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1 Introduction 

1.1 Scope of this document 

This document holds the Algorithm Theoretical Development Basis Document (ATBD) prepared by 
CCI+SSS team, as part of the activities included in the [WP230] of the Proposal (Task 2 from SoW ref. ESA-
CCI-PRGM-EOPS-SW-17-0032). 

1.2 Structure of the document 

This document (ATBD v1.3)  is composed of 4 sections and presents the CCI+SSS algorithms implemented 
during year 1.  Section 1 is an introduction presenting the scope, reference and applicable documents, 
acronyms, and the structure of the ATBD. Section 2 present the algorithms of the so-called Level 2 
products which are swath retrievals from L-band sensor SMOS and SMAP. Section 3 presents the Level 3 
SSS products, which are averaged intermediate products obtained sensor by sensor, without mixing inter-
sensor information.  Level 4 data set is foreseen to be produced each year and form the core of the 
CCI+SSS products for year 1 and is described in §4. In Section 5, we provide summary and discuss the next 
steps. 

1.3 References 

1.3.1 Applicable Documents 

ID Document Reference 

AD01 Sea Surface Salinity Climate Change Initiative Phase 1 

Data Access Requirement Document. 

SSS_cci-D1.3-DARD-
v1r4 

AD02 SMOS Level2 Algorithm Theoretical Baseline Document (ATBD). Available at: 

https://earth.esa.int/documents/10174/1854519/SMOS_L2OS 
-ATBD 

SO-TN-ARG-GS-
0007_L2OS-ATBD 
v3.13 

AD03 CATDS (2017). CATDS-PDC L3OS 2P Algorithm Theoretical Basis Document. 
Available at: 

https://www.catds.fr/content/download/78841/file/ATBD_L3
OS_v3.0.pdf 

 

ATBD_L30S_v3.0 

AD04 Aquarius Official Release Level 2 Sea Surface Salinity v5.0 ATBD. Available at: 

 ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/ 

 

 RSS Technical Report 
120117 

 

AD05 Aquarius Official Release Level 3 Sea Surface Salinity v5.0.  

 Aquarius L2 to L3 Processing Document.ATBD. Available at: 

 ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/ 

AQ-014-PS-
0017_Aquarius_L2toL
3ATBD_DatasetVersio
n5.0 

https://earth.esa.int/documents/10174/1854519/SMOS_L2OS%20-ATBD
https://earth.esa.int/documents/10174/1854519/SMOS_L2OS%20-ATBD
https://www.catds.fr/content/download/78841/file/ATBD_L3OS_v3.0.pdf
https://www.catds.fr/content/download/78841/file/ATBD_L3OS_v3.0.pdf
ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/
ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/
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ID Document Reference 

AD06 RSS SMAP Level 2 Sea Surface Salinity V3.0 40km Validated Dataset. Available 
at: 

ftp://podaac-ftp.jpl.nasa.gov/allData/smap/docs/V3/ 

RSS Technical Report 
101518 

AD07 Sea Surface Salinity Climate Change Initiative Phase 1 

Product Specification Document 

SSS_cci-D1.2-PSD-v1r6 

AD08 Sea Surface Salinity Climate Change Initiative Phase 1 

Algorithm Theoretical Development Basis Document 

SSS_cci-D2.5-PVP-v1.0 

1.3.2 Reference Documents 

ID Document Reference 

RD01 Boutin, J., N. Martin, N. Kolodziejczyk, and G. Reverdin (2016a), Interannual 
anomalies of SMOS sea surface salinity, Remote Sensing of Environment 

doi:http://dx.doi.org/1
0.1016/j.rse.2016.02.0
53 

RD02 Kolodziejczyk, N., J. Boutin, J.-L. Vergely, S. Marchand, N. Martin, and G. 
Reverdin (2016), Mitigation of systematic errors in SMOS sea surface salinity, 
Remote Sensing of Environment 

doi:http://dx.doi.org/1
0.1016/j.rse.2016.02.0
61. 

RD03 Liang Hong, Normal Kuring, Joel Gales and Fred Patt  (2017), AQ-014-PS-
0017_Aquarius_L2toL3ATBD_DatasetVersion5.0 

 

RD04 Fred Patt,  Liang Hong (2017), AQ-014-PS-
0018_AquariusLevel2specification_DatasetVersion5.0 

 

RD05 Meissner, T. and F. J. Wentz, 2016: Remote Sensing Systems SMAP Ocean 
Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 
2.0 validated release. Remote Sensing Systems, Santa Rosa, CA, USA. 

www.remss.com/missi
ons/smap, 
doi:10.5067/SMP20-
2SOCS 

RD06 Boutin J., J.-L. Vergely, S. Marchand, F. D'Amico,  A. Hasson, N. Kolodziejczyk, 
N. Reul, G. Reverdin, J. Vialard (2018), New SMOS Sea Surface Salinity with 
reduced systematic errors and improved variability, Remote Sensing Of 
Environment 

doi:http://dx.doi.org/1
0.1016/j.rse.2018.05.0
22 

RD07  Yiwen Zhou ; Roger H. Lang ; Emmanuel P. Dinnat ; David M. Le Vine (2017), 
L-Band Model Function of the Dielectric Constant of Seawater,  IEEE 
Transactions on Geoscience and Remote Sensing ( Volume: 55 , Issue: 12) 

 

RD08 Gaillard F. (2015), ISAS-13 temperature and salinity gridded fields. SEANOE. 

 

http://doi.org/10.1788
2/45945. 

