.  

The correction of the inter-dwell or latitudinal instrument bias does not depend in principle on 
geophysical conditions. However, if the brightness temperature bias (∆TB) is generally 
independent of geophysical conditions and therefore, in a particular way, of the sea surface 
temperature (SST), this is not the case for the SSS bias (∆SSS) ([RD09]). Indeed, the sensitivity of 
the inversion (transition from brightness temperatures to SSS) depends strongly on SST. The 
sensitivity of TB to SSS decreases with a decrease in SST. Therefore, a given ∆TB bias will not have 
the same impact on SSS at low or high temperatures. More precisely, we have: 

∆SSS = ∆TB. (
1

∂TB
∂SSS

(SST)
) 

The lower the sensitivity 
∂TB

∂SSS
(SST), the greater the bias on the SSS, for a constant TB bias. This 

behaviour obviously does not simplify the management of bias correction in SSS since, at a given 
point, SST can vary greatly from one season to another. 

If we measure an SSS bias at SST=SST0, it is like measuring a different SSS bias at SST=SST1: 
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∆SSS(SST = SST1) = ∆SSS(SST = SST0) (
0.015 SST0 + 0.25

0.015 SST1 + 0.25
) 

≡ ∆SSS(SST = SST0). coeffSST0(SST1) 

coeffSST0(SST1) represents the multiplicative coefficient to be applied to the calculation of the 
bias when it is observed at a different SST (otherwise, this coefficient is equal to 1). So the idea 
is to compute the bias for a given SST, that is, to reduce, for each measure, to an average SST 
that it does not necessarily correspond to the SST observed at the time of the acquisition.  

4.2.2.3 Estimation of absolute systematic differences. 

The estimation of SSS(t) from Eqn 4-2 is affected by a global bias and the SSS(t) estimate contains 
essentially the SSS anomalies. The relative correction described in the previous section does not 
allow reaching absolute SSS field. 

The absolute systematic error calculation requires correction based on climatology or in-situ 
data. This type of systematic error is currently corrected independently on each of the sensors at 
the L3-L4 level. For SMOS, the daily correction element is the OTT, then there are different 
correction algorithms for the TBs and the SSS at L2 or L3.  

At SSS level, the resolution of Eqn 4-2 gives L4 SSS anomalies. At this level, it is possible to add at 
these SSS anomalies a constant shift in order to reach an absolute SSS.  

4.3 Spatial sampling 

The definition of the grids on which the SSS are projected can be done at several levels: 

1/ from user considerations that wish to work on regular rectangular grids in (lat,lon), 
oversampled.  

2/ from pragmatic considerations related to information content. In this case, it is a question of 
working on a grid that allows to switch to any other grid with a minimum loss of information. 
Given the resolution of the sensors, it is a question of sampling at a frequency twice as high as 
the resolution. The average resolutions of SMOS, SMAP and Aquarius are respectively 50 km, 40 
km and 150 km. A 0.25° longitudinal sampling should then allow interpolation on any grid. The 
EASE grid is an area conservative grid (Figure 1), regular in longitude but not in latitude with an 
average sample length of 25 km. The level 2 SSS will be represented on this grid before analysis 
and averaging. 
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Figure 1: EASE grid (undesampling of a factor of 10).  

4.4 Uncertainty estimation methods applied to SMOS, SMAP and Aquarius. 

4.4.1 Introduction 

We will use L2 and L3 products to characterize the error on the SSS estimator and get a first idea 
of the bias behaviour for each sensor.  

By definition, L2 and L3 products are single sensors.  L2 are given orbit by orbit while L3 are 
averages obtained at different spatial and temporal scales. The purpose of the project is not to 
produce SSS L3 but rather SSS L4. However, the production of L3 allows for sensor-by-sensor 
analysis, which can simplify the diagnosis because the information from the different sensors has 
not yet been mixed. In addition, L3 products (not produced in year 1 by CCI project) contain not 
only SSS fields but also monthly standard deviations that are close, in most cases, to the expected 
errors on L2. L3 products are also easier to handle than L2 products for diagnostic purposes 
because they consist of less noisy SSS average fields and have a reduced volume.  

We will try to apply common methods to the 3 sensors knowing that our analysis is at level 2.  

4.4.2 Pilot Mission Exploitation Platform PI-MEP  

(from https://www.smos-pimep.org/overview.html) 

The Pilot Mission Exploitation Platform (Pi-MEP) is a ESA funded project, which aims at 
supporting enhanced SSS validation and scientific process studies over ocean. 
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Pi-MEP project objectives are: 

• Focus 1 - Enhanced validation of satellite SSS and products assessment 
• Focus 2 - Oceanographic exploitation and case-studies monitoring 

The Pi-MEP is designed to allow systematic comparisons between available datasets by 
providing comparable QC metrics for all these SMOS data derived SSS products, as well as for 
the two other NASA missions. This will enable: 

1. the user to choose which satellite SSS product is best adapted for their own specific 
application, 

2. to improve the Level 2 to Level 4 SSS retrieval algorithms by better systematically 
identifying the conditions for which a given SMOS, or other satellite, SSS products are of 
good or degraded quality. 

3. to in fine converge towards best approaches and generate less but better satellite SSS 
products. 

