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The land parameter retrieval model (LPRM) is a methodology that retrieves soil moisture from low frequency
dual polarized microwave measurements and has been extensively tested on C-, X- and Ku-band frequencies.
Its performance on L-band is tested here by using observations from the Soil Moisture and Ocean Salinity
(SMOS) satellite. These observations have potential advantages compared to higher frequencies: a low sensitivity
to cloud and vegetation contamination, an increased thermal sampling depth and a greater sensitivity to soil
moisture fluctuations. These features make it desirable to add SMOS-derived soil moisture retrievals to the
existing European Space Agency (ESA) long-term climatological soil moisture data record, to be harmonized
with other passive microwave soil moisture estimates from the LPRM. For multi-channel observations, LPRM
infers the effective soil temperature (Teff) fromhigher frequency channels. This is not possible for a single channel
mission like SMOS and therefore two alternative sources for Teff were tested: (1) MERRA-Land and (2) ECMWF
numerical weather prediction systems, respectively. SMOS measures brightness temperature at a range of
incidence angles, different incidence angle bins (45°, 52.5° and 60°) were tested for both ascending and
descending swaths. Three LPRM algorithm parameters were optimized to match remotely sensed soil moisture
with ground based observations: the single scattering albedo, roughness and polarization mixing factor. The
soil moisture retrievals were optimized and evaluated against ground-based data from the Murrumbidgee Soil
Moisture Monitoring Network (OzNet) in southeast Australia. The agreement with single-angle SMOS LPRM
retrievals was close to the official SMOS L3 product, provided the three parameters were optimized for
the OzNet dataset, with linear correlation of 0.70–0.75 (0.75–0.77 for SMOS L3), root-mean-square error
of 0.069–0.085 m3 m−3 (0.084–0.106 m3 m−3 for SMOS L3) and small bias of −0.02–0.01 m3 m−3

(0.03–0.06 m3 m−3 for SMOS L3). These results suggest that the LPRM can be applied successfully to single-
angle SMOS L-band observations, but further testing is required to determine if the same set of parameters can
be used in other geographic areas.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Abetter understanding of thedynamics of near-surface soilmoisture
(θ, m3 m−3 for a top soil layer of defined thickness) with increased
spatial and temporal details can be expected to improve the knowledge
of energy and water fluxes between the Earth surface and the atmo-
sphere. Evidence suggests that several important practical applications
can benefit from satellite-derived θ estimates, including flood forecast-
ing, drought monitoring and weather and climate modeling (Bisselink,
Department of Earth Sciences,
msterdam, Amsterdam, The

alie).
Van Meijgaard, Dolman, & De Jeu, 2011; Bolten, Crow, Zhan, Jackson, &
Reynold, 2010; Brocca et al., 2010). Space-borne microwave observa-
tions at low frequencies (i.e. L-band, C-band, X-band) have the potential
to fulfill this need. Over the years several algorithms have been devel-
oped to derive θ from passive microwave observations, resulting in nu-
merous data products developed from 1978 onwards (Owe, De Jeu, &
Holmes, 2008, and references therein). The datasets have proven their
value in research applications (e.g., Jung et al., 2010; Liu, De Jeu, Van
Dijk, and Owe, 2007; Taylor, De Jeu, Guichard, Harris, & Dorigo, 2012).
They become even more valuable once estimates from subsequent sat-
ellite missions are combined into one consistent multi-decadal data re-
cord (De Jeu et al., 2012). This was addressed by the European Space
Agency (ESA) through theWater Cycle MultiMission Observation Strat-
egy (WACMOS) project and the Climate Change Initiative Program

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.03.006&domain=pdf
http://dx.doi.org/10.1016/j.rse.2015.03.006
mailto:r.vander.schalie@vu.nl
Journal logo
http://dx.doi.org/10.1016/j.rse.2015.03.006
Unlabelled image
http://www.sciencedirect.com/science/journal/00344257


71R. van der Schalie et al. / Remote Sensing of Environment 163 (2015) 70–79
(CCI), in which a single consistent 32 year data record was produced by
harmonizing soil moisture estimates from historical passive- and active
microwave and observations (Liu et al., 2012a). This data record makes
use of the land parameter retrieval model (LPRM) (Owe, De Jeu, &
Walker, 2001) to derive soil moisture from the passive microwave sen-
sors and the change detection algorithm to derive θ from the active mi-
crowave observations (Wagner, Lemoine, & Rott, 1999) as baseline
algorithms to develop the long-term soil moisture record.