  

ftp://podaac-ftp.jpl.nasa.gov/allData/smap/docs/V3/


 

Climate Change Initiative+ (CCI+) 
Phase 1 

 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  19/12/2019 

Version : v1.3 

Page: 12 of 41 

 

© ARGANS Ltd. 2019 

1.4 Acronyms 

AD  Applicable Document 

ATBD   Algorithm Theoretical Basis Document 

Aquarius NASA Sea Surface Salinity mission 

CCI The ESA Climate Change Initiative (CCI) is formally known as the Global Monitoring 
for Essential Climate Variables (GMECV) element of the European Earth Watch 
programme 

CCI+ Climate Change Initiative Extension (CCI+), is an extension of the CCI over the 
period 2017–2024 

CMEMS Copernicus Marine Environmental Monitoring Service 

DARD   Data Access Requirements Document 

DOI   Digital Object Identifier 

DPM   Detailed Processing Model 

ECMWF  European Centre for Medium Range Weather Forecasts 

EASE  Equal-Area Scalable Earth (EASE) Grid 

ECV   Essential Climate Variable 

EO   Earth Observation 

FOV  Field Of View 

Hs  Significant Wave Height (see also SWH) 

ISAS  In Situ Analysis System 

KS  Klein and Swift sea water dielectric constant model 

MW  Meissner and Wentz sea water dielectric constant model 

NASA   National Aeronautics and Space Administration 

NOAA   National Oceanic and Atmospheric Administration 

NOP   Numerical Ocean Prediction 

NWP   Numerical Weather Prediction 
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OTT  Ocean Target Transform 

SSS   Sea Surface Salinity 

SST  Sea Surface Temperature 

SWH   Significant Wave Height (see also Hs) 

TBC  To Be Completed 

UCR/CECR Uncertainty Characterisation Report (formerly known as the Comprehensive Error 
Characterisation Report) 

URD   User Requirements Document 

VOS   Volunteer Observing ships 

WS  Wind Speed 
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2 Level 2 Algorithms 

In year 1 of the CCI+SSS project (June 2018 – June 2019), the production of the first CCI+SSS 
dataset used the input data levels 2 (i.e. non averaged retrieved SSS along each satellite orbit) 
for SMOS and SMAP or Level 3 (single instrument averaged SSS) for Aquarius sensor. These data 
are all projected on the same EASE grid at a spatial sampling of 25 km (see section §3.4.1). The 
L2 products used for each sensors come directly from official space agency dedicated centres 
(e.g., CATDS, RSS). They are therefore not generated by the CCI+SSS processing chains and are 
the following for each sensor. 

2.1 SMOS Level 2 Algorithm 

In year 1, we directly use as input for SMOS data the L2 products generated internally by the 
CATDS. These are the so-called L2P products based on SMOS ESA L2 v622 algorithm [AD.2]. These 
products are provided onto an EASE grid at 25km resolution and are classified/filtered according 
to an ensemble of quality flags. The data are split into ascending and descending products. SSS is 
also classified according to the distance to the sub-satellite track.  The ATDB is not reproduced 
here as it is already detailed in [AD.3].  

2.2 SMAP Level 2 Algorithm 

In year-1, we directly use as input for SMAP sensor the RSS Level 2 v3.0 products. These are swath 
SSS from SMAP provided daily at 40 km resolution. The data are split into ascending and 
descending products and between the fore and aft views. Details on the processing algorithms 
can be found in [AD.6]. The ATDB is not reproduced here as it is already detailed in [AD.6].  
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3 Level 3 algorithms 

3.1 Introduction 

The level 3 (L3) products are, by definition, time and space-averaged products obtained sensor 
by sensor, without mixing inter-sensor information. Here, we consider simple averages of swath 
Level 2 SSS products, which may have been already corrected for some biases (e.g. land sea 
contamination or spatio-temporal drifts corrections in the brightness temperatures of the 
instrument such as the Ocean Target Transformation). These products can thus be used as a 
reference in terms of observed SSS variability since we don't apply to the observed SSS any 
specific smoothing operation (for example, by allowing introducing representativity errors or 
variance filtering).  

A priori, these products will not be distributed to users in year 1. They will be made available as 
part of the validation and verification of products and will serve to build up the Level 4 products.  

3.2 Input Level 2 data 

Input Level 2 products are the swath L2 SMOS and SMAP data generated by the algorithms 
described in §2.1 and §2.2, respectively.  

3.3 Input Aquarius Level 3 products 

For Aquarius, we use as input the official release products L3 v5.0, which is the official end of 
mission public data release from the AQUARIUS/SAC-D mission (with DOI: 10.5067/AQR50-
3SADS and which are accessible here). Aquarius Level 3 sea surface salinity  standard mapped 
image data contains gridded 1 degree spatial resolution SSS averaged over daily, 7 day, monthly, 
and seasonal time scales. We use the daily average dataset for generating the CCI+SSS L4 dataset 
of year 1. An average of ascending and descending products over the 3 radiometer footprint is 
performed. The ATBD for these Aquarius L3 products is detailed in [AD.4] and [AD.5] and 
therefore, not reproduced here.  

3.4 Methods 

3.4.1 Input Data re-gridding  

While the SMOS Level 2 data are provided onto the EASE grid at 25 km resolution, the SMAP 
Level 2 data and the Aquarius Level 3 products are not given on that grid. A first step therefore 
consists in interpolating both the Aquarius and SMAP SSS onto the EASE grid at 25 km resolution. 
A bilinear interpolation scheme is used for that purpose. 

https://podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_SMID_ANNUAL_V5
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3.4.2 Space-time aggregation 

Assuming that, for a given grid node and over the duration of a month (in case of monthly 

average), we have a set of level 2 salinities 𝑆𝑆𝑆𝑖  affected by errors 𝜎𝑖
2, the averaged salinity is 

obtained as follows: 

 

𝑆𝑆𝑆̃ =

∑
𝑆𝑆𝑆𝑖

𝜎𝑖
2

𝑛
𝑖=1

∑
1
𝜎𝑖

2
𝑛
𝑖=1

 

 

This average is calculated for each grid node and on a daily or decade temporal sliding window.  

The following error is assigned to the average product: 

 

𝜎𝑆𝑆𝑆̃ =
√

1

∑
1
𝜎𝑖

2
𝑛
𝑖=1

 

 

3.5 Products 

The monthly L3 products contain the averaged SSS field and the associated error for each L-band 
sensor: SMOS, Aquarius and SMAP. 
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4 Level 4 algorithms 

4.1 Introduction 

The approach adopted to generate Level 4 CCI+SSS products is as follows: 

• The bias correction exploits as much information as possible from the data. SSS that seem 
to be affected by various contaminations (coastal, RFI, galactic, solar, etc.) are kept. It is 
considered that these effects can, to some extent, be corrected a posteriori, since in most 
cases these effects lead to systematic biases that can be confused with real geophysical 
signals. In fact, in some cases, satellite data provide information on strong geophysical 
signals that can reach several units in the Practical Salinity Scale (pss). In this situation, a 
bias in the order of the pss does not justify the removal of the data.  