A large ensemble of in situ SSS data distributed by different data centers can be used to infer 
SMOS, Aquarius or SMAP SSS data product quality. This includes in situ data from the following 
sources: 

• ARGO float data (CORIOLIS) 

• Moored buoy data (TAO, PIRATTA, RAMA, STRATUS, NTAS, SPURS1-2, WHOTS) 

• Thermo-Salinograph data installed on Voluntary Observing Ships (LEGOS, SAMOS) 

• Thermo-Salinograph data installed on Research Vessels (GOSUD, Polarstern, NCEI-
0170743) 

• Thermo-Salinograph data installed on Sailing Ships (GOSUD) 

• Surface Drifters (LOCEAN) 

• Equipped marine mammals (MEOP) 

• Analysed in situ data fields (IFREMER/LOPS) 

• Dedicated Campaign data (e.g. SPURS) 

So the PI-MEP could be very useful in order to estimate the quality of the L2OS and L3OS 
products.  

4.4.3 External data 

In order to compare the SSS of the different sensors with external data, we will use the ISAS data 
and the different comparisons made at PI-MEP.  It should be noted that ISAS data are very 
spatially smoothed (600 km) which can lead to interpretation difficulties when comparing better 
spatially defined satellite fields over areas where spatial variability is high. Figure 2  shows such 
a problem: the comparison of SMOS SSS and ISAS shows a larger std of differences than the 
SMOS-SMAP difference, this being due to the fact that SMOS and SMAP share a relatively close 
spatial resolution.  The errors of representativity are therefore significant in the comparison 
mechanism. 
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This representativity error could be calculated on the basis of high spatial resolution models. 

 

Figure 2: Average time series analysis. Comparison between SMOS-SMAP_Aquarius and ISAS. Spatial resolution effect. Top: mean 
SSS differences; bottom: standard deviation difference.  

 

4.4.4 Data analysis 

4.4.4.1 Introduction 

Data analysis is carried out on the basis of self-consistency of SSS and comparison with external 
data. These comparisons will initially be based on objective analysis of ARGO in-situ data 
(ISASv6.2).  

In year 1, the time interval considered covers early 2010 to mid-2018.  

In year 1, we start from the existing L2 products (produced by the various agencies) knowing that 
the end of the implementation of L2 treatments is planned at the end of year 1.  

The aim is to analyse the errors as they are currently managed in the different processors, starting 
from the ATBDs and validation reports of each sensor. 

Random errors must be well known in order to be able to properly weight the different SSSs 
when developing L3 and L4 products. We propose to validate the theoretical errors provided in 
the products or to empirically estimate the errors that affect the SSS estimator (in the case of 



 

Climate Change Initiative+ (CCI+) 

Phase 1 

End-to-End ECV Uncertainty 

Budget 

Ref.:  ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  19/12/2019 

Version : v1.2 

Page:  34 of 68 

 

© ARGANS Ltd. 2019 

SMAP L2C products, such errors are not provided). We know that the theoretical error (which 
assumes that the direct model and instrumental response are known) depends essentially on 
radiometric measurement errors and the sensitivity of TBs to SSS. This sensitivity depends 
essentially on the sea surface temperature SST. We will therefore attempt to characterize the 
theoretical error according to SST. 

With regard to systematic errors, there are several causes that generate them: 

-the instrument, which is known with a certain level of precision, undergoes poorly controlled 
and therefore poorly corrected solicitations (antenna temperature, antenna gains, etc.).  

-the direct model used for inversion is not perfect (dielectric constant, sun, galactic, TEC...) 

In all cases, systematic errors result from limited knowledge of the signal and sensor.  

Currently, the various sensors have their own correction strategies for brightness temperatures.  

However, as we will show, there are residual biases in salinity. Here, we are trying to build a 
salinity field from salinities from the different sensors. The aim is to mix SSS as homogeneous as 
possible and thus to correct inter-sensor bias.  

Two possibilities for addressing these residual biases: 

-to improve knowledge of the signal and sensors and to act on brightness temperatures and 
direct models. 

-to compute empirically the bias and to correct it afterwards. 

Here, we start from L2 (or L3) products that represent the best we can do at a given time in term 
of modelling and TB calibration. The empirical approach is therefore required at this level. It is 
clear that there is a feedback loop between the empirical calculations proposed here and 
improved calibration of instruments and forward models.  

These biases affect the data differently depending on the across-swath position and the orbit 
(ascending or descending). More precisely, we know that glint effects depend on the season and 
the geometry of observation. There are a solar glint and a galactic glint which can, depending on 
geometry and latitude, have a greater or lesser impact on the signal. Similarly, the flux affecting 
the antenna back lobes depends on the orientation of the antennas and the position of the 
different sources and their intensity (for example, even if the back lobe gains are very low, a 
source like the sun can affect the total signal).  

In year 1, we consider that the same bias affects the following subsets of measurements: 

- for SMOS, the same bias is considered for each SSS from a given dwell line and for each position 
(lat,lon). The dwell lines are sampled across track every 25 km.  
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- for SMAP, the bias is considered independently for  fore and aft measurements  and for each 
(lat,lon) position.  

SSS from ascending and descending orbits are also differentiated. 

- for Aquarius, we will use the L3 data.    