The LPRM is one of several methods for inferring θ from passive
microwave observations. This method has been applied to observations
from multiple passive microwave sensors, such as the Scanning Multi-
channelMicrowave Radiometer (SMMR), the Special SensorMicrowave
Imager (SSM/I), the Tropical Rainfall Measuring Mission's Microwave
Imager (TRMM-TMI), the Advanced Microwave Scanning Radiometer-
Earth Observing System (AMSR-E) and WindSat (Owe et al., 2008;
Parinussa, Holmes, & De Jeu, 2011a), and has been demonstrated to
generate good quality θ estimates (Gruhier et al., 2010; Rossato, De Jeu,
Alvala, & Souza, 2011; Rudiger et al., 2009; Su, Ryu, Young, Western, &
Wagner, 2013; Wagner, Naeimi, Scipal, De Jeu, & Martinez-Fernandez,
2007). Unlike other θ retrieval methods, the LPRM simultaneously
retrieves both θ and vegetation optical depth (τv, dimensionless) from
microwave brightness temperatures (Tb in K) via inversion of the
radiative transfer model. It therefore does not require prior external
information on vegetation (Huilin, Wood, Drusch, Crow, & Jackson,
2004; Kerr et al., 2012; Meesters, De Jeu, & Owe, 2005).

In November 2009, ESA launched the Soil Moisture and Oceans
Salinity (SMOS) satellite (Kerr et al., 2010); the first mission dedicated
to soil moisture. It observes at the 1.4 GHz (L-band) frequency which
is considered to be optimal for θ retrievals because of the low sensitivity
to cloud and vegetation contamination, a thermal sampling depth of
several centimeters, and a high sensitivity to soil moisture fluctuations
(Njoku& Entekhabi, 1996). SMOS is the first of several satellitemissions
measuring at L-band; in 2011 Aquarius (Le Vine, Lagerloef, Colomb,
Yueh, & Pellerano, 2007b) was launched, and the Soil Moisture Active
Passive (SMAP) mission (Entekhabi et al., 2010) is launched in 2015.
The spatial resolution of the current SMOS Level 3 soil moisture product
(SMOS L3) is 43 km. The unique capabilities of SMOS make it desirable
to include retrievals from the sensor in ESAs long-term soilmoisture cli-
mate record. To maintain consistency in the CCI data record, arguably
application of the LPRM algorithm to derive θ from SMOS may be
more preferable than to use the SMOS L3 product produced by alterna-
tive algorithms. In particular, (a) the other passive microwave θ
retrievals in the long-term record are derived by the LPRM, (b) the
SMOS L3 produces soil moisture for the dominant land type rather
than an area-averaged soil moisture estimate for the entire footprint,
which introduces conceptual differences and (c) LPRM uses as little as
possible ancillary data, which is highly desired for the CCI θ dataset
(De Jeu et al., 2014).