• The self-consistency of the measurements (averaged in a monthly time window) over the 
whole time period (2011-2018), and taking into account the natural variability of the SSS 
expected in this window, allows the different inter-sensor biases to be corrected 
relatively to each other. A posteriori 3 sigma filters is then applied to remove outliers. 
These filters are applied with respect to the natural SSS variability that must be taken into 
account in the satellite SSS estimation process. Indeed, if a low variability is expected (in 
comparison to SSS L2 retrieval error), the filters applied must be more severe. Otherwise 
(e.g., at river mouths or in strong currents where variability is high), data that differ 
significantly (from more than 3 times the retrieval error on the SSS) from the mean should 
be retained.  

• The self-consistency criteria considered in the algorithms is temporal. A spatial correction 
of the SSS according to a certain reference (e.g. WOA climatology) could affect spatial and 
temporal dynamics and could remove some of the interannual signals and mesoscale 
signatures. We therefore consider coastal/ocean biases that are constant over time. 
These biases can be corrected without affecting geophysical SSS dynamics. In practice, 
the SSS correction/estimation is done grid node per grid node considering the inter-
sensor self-consistency in SSS. To correct seasonal latitudinal biases, a relative correction 
is finally also applied, similar to what is described in Boutin et al (2018). It applies to all 
basins and should not affect the interannual dynamics.  

• The different corrections are relative. As a result, SSS anomalies are available at the end 
of the correction processing. These anomalies are then calibrated against an absolute 
reference. As far as possible, this shift should be a time-independent correction in order 
to maintain the temporal dynamics of the SSS. In some cases (e. g. high latitudes), coastal 
biases are not constant over time due to variations in ice edges. A specific processing shall 
be found in these areas and will be the subject of future studies.  

• In the settings of the various processing parameters (time correlation length, a priori 
variability), either spatially smooth fields or slowly-evolving time fluctuations are 
estimated to reduce errors as much as possible. This is why the CCI+SSS L4 products are 
split into two sub-products: a monthly product and a weekly product.      
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The aggregation of the L2 products from the different sensors requires a step of homogenization 
of the data. This homogenization affects the following points: 

• qualification of seasonal latitudinal biases 

• estimation of representativity errors. 

4.2 Input data 

The input data are L2 or L3 from the different sensors (L2 for SMOS and SMAP, L3 for Aquarius). 
These data are all projected on the same EASE grid at a spatial sampling of 25 km (see section 
§3.4.1). In year 1, the L2 or L3  products used for each sensor come directly from official space 
agency dedicated centres (e.g., CATDS, RSS, NASA). They are therefore not generated by the CCI 
processing chains and are the following for each sensor: 

• For SMOS: we use the CATDS products described in §2.1 

• For Aquarius: we used the official release products L3 v5.0 described in section §3.3 

• For SMAP we use the RSS L2 v3.0 products described in §2.2 

Note that the Aquarius and SMAP products are corrected from latitudinal temporal biases 
based on the ARGO products in the course of their L2 processing (see [AD04] and [AD06]) 

4.3 Method 

4.3.1 Bias estimation 

The biases affecting the data are of different kinds, which include: 

• Instrumental 

• Related to errors in the forward emissivity models used for the retrieval (mainly 
dielectric constant at high latitudes, roughness corrections, etc…).  

• Linked to biased auxiliary geophysical data 

• Related to measurement contamination (Brightness temperatures) by 
anthropogenic sources (e.g. RFI). 

One of the important sources of bias is related to the contamination of the instrument side lobes 
around the coasts (for real aperture radiometers) or by the land signal in the reconstruction of 
oceanic scene (for the SMOS interferometric radiometer, see instrument characteristic 
description in the E3UB document, section 2).  

The analysis of biases and errors (see E3UB, section 4) shows that: 

• There are sources of constant bias over time which vary as function of the location on the 
globe, the instrument and the geometry of observation.  

• There are sources of bias that are not constant over time and depend on latitude.  
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For these reasons, we propose to model the bias as a sum of two components. 

We consider that the latitudinal (orbital) biases are independent of the basin (Atlantic, Pacific or 
Indian Ocean) and that they apply in addition to the coastal/land biases. 

The general formulation of the bias, for a given grid node at the location (lat,lon) is as follows: 

SSSobs(X, t, orb, lat, lon) = SSS(t) − bc(X, orb, lat, lon) − bl(X, orb, t_month, lat) Eqn 4-1 

  with  

• bc, the coastal bias  

• bl the latitudinal bias 

• SSSobs is the observed salinity,  

• SSS(t) is the unbiased SSS.   

• X corresponds to a subset of data that is assigned in the same way through the bias. In 
the case of Aquarius, this may be the antenna beam considered or, in the case of SMOS, 
the across swath location of the measurement (Xswath). 

• orb is indicating the pass directions (asc/desc) 

bc and bl can be estimated independently starting with the estimation of bl on open sea areas at 
grid nodes sufficiently far away from the coasts. Then, a latitudinal correction is applied to the 
coastal pixels. From these latitudinal bias corrected data, we estimate bc. Since the number of 
independent subsets of data is relatively large, the different biases can be estimated in a self-
referenced way, i.e. there is no need for an external reference when considering SSS anomalies 
rather than absolute salinities. Note that the Eqn 4-1 requires a simultaneous estimation of SSS(t) 
(or anomalies with respect to an arbitrary reference salinity given by the measurements 
themselves) and of the biases bc and bl since for the CCI L4 products, we do not use an external 
reference that gives us SSS(t). The arbitrary reference is taken as the SMOS SSS at the center of 
the track. At the end of the correction process, all SSS calibrated with respect to this reference 
are adjusted to the 2011-2018 ISAS SSS mean. 