Therefore, we have several datasets from the different sensors and it is necessary to solve the 
Eqn 4-2 in order to estimate the biases bc and bl. As underlined in section 4.2.2.2, the accurate 
estimation of the biases is done at the same time as the SSS L4 are calculated. This is presented 
in section 5.3. 

4.4.4.2 SMOS L2OS data 

The SMOS data used in year 1 are as follows: 

SMOS RE05 data set (v622) CATDS  (Gibbs 1 processing).  

4.4.4.2.1 Estimation of random error by propagation 

A maximum-likelihood Bayesian approach is used in the L2 inversion algorithm, taking advantage 
of the a priori information available about geophysical parameters (SSS, SST, wind speed, TEC, 
etc.), hereafter denoted 𝑃𝑖. With this formalism, errors on TB and on the retrieved geophysical 
parameters are assumed to be Gaussian. The following cost function 𝜒² is minimized: 

𝜒² = ∑
[𝐴𝑚𝑒𝑎𝑠 𝑖 − 𝐴𝑚𝑜𝑑𝑒𝑙 𝑖]²

𝜎𝐴𝑖
2

𝑁

𝑖=1

+ ∑
[𝑃 𝑗0 − 𝑃 𝑗]²

𝜎𝑃𝑗0
2

𝑀

𝑖=1

 

This means that the error on the a priori 𝑃 𝑗0 (WS, SST …) parameters are propagated on the SSS 

estimator.  

The theoretical a posteriori variance (error) 𝜎𝑃𝑖

2  can be computed by the Levenberg-Marquardt 

algorithm as follows (Zine et al., 2008): 

[

𝜎𝑃1

⋯
𝜎𝑃𝑀

] = √𝑑𝑖𝑎𝑔(𝐌−1) 

where M is the pseudo-Hessian, with 𝐌 = 𝐅𝐓𝐂𝐨
−𝟏𝐅, where 𝐂𝐨 is the a priori covariance matrix 

and 𝐅 the matrix of derivatives: 
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𝑑𝑖𝑎𝑔(𝐂𝐨) =

[
 
 
 
 
 
𝜎𝐴1

2

…
𝜎𝐴𝑁

2

𝜎𝑃10
2

⋯
𝜎𝑃𝑀0

2 ]
 
 
 
 
 

 

The two components of this a priori covariance matrix 𝐂𝐨 are: 

• 𝜎𝐴𝑛
2 = 𝜎𝐴𝑚𝑒𝑎𝑠_𝑛

2 + 𝜎𝐴𝑚𝑜𝑑𝑒𝑙_𝑛

2  which includes 𝜎𝐴𝑚𝑒𝑎𝑠_𝑛

2 , the estimated instrument brightness 

temperature uncertainty, and 𝜎𝐴𝑚𝑜𝑑𝑒𝑙_𝑛

2  the estimated forward model error. Both are 

considered in the antenna reference frame. The radiometric error 𝜎𝐴𝑚𝑒𝑎𝑠_𝑛

2  is already 

given in the antenna reference frame. The model error 𝜎𝐴𝑚𝑜𝑑𝑒𝑙_𝑛

2  is given in the ground 

reference frame and propagated to antenna frame before the retrieval (using the ground 
to antenna rotation matrix, see Appendix B of Zine et al., 2008). 

• 𝜎𝑃𝑀𝑖
2 , the  a priori variance of the geophysical parameter 𝑃𝑀𝑖 

Providing the L2OS users with an improved uncertainty σ is key for a number of application, such 
as proper L2 SSS merging at Level3 and 4 (σ can be used to properly weight multiple L2 SSS 
observations in a specific space-time window), or for assimilation into Ocean General Circulation 
models, etc.  

Typically, 𝜎𝐴𝑚𝑒𝑎𝑠_𝑛

2 ranges from 1.5 to 3.5 K depending on the distance to the sub satellite point. 

Radiometric accuracy is computed based in two main parameters: integration time of the 
snapshot and footprint size, or the equivalent area introduced into the computation of the 
measurement in the Fourier space. This means that it depends on incident angle and, therefore, 
there is a cross-track dependency/variation, but also there is dwell line dependency. In a first 
approach, we took the model error 𝜎𝐴𝑚𝑜𝑑𝑒𝑙_𝑛

2  to be constant and equal to 0.5 K for H and V 

polarization and 0.1 K for Stokes-3 and Stokes-4. In addition, in the current version of the 
processor (v662), the geophysical parameter a priori uncertainties are constant as function of 
time and space and given as follows: 𝜎𝑆𝑆𝑆 = 100 psu;  𝜎𝑆𝑆𝑇 = 1°C; 𝜎𝑊𝑆 = 2 m/s and 𝜎𝑇𝐸𝐶 =10 
TECu. 

A first improvement has been done by multiplying SSS a posteriori error by 𝜒, which is the 
normalised square root of the cost function  𝜒² after convergence.  