LPRM has not yet been thoroughly tested in combination with
L-band measurements. De Jeu, Holmes, Panciera, and Walker (2009)
showed promising results applying LPRM to L-band observations and
ground data from the National Airborne Field Experiment 2005
(NAFE05) over southeast Australia, but stressed that verification with
satellite observations was needed, especially because of the lesser
incidence angles (up to 40°) and the higher radiometric accuracy
(b0.7 K) of the airborne data, when compared to SMOS observations
(up to 65°and 2.5–3 K, respectively). LPRM has typically been applied
to incidence angles between 50–55° and the applicability of LPRM for
a wider range of incidence angles, such as those available from SMOS,
has not yet been tested. Like most θ retrieval methods, LPRM requires
an estimate of the effective soil temperature (Teff in K) as input to the
retrieval scheme. For multi-channel observations, Teff may be inferred
from higher frequency channels (e.g. AMSR-E 37 GHz vertical polarized
brightness temperature; Holmes, De Jeu, Owe, & Dolman, 2009).
However the SMOS (and SMAP) sensors only have a single frequency
radiometer at 1.4 GHz, and therefore ancillary temperature data are
needed for θ estimation. To address this, two methods to estimate Teff
from model simulated land surface temperature have been proposed:
(1) by applying a phase-shift and amplitude reduction to a temperature
dataset (Holmes, Jackson, Reichle, & Basara, 2012; Parinussa, Holmes,
Yilmaz, & Crow, 2011b) and (2) as a function of the surface skin temper-
ature (Tsurf), deep soil temperature (Tdeep) and θ (De Rosnay, Wigneron,
Holmes, & Calvet, 2006; De Rosnay et al., 2006; Wigneron, Laguerre, &
Kerr, 2001), which is in line with the SMOS L3 product. In this study,
two objectives are addressed:

1. Establish the quality of LPRM θ retrievals from SMOS L-band observa-
tions over the Murrumbidgee catchment and compare this with
SMOS L3 θ retrievals;

2. Understand the dependence of retrieval quality on incidence angles
of 45° to 60° and on the time of overpass.

To test the parameterization of the LPRM and to evaluate its retrieval
outputs ground-based data of the Murrumbidgee Soil Moisture
Monitoring Network (OzNet) in southeast Australia was used, because
of its dense ground observation network, the variety in land cover
types and its applicability to remote sensing studies (Smith et al., 2012).

2. Data and preprocessing

2.1. SMOS

The SMOS satellite carries the Microwave Imaging Radiometer with
Aperture Synthesis (MIRAS); a two-dimensional interferometric
radiometer that measures the passive radiation emitted by the Earth's
surface at the L-band frequency (1.4 GHz). The satellite is in a polar
sun-synchronous orbit with a distance of around 758 km from the
Earth. The measurements are made for incidence angles between 0°
and 65° (Kerr et al., 2010), have an average ground resolution of
43 km and a swath width of 1000 km in the alias-free field of view
(Camps, Vall-llossera, Corbella, Duffo, & Torres, 2008). One full
measurement is made every 1.2 s, in X, Y or XY polarization in the
instrument's reference frame, which differs from horizontal (H) and
vertical (V) polarization at surface level. The satellite has a maximum
revisit time of 3 days for a fixed point at the ground in case radiometric
error is not considered for filtering, with a 6:00 a.m. (local time) ascend-
ing and 18:00 p.m. descending overpass (Kerr et al., 2012).

In this study brightness temperatures from the SMOS Level 1C Full-
polarization (SCLF1C) data product version 505 for January 2010 until
December 2011 were used. The level 1C land product contains multi-
angular brightness temperatures at the top of the atmosphere, is geo-
referenced and provided in the ISEA-4H9 grid format, with an average
ground sampling interval of 15 km. The data is organized in files that
contain half an orbit and are still in X/Y/XY polarization.

Themeasurements with incidence angles within ±0.4° of 45°, 52.5°
and 60° were extracted from the data. These were selected to test the
performance of LPRM for different incidence angles, with 52.5° being a
value extensively tested for LPRM (Owe et al., 2008). The incidence
angles are kept above 40° due to the higher sensitivity of H-polarized
measurements to soil moisture while V-polarized measurements
are strongly affected by Teff at high incidence angles. The data were
transformed from X/Y/XY to H/V/HV measurements by correcting for
Faraday and geometric rotations following Le Vine, Jacob, Dinnat, de
Matthaeis, and Abraham(2007a). Thismethod theoretically needsmea-
surements that aremade at the same time and incidence angle, which is
practically impossible since each SMOS observations cover a unique
area only in one polarization. To solve this andminimize the introduced
error, only a full set of measurements (X, Y and XY polarized) made
within 3 s for the same grid point were selected, ensuring that themea-
surements were near coincident in time with a maximum difference in
incidence angle of 0.7° for the transformations (Le Vine et al., 2007a).