The L4 products, represented by SSS(t) are therefore estimated together with the biases in each 
product. The error propagation occurs at the time of this estimate using a Bayesian least square 
method that includes a time correlation length. We can process each grid node independently of 
each other and thus maintain the native spatial resolution of each sensor.  

4.3.2 SSS and bias estimation: main processing steps.  

Figure 1 summarizes the different processing steps of the algorithm including the generation of 
intermediate products.  
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Figure 1: main L4 processing steps.   

The algorithm steps to perform the corrections in order to estimate the unbiased SSS are as 
follows: 

1. Correction of the bias related to the modelling of the L-band sea water dielectric constant 
at low SST (section 4.3.3). 

2. Correction of the latitudinal biases if necessary (section 4.3.4). We found that latitudinal 
bias is low for SMAP and Aquarius data that are already latitudinally adjusted via ARGO 
in-situ data (see E3UB). For SMOS data, a seasonal correction is applied that depends on 
the latitude.  

3. Estimation of the inter-sensor biases and monthly SSS (section 4.3.5). The inter-sensor 
biases are considered constant for each month and evaluated assuming SSS varies slowly 
over a month (Figure 2). This computation is carried out by an optimal interpolation 
whose cost function is described in section 4.3.7. 

4. Estimation of errors of the monthly SSS (section 4.3.9). Computation of outliers, std of 
bias...etc.  

5. Correction of individual SSS and computation of a weekly-averaged SSS field. In this step, 
the bias correction is fixed and the 30-day SSS field is taken as a priori. We estimate 
fluctuations around this monthly field to achieve a time resolution of 7 days. This 
computation is carried out by an optimal interpolation whose cost function is described 
in section 4.3.7. 
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6. Estimation of errors of the weekly SSS (section 4.3.9).  

 

7. Absolute calibration of salinities (section 4.3.8). 

 

 

Figure 2: principle of the self-consistency approach. Example of a grid point processing and time series analysis. The different 
time series coming from three different sensors or acquisition types are corrected from b1, b2, b3 biases. Left: observed SSS; 
right: corrected SSS. Red curve shows the mean SSS obtained from the measurements (clouds of points).  

 

4.3.3 Sea Water dielectric constant model correction 

L2 and/or L3 data are first filtered to discard outliers. In the case of SMOS, an empirical correction 
of the retrieved SSS at low SST is applied to correct for Klein and Swift (KS) dielectric constant 
model biases at low temperatures (Dinnat et al. 2017). A filter is also applied to remove data 
which exhibit a cost-function retrieval Chi-parameter (given by the L2 products) which is strictly 
larger than  3.  

The correction related to the dielectric constant has been empirically derived from a fit of Figure 
7 from Zhou et al. 2017 as follows: 

bias(SSS)=0.0136.SST²-0.2553.SST+1.1874. 

It must be subtracted and applied over the SST  interval from -2°C to  8.5 °C. 

The effect is significant at high latitudes as shown in Figure 3. 
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Figure 3  : Example of bias correction due to dielectric constant. Correction reaches 1.5 pss close to ice edge.  

This bias is considered to have been at least partially corrected in the SMAP and Aquarius data. 
SMAP and Aquarius algorithms use an intermediate dielectric constant model between KS and 
Meissner et Wentz (MW).  The MW model behaves better than the KS model at low 
temperatures. 

An update of the dielectric constant model is under study that will be deployed in future versions. 

4.3.4 Seasonal latitudinal correction 

A seasonal latitudinal correction is further applied to the SMOS data to ensure best consistency 
between SMOS, SMAP and Aquarius data. The latitudinal seasonal correction applied to the 
SMOS data depends on the across track location and the orbit pass direction (ascending or 
descending). The purpose is to estimate the term bl in Eqn 4-1. 

Further than 800 km from the coastline, land-sea contamination is not detectable but seasonally-
varying latitudinal biases are still observed. For SMOS data, the latter mostly depend on xswath, 
orb and the month of the year. At first order, the systematic errors are independent from the 
year as shown by two examples over the Pacific Ocean on Figure 4  
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Figure 4 : Examples of seasonally-varying latitudinal systematic error. SSS averaged over the Pacific Ocean further than 800 km 
from coast: green: ISAS, blue: SMOS ascending orbits; red: SMOS descending orbits: a-d) November; middle of the swath (0-50 km 
from the center of the swath); e-h) January; edge of the swath (350-400 km from the center of the swath); a & e) 2011; b & f) 
2012; c & g) 2013; d & h) 2014.  

bl (Eqn 4-1) is determined separately for ascending and descending orbits, on a monthly basis, 
and is assumed to be independent of the longitude and of the year. We therefore neglect 
interannual variations that could result from variation in sun activity, as they appear to be an 
order of magnitude smaller than the seasonal biases. The correction is estimated from Atlantic 
Ocean orbits further than 800 km from continental coasts, in order to avoid land-sea 
contamination (bc in Eqn 4-1 vanishes in this case) and because it is possible to reach very high 
latitude in comparison with Pacific Ocean.  

4.3.5 Static bias correction 

At this stage and after SMOS latitudinal correction (section 4.3.4), it is considered that there are 
still possible coastal biases affecting the SMOS-SMAP-Aquarius data. These biases are considered 
constant over time and specific to each type of acquisition (term bc in Eqn 4-1). The types of 
acquisition include: the orbit direction (ascending/descending, except for the L3 Aquarius) and 
the geometry of acquisition (across-track location for SMOS and fore/aft viewing direction for 
SMAP). The correction of relative biases assumes that sensors observe the same SSS on average 
over 2010-2018. This makes it possible to co-locate the SSS of the different sensors and to assume 
that, on average, the SSS should be the same (Figure 2).   

SSS fields are derived as follows: 

-first, for each grid node, a monthly SSS(t) is calculated for each grid node and over the 
observation time interval (2010-2018). The relative inter-sensor temporal biases are calculated 
(see section 3.3.2). Daily SSS(t) anomalies are then obtained over the observation interval. Daily 
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interpolation and estimation of coastal biases are finally carried out as part of an optimal analysis 
applied independently for each grid node. In particular, we take into account: 

o data errors 
o SMOS-SMAP-Aquarius representativeness errors 
o the monthly variability calculated from the SMOS SSS. 
o The cost function integrates all these covariances (see section 3.3.2).  