4.4.4.2.2 Estimation of random error by using empirical approach 

In order to estimate the actual errors empirically, we consider, for each grid node, time series of 
40 days of data taken at different times of the year. The SMOS revisit time being about 4 days, 
we have about ten SSS over this period. Assuming that the SSS does not change over this period 
(which is true most of the time), the std of the time series gives an idea of the error. However, 
the error depends on the position of the measurement according to the center of the swath. In 
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order to normalize the data, we create a reduced dimensionless centered variable X (normalizing 
by the theoretical error a posteriori 𝜎𝑆𝑆𝑆  multiplied by the 𝜒): 

X=((SSS-<SSS>)/𝜎𝑆𝑆𝑆̃ )  with 𝜎𝑆𝑆�̃�=𝜎𝑆𝑆𝑆 x 𝜒 

This new random variable should follow a Gaussian distribution of mean 0 and standard deviation 
1 if the theoretical error is realistic. If the theoretical error is underestimated, the std of this new 
variable is greater than 1. In this way it is possible to homogenize SSS affected by different 
theoretical errors. 

 

Figure 3: Standard deviation of the reduced centered variable. A value of 1 is expected if the SMOS error estimate is correct and a 
value greater than 1 if the SMOS theoretical error is too small compared to the true error. Example for the month of March 2012, 
40 days of data. 

The std map of this new random variable is given in Figure 3. The open sea areas give a rather 
encouraging result except in areas contaminated by RFIs (e. g. Fiji). Coastal areas have theoretical 
errors that are greatly underestimated. A coastal correction has been proposed by N. 
Kolodziejczyk & al. 2016. If we take, instead of the SSS L2, the corrected SSS, then we obtain the 
map on Figure 4 which shows a much better behaviour near the coast. The histograms of the 
reduced centred variable are presented in Figure 5, and we note that the distributions are very 
close to a Gaussian of zero mean and standard deviation 1. The relatively high values of the 
standard deviation (1.8 and 1.25) are mainly related to distribution tails and the sensitivity of the 
std to outliers. We can see that for the open sea, the theoretical error weighted by the 𝜒 gives 
results very close to the true error. For the coast, there are still high uncorrected contaminations. 
They are dominant in the vicinity of the Asian coast where RFIs are very strong and not temporally 
stable. In some regions, the high value of the std is due to the dynamics of the SSS over 40 days 
(rainy areas such as ITCZ, river plumes). In this case, the stability assumption of the SSS is not 
ensured. 

Figure 6 shows std(X) according to the time (between 01/2012 and 01/2015). The dashed curves 
are obtained from a robust computation allowing discarding outliers. Robust std(X) is very close 
to 1 for open ocean. For coastal pixel, robust std reaches 1.3. This means that the proposed 
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approach (multiplication of the theoretical error by the 𝜒) is not totally efficient and will need to 
be improved in the future in such areas.  

 

Figure 4: same as Figure 3 from corrected SSS.  

 

Figure 5: histogram of the new random variable X (reduced centered SSS) after applying a coastal correction. At the top for pixels 
near the coast (dcoast<400 km); at the bottom for pixels in the open ocean. Example for the month of March 2012, 40 days of 
data. 
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Figure 6: std(X) over a 2 year period. The continuous curves are obtained by using the classical std. Dashed curves come from 
robust std computation (allowing to remove outliers). Blue, for all the sea pixel; green for full ocean pixel; red for coastal area.  

So, to conclude, we will use the SMOS theoretical error multiplied by the adjustment 𝜒. This 
error, in some cases, is underestimated, especially on the Asian coast and places heavily 
contaminated by RFIs. This is a sign of the presence of outliers. The algorithm of Kolodziejczyk et 
al. 2016 allows us to get rid of some of these outliers by adding a 3 sigma filter from data 
intercomparison.  

4.4.4.2.3 Estimation of systematic error 

N. Kolodziejczyk et al. 2016 showed that TB biases affecting SMOS data are dependent on 
position on FOV and (lat,lon) so we find an SSS bias dependence on dwell-line and position 
(lat,lon), see Figure 8 and Figure 9. 

Also, a bias depending on latitude and season was quantified (Figure 10). We are therefore in the 
situation of Eqn 4-2 with 2 biases to manage. 

In addition, we found a bias related to the behaviour of the Klein and Swift dielectric constant 
model at low temperatures and to the SST noise?(Figure 7).  
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Figure 7: SSS bias as a function of SST from K&S dielectric constant (from Zhou et al. 2017).  

This bias is corrected using an empirical fit of Zhou et al. 2017: bias(SSS)=0.0136.SST²-
0.2553.SST+1.1874. It must be subtracted and applied over the interval[-2 8.5] °C. Note that this 
bias should be corrected in year 2 at the L2OS processor level. 

 

Figure 8: example of relative bias (with respect to the central dwell) calculated for xswath=375km. At the top, ascending orbits; 
at the bottom, descending orbits. (from CATDS, 2014 report) 
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Figure 9: example of relative bias (with respect to the central dwell) calculated for xswath=75km. At the top, ascending orbits; at 
the bottom, descending orbits. (from CATDS, 2014 report) 
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Figure 10: Hovmoller plot SMOS-ISAS before latitudinal correction. Top : ascending orbits, bottom : descending orbits. 3 dwell 
lines. dcoast>400km. 

4.4.4.2.4 flagging the data 

As we have seen, there are still SSSs for which the associated errors are underestimated. Here, 
we choose to exclude SSS that are associated with a 𝜒 adjustment greater than 3. 

4.4.4.3 SMAP L2OS data 

In year 1, we started using SMAP L2C v2.0 products (SMAP_RemSSS_Release_V2.0). During the 
study, a new version v3.0 has been made available with lower latitudinal bias than v2.0. That is 
why we preferred to use the latter. This section presents analysis elements on both versions. 