The data in ISEA-4H9 grid format were resampled to a regular 0.25°
grid using area-weighted averaging to allow comparison to field data



Table 1
Summary of the grid cells used for the ground observations, from Su et al. (2013).

Site Latitude
(°E)

Longitude
(°S)

Measurements sites
in the grid cell

Land use

M-1 148.875 −36.375 1 Forest
M-2 149.125 −35.375 1 Urban (city of Canberra)
M-3 148.125 −34.625 1 Agriculture
M-4 147.125 −33.875 1 Agriculture/Forest
M-5 143.625 −34.625 1 Forest
M-6 144.875 −34.625 1 Agriculture/Grass
M-7 146.125 −34.125 1 Agriculture/Forest
Y-1 145.875 −34.625 1 Agriculture/Forest
Y-2 146.125 −34.625 12 Agriculture/Forest
Y-3 146.375 −34.625 2 Agriculture/Forest/Urban
Y-6 145.875 −34.875 1 Agriculture
Y-9 146.125 −34.875 3 Agriculture
Y-B 146.375 −34.875 7 Agriculture
Y-10 146.375 −35.125 4 Agriculture
K-1 147.625 −35.375 6 Agriculture/Forest
K-14 147.375 −35.125 1 Agriculture/Urban
A 148.125 −35.375 5 Forest
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following Su et al. (2013), the input and regridded data are assumed to
be of identical quality (Dumedah, Walker, & Rüdiger, 2014).
Measurements with reported radiometric Tb error exceeding 3 K or
located outside the alias-free field of view (Camps et al., 2008) were ex-
cluded. This threshold was used because the retrievals, particularly
those at 45°, proved to be very sensitive to larger errors. The exclusion
of measurements with high radiometric errors caused a considerable
increase in the quality of the resulting 45° retrievals, with an increase
in Pearson's coefficient of correlation (r) of 0.08 on average, and a
decrease of the root mean square error (RMSE) of 0.02 m3 m−3. Due
to the different swathwidth for each incidence angle, removal of obser-
vations with high errors and availability of temperature datasets, the
amount of SMOS observations (N) used in the analyses varies.

The results of the SMOS LPRMretrievalswere also directly compared
to SMOS L3 θ, which was resampled to a 0.25° grid using area-overlap
weighted averaging. The re-processed (versionRE02) datawere obtained
from the Centre Aval de Traitement des Données SMOS (CATDS), oper-
ated for the “Centre National d'Etudes Spatiales” (CNES) by IFREMER
(Brest, France).

2.2. MERRA land surface temperature

Holmes et al. (2012) assessed the ability of three numerical weather
prediction models to provide Teff estimates that meet the requirements
for L-band θ retrieval models and found that Tsurf from the Modern-Era
Retrospective analysis for Research and Applications (MERRA) atmo-
spheric reanalysis system was most suitable as input for their method.
This was induced by the high temporal resolution of this reanalysis
product resulting in a relatively low RMSE (1.8 K) for morning over-
passes compared to in situ soil temperature measurements. Parinussa
et al. (2011b) further demonstrated that applying this method with
MERRA Tsurf on LPRM retrievals from WindSat and AMSR-E produced
good results, with a slightly lower performance in resulting θ retrievals
for sparsely vegetated areas and better performance for moderately to
heavily vegetated areas compared to a radiometric based Teff product.
Their comparison was done at the quasi-global scale using the Rvalue
approach (Crow & Van den Berg, 2010) as well as the Triple Collocation
technique (Dorigo et al., 2010).

MERRA is developed by the National Aeronautics and Space
Administration (NASA) and produces global estimates of geophysical
variables such as θ, latent heat flux, snow and runoff. The data are
generated by a recent version of the Goddard Earth Observing System,
version 5 (GEOS-5) and are covering a period of 1979 to present
(Rienecker et al., 2011). Tsurf data from MERRA-Land reanalysis was
used, which is a land only, revised and off-line run of the standard
MERRA. It contains several additional variables including Tsurf and has
shown improved performance over land compared to the standard
MERRA model, because it was revised and rerun using a more realistic
precipitation forcing and parameterization (Reichle, 2012; Reichle
et al., 2011). MERRA-Land data are available on a 0.5 × 0.67° grid with
hourly resolution, representing average hourly temperature for the
soil surface of negligible depth except for tropical forests (Reichle,
2012). Data for the period July 2009–June 2012 were downloaded
from http://gmao.gsfc.nasa.gov/merra/.