In addition, a 3 sigma filtering is applied to avoid outliers. We proceed in 2 steps:  

1) first estimation of the SSS and biases and 3-sigma filtering,  

and,  

2) then a second estimation of the SSS and biases is performed after filtering.  

-Finally, the L2 SSS are corrected for biases and the weekly SSS is estimated. The weekly SSS is 
obtained by adding weekly fluctuations to the average monthly field. The introduction of 7-day 
to  30-day variability in the cost function (through representativity error covariance) allows to 
limit noise on areas with low natural variability. A new 3sigma filtering is applied before the SSS 
weekly retrieval. 

4.3.6 Representativity errors and natural variability. 

In the optimal interpolation, we consider that the SSS field has some monthly variability. This 
variability is actually an RMSD estimated from an independent SSS global average on each grid 
node. The variability is seasonal and the SSS is allowed to fluctuate more or less around its mean 
value with the seasons.  

In order to obtain monthly variability at all points and all seasons, we used SMOS filtered SSS 
fields for low latitudes and ISAS SSS fields [RD08] at the highest latitudes or at some points on 
the globe where RFI contamination is intermittent. This variability has been increased as detailed 
below in order to always leave the possibility of unexpected fluctuations. 
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Figure 5: SSS RMSD obtained from the merged SMOS and ISAS information. January month. x and y axis units in pixel number for 
longitude and latitude respectively. 

For weekly CCI fields, we start from the monthly average fields. We estimate the weekly 
fluctuations around these monthly average fields. Mercator model simulated SSS are used to 
calculate the relative seasonal variability between monthly and weekly salinity fields (Figure 6). 
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Figure 6: SSS variability between SSS fields taken at 50km/7days and 50km/30days. January. From Mercator 1/12th of degree. x 
and y axis units in pixel number for longitude and latitude respectively. 

 

Figure 7: same than Figure 6 after rescaling and spatial smoothing.x and y axis units in pixel number for longitude and latitude 
respectively. 
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Figure 6 shows the variability in January between a 50km/7-day field and a 50km/3-day field 
obtained from the Mercator fields at 1/12th of a degree. After some testing, it appears that this 
variability is underestimated in river mouths and plumes. Since river discharges used in Mercator 
model are based on river discharge climatologies, interannual variations in runoff flows are not 
properly taken into account. In fact, we have tried to spatially smooth this variability over a length 
of 200km. However, smoothing introduces a significant decrease in amplitude. We therefore 
decided to multiply the variability by a factor 2 and then smooth this variability over a length of 
200km. Figure 7 shows the variability map actually used in the L4 processing.  

In principle, when averaging data from different sensors, it makes sense if the acquisitions have 
the same spatial and temporal resolution. 

The temporal resolution of the Aquarius product we used (7days) is much longer than the 
temporal resolution of SMOS and SMAP L2 SSS (on the order of 2 seconds that corresponds to 
the SMOS acquisition time) so that a representativity error corresponding the the SSS variability 
within 7 days should be taken into account. However, this representativity error remains low, 
partly because most SSS structures at 150km resolution do not vary much within 7days, 
compared to SMOS and SMAP measurement errors (representativity errors are quadratically 
added to measurement errors).  

The spatial resolution of Aquarius SSS is 150km, 50km for SMOS and SMAP, hence we must take 
into account a representativity error for Aquarius, corresponding to the variance of the SSS 
between 50 and 150km2. The aim is to increase the error associated with the Aquarius data by a 
representativity error that can be calculated from a model such as Mercator. This information, 
calculated off-line, is used in the cost function. Note that this representativity error depends on 
the season and dynamics of the SSS field (Figure 8). Indeed, in some parts of the world, the SSS 
does not vary over large distances and durations: in this case, the error of representativity tends 
towards 0. Here again, tests have shown that the error of representativity is not sufficient, 
particularly near the coast. We proceed as for the weekly variability: the variability was doubled 
and spatially smoothed.  
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Figure 8: representativity error Aquarius vs. SMOS (150km/7jours Aquarius, 50km/30jours). January. From Mercator 1/12th of 
degree. x and y axis units in pixel number for longitude and latitude respectively. 

Representativity errors are generally low (compared to observational errors) for grid nodes in 
the open sea and have significantly high values near river mouths. Moreover, near rivers, large 
interannual variations show that a Gaussian statistical approach leads to some drawbacks and 
the estimation of fluctuations in these areas can be approximate. 

In conclusion: 

- representativity errors are generally low in the open sea (compared to measurement errors) 
except in some areas of high gradients and in rainy areas. 

- close to the coast and at the rivers mouths, these errors are difficult to assess because of the 
high interannual variability that puts the statistical approach into default. These errors can be 
greater than 1 pss, which becomes dominant in the error budget (SMOS L2, SMAP L2 and 
Aquarius L3 errors are, at an SST of 25°C, about 0.8, 0.7 and 0.3 (at the equator) pss, respectively. 
Under these conditions, it can be seen that Aquarius data are much more affected by 
representativity errors than SMOS and SMAP data.   

The algorithm take into account Aquarius representativity errors due to the difference in spatial 
resolution and the low relative amplitude of Aquarius errors. 
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4.3.7 Cost function 

4.3.7.1 Introduction 

In order to estimate the SSS at a given time, the algorithl is using an optimal interpolation. This 
interpolation is applied grid node per grid node, without spatial smoothing. Indeed, we want to 
preserve the temporal dynamics of the SSS and to avoid a spatial catch-up made to a reference 
climatological field (this catch-up would then be done month by month) for which the temporal 
dynamics of the observations are reduced to the temporal dynamics of the reference field, which 
might remove important interannual variations.   