4.4.4.3.1 Estimation of random error 

Theoretical error is not available in L2C products.  

We derived these errors empirically by using fore and after collocated SSS (Figure 11 and Figure 
12) of v2.0 (the v3.0 gives very similar results to the v2.0 in term of random error). The std of the 
difference is very close to a modelled error with a 0.45K radiometric noise.   
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The afte-fore difference allows the error to be estimated more or less independently of the biases 
present in the direct model. Indeed, if we have a bias on wind speed, for example, this bias is 
found in the same way in the fore and afte targets. This is also true for the modelling of the 
dielectric constant, TEC, SST, etc. On the other hand, some TB contributions depend on geometry. 
For example, the reflection of galactic noise can be very different as well as the solar glint. 
However, we have applied flags that reduce its effects. The afte-fore comparison therefore 
probably gives a good idea of the expected theoretical noise, regardless of model bias/errors. 

Comparison with external data shows that the theoretical error is less than the dispersion of the 
difference (Figure 13). Part of this extra-error is due to representativity error of ISAS data which 
are given with a 300 km resolution.  

 

Figure 11: SSS difference between fore and afte collocated SSS. Ascending orbits. In blue, the std of the difference; in green, the 
mean of the difference; in dashed red, the theoretical error expected for a radiometric uncertainty of 0.45K. The color background 
is indicative of the point density. 
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Figure 12: same as Figure 11 for descending orbits.  
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Figure 13: difference between SMAP and ISAS SSS. Top : fore SSS; bottom : afte SSS. In black, the std of the difference; in green, 
the mean of difference; in dashed red, the theoretical error expected for a radiometric uncertainty of 0.45K. The color background 
is indicative of the grid points density. 
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Figure 14: same than Figure 13 for descending orbits 

To summarize, we will consider the following theoretical error model: 

sigSSS=ΔTB/(0.015.SST+0.25)  with ΔTB=0.45K. 

4.4.4.3.2 Estimation of systematic error (version RSS v2.0) 

In order to estimate the systematic error, SSS from ascending and descending orbits have been 
compared. A way for doing this is to compute, over a large period, the mean difference between 
SSS ascending and SSS descending (Figure 15).   
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Figure 15: SSS self-consistency analysis. Mean difference between SSS ascending and SSS descending. Top : fore line of sight; 
bottom : afte line of sight. Left : year 2016; right : year 2017. L2C v2.  

Comparison between fore and afte line of sight can be useful in order to make a self-consistency 
analysis of the data (Figure 16).  

 

Figure 16: SSS self-consistency analysis. Mean difference between SSS fore and SSS afte.Top :ascending orbits; bottom : descending 
orbits. Left : year 2016; right : year 2017. L2C v2.  

The Figure 15 and Figure 16 show that the SMAP data present differences according to the orbit 
type and the fore and after sight. The max amplitude of the differences is of the order of 0.3 psu, 
more pronounced close to equator. Specific differences could be found in coastal area, maybe 
due to RFI contamination (for instance in the Arabian Sea or in the Amazon plume). The 
signatures of the differences are mainly latitudinal (Figure 18, Figure 19 and Figure 20) and 
depend slightly on the month.  

The signatures are very close from one year to the other (2016 and 2017). This means that the 
bias could be considered more or less stable in time at the first order.    
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The bias however present second order signatures (periodic patterns) which vary in time over 
the year (Figure 20). This second order term will be taken into account during the project 2nd 
year, if required.   

 

Figure 17:SSS isas - SSS smap. Top left : ascending orbits, fore SSS; top right : ascending orbits afte SSS; bottom left : descending 
orbits, fore SSS; bottom right : descending orbits, afte SSS. Year 2016. L2C v2.   
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Figure 18: latitudinal difference between SMAP ascending and ISAS. Top: fore SSS; bottom: afte SSS. Each curve represents a 
month. Year 2016. L2C v2. 
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Figure 19: same as Figure 18 for descending orbits. Year 2016. L2C v2. 
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Figure 20:Hovmoller plot SMAP-ISAS. Top left : ascending orbits, fore SSS; top right : ascending orbits afte SSS; bottom left : 
descending orbits, fore SSS; bottom right : descending orbits, afte SSS.  dcoast>400km. L2C v2.  

 

During year 1 activities, we will neglect time varying bias in SMAP data. We consider that we are 
dominated by a stable latitudinal bias. We will consider that this bias differs from 
ascending/descending passes and from fore/afte line of sights. In this situation, the bias is 
conform with Eqn 4-2. The latitudinal bias shall be not identified as bl but as bc (bias constant in 
time). It is (for year 1 only) like a coastal, time-invariant bias that extends to the open ocean and 
depends on latitude. 

4.4.4.3.3 Estimation of systematic error (version RSS v3.0) 

After September 2018, a new SMAP release has been delivered by RSS.  

The main change concerns the latitudinal calibration: HYCOM has been replaced by ARGO. 

This has a strong impact on the latitudinal bias signatures (Figure 21 and Figure 22).   

The latitudinal bias vanishes in version v3 (Figure 23 and Figure 24). 
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Figure 21: idem Figure 15 for L2C v3. 