To better understand the process, let's consider SSSobs observations from a single sensor. First, 
the bias is ignored.  To estimate a time series SSSest of spatial resolution R1 and temporal 
resolution T1, knowing that the observed data SSSobs are at spatial resolution r1 and temporal 
resolution t1, the cost function to be minimized is written (as a scalar product <X|Y>): 

 

C(SSS) =< SSSobs − SSS|C1-1·(SSSobs − SSS) > + 

< SSS − SSSmoy|C2-1·(SSS − SSSmoy) > 
Eqn 4-2 

The SSSmoy field is the SSS field a priori that is given and which, in the case of the monthly SSS 
estimate, is constant and corresponds to the average of the SSS of the SMOS central dwell line. 
For the weekly SSS, it is the monthly SSS obtained in the previous step (the monthly SSS estimate) 
from SMOS, SMAP and Aquarius data. Note that Eqn 4-2 only applies if the time sampling of the 
data is greater than the time resolution T1.  

The algorithm seeks SSSest values that minimizes the cost function. To do so, the algorithm 
evaluates C1, the covariance of the data (which contains the error on the data) to which a 
representativity error Cr has been added that takes into account the difference in resolution of 
fields R1-T1 and r1-t1 : 

C1=Cd+Cr(R1-T1,r1-t1) 

An example of covariance Cr (representativity error) is given for the month of January in Figure 
8. This covariance is seasonal and specific to each grid node. Cd is the covariance on the observed 
data, i.e. measurement errors.  

C2 is the variability of field R1-T1 relative to the SSSmoy field. An example of variability 
applied in the monthly case is shown in Figure 5, again, this variability is seasonal and different 
for each grid node.  
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However, each sensor must be considered independently in the cost function considering the 
space/time resolution of each product. We therefore have, in the case where we estimate the 
monthly field strength and if we consider the three sensors SMOS, SMAP and Aquarius: 

C(SSS)=<SSSobs_smos-SSS|C1_smos-1·(SSSobs_smos-SSS)> + 

<SSSobs_smap-SSS|C1_smap-1·(SSSobs_smap-SSS)> + 

<SSSobs_aqua-SSS|C1_aqua-1·(SSSobs_aqua-SSS)> + 

<SSS-SSSmoy|C2-1·(SSS-SSSmoy)> 

 

Here, the average SSS field SSSmoy is given at a monthly resolution and a spatial resolution of 
50km.  

In principle, we should also include in the SMOS covariance the representativity error that 
corresponds to the transition from acquisition time (about one second) to monthly resolution 
(30 days). This same error of representativity should be applied to SMAP. However, we consider 
here that SMOS and SMAP measurement errors are generally dominant, which is true in 90% of 
cases. For Aquarius, which has much smaller errors, the algorithm takes into account 
representativity errors. 

Finally, the cost function also contains the estimation of biases. For each type of acquisition, a 
different relative bias is considered. Only the bc bias of Eqn 4-1 is taken into account, the 
latitudinal bias being corrected beforehand. 

4.3.7.2 Parameter estimation 

The algorithm is therefore looking for solutions SSS(t) and bc that both minimizes the cost 
function. Each grid node is processed separately. All available SSS data associated with the grid 
node considered are used by the algorithm.  The problem is linear. To minimize the cost function, 
a classic Raphson-Newton descent is used. 

SSSobs is the observation vector that contains SMOS, SMAP and Aquarius data: 

SSSobs= (
SSSsmos
SSSaqua
SSSsmap

) 

The parameter vector is written: 

m=(

SSS
bc_smos
bc_aqua
bc_smap

) 
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bc_smos, bc_aqua,bc_smap are vectors that contain the biases for each type of acquisition 
(ascending/descending,dwell lines, fore-afte ...etc) that can be grouped into a vector bc. We will 
take as a priori bc=0 for all sensors and acquisition types. 

The vector parameter a priori is written: 

m_prior= (

SSSmoy
0
0
0

) 

SSSmoy is the starting SSS used as a priority (this value is constant over time). It is taken equal to 
the SSS of the central dwell SMOS, ascending orbits when possible. Otherwise, the median of the 
observed SSS is used.   

If we call H, the matrix of partial derivatives: 

H=

[
 
 
 
 
 
 
∂SSSsmos

∂SSS

∂SSSsmos

∂bc_smos

∂SSSsmos

∂bc_aqua

∂SSSsmos

∂bc_smap
∂SSSaqua

∂SSS

∂SSSaqua

∂bc_smos

∂SSSaqua

∂bc_aqua

∂SSSaqua

∂bc_smap
∂SSSsmap

∂SSS

∂SSSsmap

∂bc_smos

∂SSSsmap

∂bc_aqua

∂SSSsmap

∂bc_smap]
 
 
 
 
 
 

 

where :  
SSSsensor=F(m)=SSS-bc_sensor 

with "sensor" = smos, aqua or smap.  

This matrix is calculated on the observation points.   

The covariance matrices used are as follows: 

- Cd the error matrix,  

- Cm the matrix of SSS variability and a priori error on bc, 

- Cr the matrix of representativity errors. 

Cd=[

Cd_smos 0 0
0 Cd_aqua 0
0 0 Cd_smap

] 
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Cm= [
CSSS 0

0 Cbc
] 

 

CSSS is a time smoothing operator that contains the expected variability that is provided as 
auxiliary data. Thus, the covariance of the SSS that links two times t1 and t2 is written: 

CSSS(t1,t2)=sigSSS(t1)sigSSS(t2)exp (-
(t1-t2)2

ξ2
) 

with ξ=25 days and 6 days for monthly and weekly products respectively.  

"sigSSS" is interpolated temporally to the acquisition times. 

"Cbc" is a diagonal matrix that contains the a priori standard deviation of biases. This standard 
deviation is set at 4pss.  

The Cr matrix corresponds to representativity errors: 

 

Cr= [
Cr_smos 0 0

0 Cr_aqua 0
0 0 Cr_smap

] 

With, in year 1, "Cr_smos" and "Cr_smap" set to 0. 

In addition to measurement errors, representativity errors are added: 

Ct=Cd+Cr 

Representativity errors are reported monthly. They are interpolated temporally to the 
acquisition times.  