 

Figure 22: idem Figure 16  for L2C v3. 
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Figure 23: idem Figure 18 for L2C v3. 
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Figure 24: idem Figure 19 for L2C v3. 
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Figure 25: idem Figure 20 for L2C v3. 

4.4.4.3.4 flagging the data 

We used an analogous filtering as the one used by RSS team (RD10):  
1. The sun glint angle is less than 50° and the azimuthal look angle lies between 30° and 50° (bit 5 in 
L2 Q/C flag is set).  

2. The moon glint angle is less than 15° (bit 6 in L2 Q/C flag is set).  
  
3. The v/h-pol average of the reflected galactic radiation exceeds 2.0 K (bit 7 in L2 Q/C flag is set).  

4. The TB consistency, which is defined as the √𝜒2 of the MLE in the salinity retrieval algorithm, 
exceeds 1.0 K (bit 10 in L2 Q/C flag is set).  

5. The gain weighted land fraction exceeds 0.01. 

6. The gain weighted sea ice fraction exceeds 0.001.  

4.4.4.4 AQUARIUS L2OS data 

We use the end of mission dataset: RSS L2 v5 

the data description is done in the RD05 document.  

The errors are provided in the L2 product but not in the L3 R7 product.  

(lat lon) positions are given for each acquisition (L2 products are not given over a earth fixed 
grid). 



 

Climate Change Initiative+ (CCI+) 

Phase 1 

End-to-End ECV Uncertainty 

Budget 

Ref.:  ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  19/12/2019 

Version : v1.2 

Page:  56 of 68 

 

© ARGANS Ltd. 2019 

4.4.4.4.1 Estimation of random error 

The SSS theoretical error is given in the L2C v5 product. 

The different contributions are added quadratically: 

• SSS_unc_EIA: Estimated SSS retrieval uncertainty due to boresight Earth Incidence Angle 
random error. 

• SSS_unc_galact_Ta: Estimated SSS retrieval uncertainty due to galactic effect systematic 
error. 

• SSS_unc_IU_coupling: Estimated SSS retrieval uncertainty due to IU coupling systematic 
error. 

• SSS_unc_moon_Ta: Estimated SSS retrieval uncertainty due to moon effect systematic 
error. 

• SSS_unc_NEDT_X, X = {V, H, 3}: Estimated SSS retrieval uncertainty due to radiometer 
Noise Equivalent Delta Temperature random error at polarization X. 

• SSS_unc_RFI_level: Estimated SSS retrieval uncertainty due to RFI level systematic error. 

• SSS_unc_ran: Estimated random component of uncertainty in SSS. 

• SSS_unc_surface_temp: Estimated SSS retrieval uncertainty due to sea surface 
temperature systematic error. 

• SSS_unc_sys: Estimated systematic component of uncertainty in SSS. 

• SSS_unc_TbV_land_contam: Estimated SSS retrieval uncertainty due to ocean surface Tb 
land contamination systematic error. 

• SSS_unc_TbV_ice_contam: Estimated SSS retrieval uncertainty due to ocean surface Tb 
sea-ice contamination systematic error. 

• SSS_unc_wind_speed_rand: Estimated SSS retrieval uncertainty due to wind speed 
random error. 

• SSS_unc_wind_dir_rand: Estimated SSS retrieval uncertainty due to wind direction 
random error. 

• SSS_unc_wind_speed_syst: Estimated SSS retrieval uncertainty due to wind speed 
systematic error. 

The total uncertainty is given by SSS_unc. It contains random and systematic errors.  

The assesment of Aquarius SSS (Hsun-Ying Kao et al. 2018, Remote Sensing, 10, 1341) shows that 
overall errors on L2 and L3 products are in the order of 0.17 and 0.13 psu respectively. In the 
paper, the collocated SSS with instantaneous rainfall > 0.25 mm/h are removed.  

Large positive biases (up to 0.2 locally) are observed in the sub-polar North Pacific and in South 
(lat of about 40°). Large negative biases (up to -0.2 psu) are observed in the subtropical South 
Pacific and along the land boundaries.  

We can estimate empirically the error by comparing successive revisit passes for each beam (8 
day period). We make the assumption that SSS doesn't vary in 8 day time interval.   
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Figure 26: SSS difference between 2 passes (collocated SSS) for Aquarius beam 1 (left), beam 2 (middle) and beam 3 (right). 
Ascending orbits. In black, the std of the difference; in green, the mean of the difference; in dashed red, the theoretical error 
expected for a radiometric uncertainty of 0.2K, in cyan the Aquarius L2c SSS error. January 2013.  

 

Figure 27: same as Figure 26 for descending orbits.  

Figure 26 and Figure 27 show that the theoretical error provided in the L2C product is a little bit 
underestimated at high SST for beam 1 and 2. 

We will consider these differences as neglectable and use the theoretical error as input for L3 
and L4 computation.   

4.4.4.4.2 Estimation of systematic error 

Large positive biases (up to 0.2 locally) are observed in the sub-polar North Pacific and in the 
Southern Ocean (lat of about 40°). Large negative biases (up to -0.2 psu) are observed in the 
subtropical South Pacific and along the land boundaries (see below figures from Hsun-Ying Kao 
et al. 2018, Remote Sensing, 10, 1341).  
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Comparing Aquarius with ISAS, we found that the latitudinal systematic error is relatively weak 
and relatively independent of the month (Figure 28 and Figure 29). 

 

Figure 28: latitudinal difference between Aquarius ascending and ISAS. Top: beam 1; middle: beam 2; bottom: beam 3. Each curve 
represents a month. Year 2012.  
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Figure 29: same as Figure 28 for descending orbits. Year 2012. 

 

Figure 30: Hovmoller plot Aquarius-ISAS. Top left : ascending orbits, beam 1; top middle : ascending orbits, beam 2;  top right : 
ascending orbits beam 3; bottom left : descending orbits, beam 1; bottom middle : descending orbits, beam 2; bottom right : 
descending orbits, beam 3. dcoast>400km. 

4.4.4.4.3 flagging the data 

Filtering on the flags recommended by RSS (Table 1 of ATBD) : land contamination (severe), sea 
ice contamination (severe), non-nominal navigation (roll, pitch, yaw), roughness, moon (severe), 
gal (severe), RFI (severe). 

No filter over WS, SST and the rainfall flag.  
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5 L3 and L4 error budget 

5.1 Introduction 

The use of L3 data allows comparing global maps provided at different month and for different 
orbit types. In year 1, the project does not provide specific L3 data. In this section, we just explain 
how we have computed L3 SSS errors.  

5.2 L3 data 

5.2.1 Introduction 

The SMOS, SMAP and Aquarius L3 products are not provided by the project in year 1.    

In year 1, we use Aquarius L3 product as input of L4 merging. This means that we need to estimate 
the SSS error for Aquarius L3 SSS because this error is not provided in the product. So we start 
from Aquarius L2 error in order to estimate the L3 error.  

5.2.2 AQUARIUS L3OS error 

In year 1, L3 Aquarius products are used in the L4 aggregation scheme (Aquarius 7 days running 
products). 

The advantage of using these products is that, unlike L2, they cover the entire globe (no 
interbeam missing data). The disadvantage concerns revisit times and the correlation of SSS from 
one day to another. It is therefore not trivial to handle the errors associated with this product. 

Moreover, in L3 7 days running products, there is no information about error.  

Over a week window, the number of acquisitions is N. The L2 individual SSS error corresponds to 
a 0.2K radiometer equivalent error with SST dependence as shown in section 4.4.4.4. : 

sig_SSS_aqua=(0.2/sqrt(N))./(0.015.*SST0+0.25); 
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Figure 31: Aquarius L2/L3 error estimation from SST and number of revisit.  Top, error of L2 according to the SST; bottom, error of 
L3 according to SST and acquisition number. 

It is clear that on a 7 day running average there is a strong error correlation. These correlations 
have to be taken into account, for instance by oversampling the daily data (see Figure 32). This 
sampling effect will be analysed further in the next release of the document. 

 

Figure 32: Aquarius 7 days running product. Time series of SSS for a grid point in the Atlantic Equatorial. The SSS is highly correlated 
from one day to the other day.  Every dot is a daily value.   

The problem is to know the number of acquisitions that generates a daily product averaged over 
a window of 7 days. 
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In one week Aquarius spends 28 orbits (14 ascending + 14 descending) * 7 days. Its swath width 
is ~ 400km. 

So it observes a cumulative distance of: 28 * 7 * 400 = 78400km ~ 80000km. 

Because the length of the earth's turn at the equator is 40000km, we have 80000/40000 = 2 
passes in 7 days 

At another latitude, the length of the earth's turn is 40000*cos (lat), so the number of passes is 
2/cos (lat), eg at lat=45 °, there must be 8/(4cos (45)) = 2.8 passes, and at lat=55 °: 3.5 passes. 

So we have to take the individual error Aquarius (for an acquisition) and divide by sqrt(2/|cos 
(lat)|). 

We use a data every 3.5 days, which makes us oversampling by a factor of 2 (compared to the 
window 7 days) and so we must multiply the error by sqrt(2). 

Result of the analysis: 

-1 day every 3.5 days. 

-The error should be multiplied by sqrt (|cos(lat)|) 

sig_theo=(0.2*sqrt(|cos(lat)|))./(0.015.*SST0+0.25); 

5.3 L4 data 

5.3.1 Introduction 

The L4 products v1.6 delivered at the end of the first-year exercise consist in two Level-4 datasets: 

- A monthly mean product centred the 1st and 15th day of each month. 

- A 7-days running mean at one day time sampling 

These products contain:  

1/ SSS field 

2/ random error 

3/ systematic error + std(bias) 

4/ flag good/bad computed from different indicators (𝜒2, number of outliers…) 

5/ number of outliers 
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6/ PCTVAR (ratio between the a posteriori variance and the a priori variance).  

The random error can be computed in different ways (see here-after).  The algorithm used to 
estimate the L4 error effectively provided in the L4 product is described in the ATBD. 

5.3.2 Error computation 

In order to merge the products from different sensors, the relative uncertainties between the 
different products are first calculated. The bias at each point is modelled into 2 contributions: a 
seasonal latitudinal contribution and a time-independent component related to coastal 
contamination. These biases depend on the orbit (ascending or descending), the position on the 
swath and the viewing orientation.  