In this formalism, the cost function is written, for each grid node: 

 

C(SSS,bc)=<SSSobs-F(m)|Ct-1 ∙ (SSSobs-F(m))>+ <m-m_prior|Cm-1 ∙ (m-m_prior) >  

with: 

F(m)=SSS-bc 

We look for SSS_est and bc_est that minimizes C (SSS,bc). The solution of minimization is written: 

m_est=m_prior+Cm∙HT ∙ (H∙Cm∙HT+Ct)-1 ∙ (SSSobs-F(m_prior)) 



 

Climate Change Initiative+ (CCI+) 
Phase 1 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  19/12/2019 

Version : v1.3 

Page: 34 of 41 

 

© ARGANS Ltd. 2019 

where "T" indicates the transpose operator. 

4.3.7.3 Estimation of monthly SSS 

In order to estimate the monthly SSS, we proceed in 3 steps:  

1) a first estimation of the biases and time series of SSS, grid node by grid node is performed, 

2) a 3 sigma filtering of the observed SSS in comparison with the estimated SSS is done. 

 The aim here is to identify any outliers against the returned SSS field. Outliers can be linked to 
intermittent RFIs. It is considered here that stable RFI contamination can be corrected.  

3) a second estimate of SSS biases and time series after removing outliers. 

The relative biases used to derive monthly SSS are estimated taking the averaged SSS from the 
SMOS central across swath location as a priori.  

4.3.7.4 Estimation of weekly SSS 

To estimate the weekly SSS, the biases calculated at the monthly SSS are frozen (it is assumed 
that the biases will not be better estimated from a weekly smoothing). We start from the monthly 
SSS as a priori. We try to estimate the weekly fluctuations around this a priori. First, a 3sigma 
filter is used. Here, sigma = sqrt(error_L2OS ² + variability²). The variability is given by Mercator 
model. This eliminates outliers that deviate too far from what is expected.  

That being said, the SSS field estimate is done in a single step. 

4.3.8 Absolute correction 

At the end of the inter-sensor bias correction step, the salinities obtained are set on average on 
those of the SMOS ascending central dwell (or on the average of the SSS of all sensors if the 
central dwell is not observed). The central dwell can itself be affected by a bias that must be 
corrected by using the global average of the ISAS data over the period considered (thus, the 
dynamics of the SSS SMOS are not affected: only one constant value, grid node per grid node, is 
added for the entire period covering 2010-2018). This step uses the median or the quantile of 
the SMOS and ISAS time series. The correction allows matching the SMOS quantile and the ISAS 
quantile on the 30-day average data. Moreover, it appears that the dynamics of the SMOS SSS is 
much stronger than that of ISAS. And, it turns out that this dynamic is not symmetrical and that 
intermittent freshening is much more frequent than intermittent over-salting. In fact, ISAS data 
contain much less information than SMOS in terms of freshening. This is why, in case of high 
weekly variability, we propose to perform the calibration of SMOS on ISAS, not by using the 
median but a high quantile (80%), in order to promote the calibration on the strong values of the 
SSS. 
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We therefore propose the following empirical approach: 

- if the variability is less than 0.6 pss, the quantile is taken at 50% (the median) 

- if the variability is greater than 0.8 pss, the quantile is 80%. 

- between 0.6 and 0.8 pss, we take a quantile that varies linearly: quantile(%)=(1.5 x variability - 
0.4) x 100. 

The map of quantiles used for the absolute calibration of the SSS is given in Figure 9. 

In fact, if a high quantile is used for calibration, bias can be generated if the SSS error is greater 
than the variability. In the latter case, it is better to use the median. 

 

Figure 9: quantile map used for the SSS absolute calibration.x and y axis units in pixel number for longitude and latitude 
respectively.  

4.3.9 Error budget 

The computation of theoretical errors is obtained directly from the pseudo hessian matrix. 

Cpost=Cm-Cm∙HT ∙ (H∙Cm∙HT+Ct)-1 ∙ H ∙ Cm 

The problem turns into inverting the "H·Cm·HT+Ct" matrix over the entire period, which is rather 
heavy.  We therefore prefer to make a sliding window over a large time interval and invert the 
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matrix on this time domain (the computation being similar to the one we could perform over the 
entire period). 

Note that the error a posteriori is necessarily lower than the variability introduced in the operator 
Cm. In the monthly case, this variability corresponds to the expected monthly fluctuations shown 
in Figure 5. In the weekly case, the variability is calculated relative to the monthly field. The latter 
is generally lower than the monthly variability (Figure 7). The a posteriori error obtained on the 
weekly fields should therefore be lower than that obtained on the monthly fields. However, this 
is only true if, to obtain the weekly fields, we started from noise-corrected monthly fields, which 
is not the case. The propagation of errors on the weekly fields must therefore take into account 
errors on the monthly field. Thus, for the monthly fields, we have: 

 

Cpost_month=Cm_month-Cm_month∙HT∙(H∙Cm_month∙HT+Ct)-1 ∙ H ∙ Cm_month 

and for the weekly fields: 

Cpost_week=Cpost_month+Cm_week-Cm_week∙HT ∙ (H∙Cm_week∙HT+Ct)-1 ∙ H ∙ Cm_week 

with "Cm_month", the monthly variability and "Cm_week" the weekly variability relative to the 
monthly variability.  

The a posterior errors on the monthly and weekly fields are therefore obtained as follows: 

 

σSSSmonth=√diag(Cpost_month) 

 

σSSSweek=√diag(Cpost_week) 

The number of outliers is also calculated on this same basis as well as the number of data 
available. The window sizes used are respectively +/- 30 days and +/- 10 days for monthly and 
weekly products respectively. 

4.3.10 Level 4 products 

The aim of this part of the algorithm is to estimate the monthly and weekly SSS.  

User requests converge on a product that contains the following fields (AD07): 

-monthly and weekly SSS fields : obtained from OI algo (section 4.3.7). 

-SSS error : obtained from OI algo (section 4.3.9). 
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-SSS mean bias : mean of the biases applied over the considered time interval (+/-30 days for 
monthly data and +/-10  days for weekly data).  

-SSS std bias : mean of the biases applied over the considered time interval (+/-30 days for 
monthly data and +/-10 days for weekly data).  

-number of outliers over the considered time interval (+/-30 days for monthly data and +/-10 
days for weekly data).  

-number of data over the considered time interval (+/-30 days for monthly data and +/-10 days 
for weekly data).  