For SMOS, we consider that the bias depends on the dwell line: we sample the dwell lines in 25 
km steps. The dwells are kept between -415 and 415 km.  

For Aquarius, a relative bias is considered (L3 Aquarius data is used). 

For SMAP, a different bias is considered for fore and after acquisitions.  

In fact, it is possible to calculate the inter-sensor calibration bias.  

For Aquarius, we do not consider latitudinal bias. 

Once the SSS data have been corrected for inter-sensor biases, it is possible to average the data 
over time in order to obtain a daily product on a sliding window of around 10 days. 

The aggregation of SSS is done by weighting them by L2 errors. Several algorithms have been 
tested: 

-averaging on a rectangular window 

-average on a Gaussian window 

-Bayesian approach (in principle very close to a Gaussian window averaging).  

 In the case of a rectangular time window, we have: 

𝑆𝑆�̃� =

∑
𝑆𝑆𝑆𝑖

𝜎𝑖
2

𝑛
𝑖=1

∑
1
𝜎𝑖

2
𝑛
𝑖=1

 

a posteriori error is written as follows : 
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𝜎𝑆𝑆�̃� =
√

1

∑
1
𝜎𝑖

2
𝑛
𝑖=1

 

 In the gaussian case, we have: 

𝑆𝑆�̃�(𝑡) =

∑
𝜑(𝑡 − 𝑡𝑖)𝑆𝑆𝑆𝑖(𝑡𝑖)

𝜎𝑖
2

𝑛
𝑖=1

∑
𝜑(𝑡 − 𝑡𝑖)

𝜎𝑖
2

𝑛
𝑖=1

 

where 𝜑(𝑡, 𝑡𝑖) is a Gaussian filter: 

𝜑(𝑡) = 𝑒
(−

𝑡2

𝜎2)
 

A posteriori error is written as follows: 

𝜎𝑆𝑆�̃�(𝑡) =

√∑
𝜑²(𝑡 − 𝑡𝑖)

𝜎𝑖
2

𝑛
𝑖=1

∑
𝜑(𝑡 − 𝑡𝑖)

𝜎𝑖
2

𝑛
𝑖=1

 

The Bayesian case, which is more complicated, involves a matrix inversion: 

𝑆𝑆�̃� = 𝑆𝑆𝑆0 + 𝐶𝑚. 𝐺. 𝐻−1(𝑆𝑆𝑆𝐿2𝑂𝑆 − 𝑆𝑆𝑆0) 

𝐻 = 𝐺.𝐶𝑚. 𝐺 + 𝐶𝑑 

With G the identity operator, 𝐶𝑚 the temporal a priori covariance that is modulated with natural 
variability and 𝐶𝑑 the covariance of L2OS salinities. This approach, which is close to an objective 
analysis, is described in the papers (Kolodziejczyk et al., 2016, RD02) & (Boutin et al., 2018, RD09). 

In any case, a linear operator A can be defined that connects the estimator 𝑆𝑆�̃� to the L2OS data 
(A is an operator of average): 

𝑆𝑆�̃� = 𝐴. 𝑆𝑆𝑆𝐿2𝑂𝑆 

The propagation of the error is then written: 

𝜎𝑆𝑆�̃� = √𝑑𝑖𝑎𝑔(𝐴. 𝐶𝑑. 𝐴𝑡) 

One way to calculate the error is to consider the standard deviation of SSS taken in a time window 
under the assumption that the SSS does not vary. Dividing the standard deviation obtained by 
the square root of the number of measurements gives an high estimate of the error on the mean. 
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Indeed, this standard deviation is an estimator of the average error that affects individual SSS. 
This type of empirical approach roughly validates the errors actually estimated by the previous 
equation. Figure 34 shows the errors on the running day averages calculated for the different 
estimators previously described (simple error-weighted mean, Gaussian filter and Bayesian 
approach). We see that the errors obtained are very close to each other and also close to the 
empirical error. 

 

Figure 33 example of the errors of the SSS L2OS (v662) on a grid node near the Amazon plume (time series 2014-2016). In blue, 
SMOS errors; in black, Aquarius errors (v5.0) ascending orbits, in red, Aquarius descending orbits errors, in green, SMAP errors 
(v2.0).  
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Figure 34: Time series (2016-2018) on a grid node. Use of SMOS, SMAP and Aquarius data. At the top, different averaging solutions 
obtained with different algorithms: red, Gaussian filter; in green, Bayesian method; in black, average over a 10-day rectangular 
time window. The blue dots correspond to the SSS corrected for the relative inter-sensor bias, the red dots to the uncorrected SSS. 
At the bottom, the associated errors. 
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6 Conclusions and way forward 

A relatively precise qualification of the errors was possible by intercomparison of the products 
coming from the various sensors. This qualification has been performed from level 2 salinity 
products. It is essential to reach a L2 error as realistic as possible because it makes it possible to 
obtain by propagation a realistic error on the merged products. Moreover, it allows a relative 
intercalibration of the instruments at the SSS level which allows making consistency between the 
measurements coming from the different sensors. 

 The perspectives are based on user feedback on L4 products, particularly with regard to the 
estimation of weekly L4 product errors (see ATBD for a description of the propagation 
algorithms). Indeed, it turns out that these are overestimated. So a peculiar effort shall be made 
for this error estimation.  
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