-quality flag =0 if no data present over the considered time interval (+/-30 days for monthly data 
and +/-10 days for weekly data).  

-pct_var : 100(SSS error)²/variability  (%). 

 

These values are given for each grid node and sampled every two weeks for monthly products 
and every day for weekly products. 
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5 Conclusions and way forward 

In year 1, the input data to the CCI processing chains are level 2 for SMOS and SMAP, Level 3 for 
Aquarius,  and they are generated outside of the CCI processor. These data are all projected on 
the same EASE grid at a spatial sampling of 25 km. The L2 products used for each sensors come 
directly from official space agency dedicated centres (e.g. CATDS, RSS). They are therefore not 
generated by the CCI processing chains. The next steps will therefore consider the generation of 
the CCI level 2  SMOS, SMAP and Aquarius products which shall be debiased to be for example, 
potentially best assimilated in ocean circulation models. Plans forward will also include refined 
Land Contamination and RFI filtering, and applying different weights for fore/aft SMAP views and 
for ascending/descending passes for all sensors during the optimal interpolation processing. 

First validation results using co-localized CCI and ARGO upper SSS over 2010-2018 are available 
online from the Pi-MEP platform, and can be found here for the monthly and weekly CCI products. 
PVASR (AD08) presents some further investigations.  

 

 

 

Figure 10 Temporal Mean bias (Top Left) and standard deviation (Top right) maps of the differences between CCI and ARGO SSS 
values. These maps are obtained by averaging the differences between co-localized CCI and ARGO SSS pairs over 1°x1° boxes and 
for the period 2010-2018. Bottom left: zonally averaged time-mean ΔSSS (CCI - Argo) for all the collected Pi-MEP match-up pairs 
at latitudes less than 80°.  Bottom right: contour maps of the concentration of CCI-L4-ESA-MERGED-OI-V1.5-MONTHLY SSS (y-axis) 

https://pimep.ifremer.fr/diffusion/analyses/mdb-database/GO/cci-l4-esa-merged-oi-v1.5-1m/argo/report/pimep-mdb-report_GO_cci-l4-esa-merged-oi-v1.5-1m_argo_20190315.pdf
https://pimep.ifremer.fr/diffusion/analyses/mdb-database/GO/cci-l4-esa-merged-oi-v1.5-7dr/argo/report/pimep-mdb-report_GO_cci-l4-esa-merged-oi-v1.5-7dr_argo_20190315.pdf
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versus Argo SSS (x-axis) at match-up pairs for different latitude bands. For each plot, the red line shows x=y. The black thin and 
dashed lines indicate a linear fit through the data cloud and the 95% confidence levels, respectively. The number of match-up pairs 
n, the slope and R2 coefficient of the linear fit, the root mean square (RMS) and the mean bias between satellite and in situ data 
are indicated. 

 

Table 1 statistics of the differences between CCI and ARGO delayed mode SSS values. The conditions C1 to C9c are described in 
the text.  

 

 

We reproduce in Figure 10 and Table 1 some summary statistics for the monthly CCI SSS match-
ups with ARGO SSS.  

Table 1 shows classical statistics (Median, Mean, Std, RMS, IRQ, r2) allowing comparisons 
between SSS products and reference SSS. Std* refers to robust std computation : 
Std*(X)=Median(|X-Median(X)|)/0.6745 , with X, a random variable. If X follows a gaussian law, 
Std*(X) converges to the classical standard deviation of X. In case of some large value 
contamination, Std*(X) also converges to the classical standard deviation. 

Figure 10 show the validation results for using both near-real time and delayed mode ARGO 
floats. The results in Table 1 only considered the best quality ‘delayed-mode’ ARGO float SSS 
data. The conditions in table 1 are defined as follows: 

• all: All the match-up pairs satellite/in situ SSS are used to derive the statistics 

• C1: only pairs where Rain Rate (RR)=0 mm/h, 3< U10 <12 m/s, SST>5°C, distance to 
nearest coast > 800 km 



 

Climate Change Initiative+ (CCI+) 
Phase 1 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  19/12/2019 

Version : v1.3 

Page: 40 of 41 

 

© ARGANS Ltd. 2019 

• C2: only pairs where RR=0 mm/h, 3< U10 <12 m/s 

• C3: only pairs where RR>1mm/h and U10 <4m/s 

• C4: only pairs where Mixed Layer Depth (MLD)<20m 

• C5: only pairs where WOA2013 SSS Std<0.2 

• C6: only pairs where the standard deviation of the WOA2013 SSS climatology >0.2 

• C7a: only pairs where distance to coast is < 150 km. 

• C7b: only pairs where distance to coast is in the range [150, 800] km. 

• C7c: only pairs where distance to coast is > 800 km. 

• C8a: only pairs where in situ SST is < 5°C. 

• C8b: only pairs where in situ SST is in the range [5, 15]°C. 

• C8c: only pairs where in situ SST is > 15°C. 

• C9a: only pairs where in situ SSS is < 33. 

• C9b: only pairs where in situ SSS is in the range [33, 37]. 

• C9c: only pairs where in situ SSS is > 37. 

As found (Figure 10), the global RMSD of the monthly SSS differences with all validated ARGO 
available at global scale is 0.3. When considering only the best validated ARGO data (delayed 
mode data) the global RMSD drops to 0.25. In optimal conditions (conditions C1), the RMSD is 
minimal reaching 0.16. Degraded CCI product quality is nevertheless observed at latitudes higher 
than 60° (Figure 10, bottom left plot), in highly variable SSS zones (Figure 10, top right panel and 
condition C6), at low SST (conditions C8a), in the 150 km band  around the coasts (condition C7a) 
and in the freshest oceanic waters (condition C9a).       

In the next steps, efforts will be conducted to improve the CCI products at high latitudes and low SST. The 
large difference between CCI and Argo in low SSS value areas (mostly  associated with large tropical river 
plume and rainy ITCZ areas) is probably dominated by representativity errors as monthly average large-
scale satellite data can not represent the local measurements performed in zone highly dynamical SSS 
zones. The addition of SSS data in year 2 from C-band sensor in these region will expectedly increase the 
robustness of the CCI product in these freshwater surface area. 
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End of Document 
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