2.3. ECMWF temperature

The second method for deriving Teff (De Rosnay & Wigneron, 2005;
Wigneron et al., 2001) uses temperature forecasts from the European
Centre for Medium-Range Weather Forecasts (ECMWF) and is the
method used for the SMOS L3 product. The ECMWF forecasting system
consists of several parts, including The Hydrology-Tiled ECMWF
Scheme for Surface Exchange over Land (H-TESSEL) (Balsamo et al.,
2009). H-TESSEL is a land surface model that calculates the heat,
water and momentum exchanges between the atmosphere and the
different components of the land surface. These components include
the soil skin, a four-layer soil profile, the land cover and, if present, the
snowpack. In this study, the AUX_ECMWFproduct generated specifically
as auxiliary input for the SMOS L3 product was used from July 2010 to
December 2011. This product is spatially and temporally interpolated
to match with the SMOS time of overpass and grid. For the Teff
estimation, Tsurf and Tdeep from the soil layer of 0.21–0.72 m depth are
used. The data was regridded from the ISEA grid to a 0.25° grid using
area-overlap weighted averaging.

2.4. Field observations

Field θ observations from the OzNet network (Smith et al., 2012) in
the Murrumbidgee catchment in southeast Australia were also used.
The Murrumbidgee River drains a catchment of approximately
82,000 km2 and is the third largest river in the Murray–Darling basin.
The catchment has varying topography (low-lying plains to the west,
alpine mountains in the east), climate (annual rainfall from 400 mm
in thewest to 1400mm in the east) and land use (cropping and grazing,
to forestry and national parks).

OzNet is a network of in situ moisture probes at 62 sites across the
Murrumbidgee catchment, (http://www.oznet.org.au/; Smith et al.,
2012). Moisture measurements are acquired every 30 min at various
depths down to ca. 0.9 m. Here θ measurements closest to the time of
satellite overpass were used. The θ observations that correspond to
the top 0.08 m were measured with a CS615 probe (older sites) and
0.05 m were measured with a Stevens Hydra probe (newer sites).

In this study the same OzNet dataset is used as in Su et al. (2013), in
which they identified 49 good quality sites and grouped them into 17
cells on a 0.25° regular grid for comparison against the AMSR-E,
ASCAT (Advanced Scatterometer of MetOp-A satellite) and SMOS soil
moisture products (Table 1). This was done by Su et al. (2013) by
removing single sites that provide anomalous evaluation results
compared to the average results of all the sites within that grid cell.
Data for the period of January 2010 to December 2011 was used here,
the Adelong Creek site was excluded because of data availability issues
from early 2010 onwards leaving too few observations for analysis.
For a comprehensive description of preprocessing of the ground data
and the data set used in this study see Su et al. (2013).

3. Methods

3.1. The land parameter retrieval model

The LPRM (De Jeu et al., 2014; Owe et al., 2001; Owe et al., 2008) is
developed to retrieve land surface parameters from passive microwave
observations. It is based on a forward model that uses horizontally and

http://gmao.gsfc.nasa.gov/merra/
http://www.oznet.org.au/
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vertically polarized microwave brightness temperature (Tb(P) in K,
where P is H for horizontal or V for vertical polarization) and Teff to
simultaneously solve for θ and τv. The basis of themodel is the radiative
transfer theory ofMo, Cloudhury, Schmugge,Wang, and Jackson (1982),
which describes the Tb(P) emission of an area measured above canopy
level as

Tb Pð Þ ¼ er Pð ÞTeff Γv þ 1−ωð ÞTC 1−Γvð Þ þ 1−er Pð Þ
� �

1−ωð ÞTC 1−Γvð ÞΓv
ð1Þ

whereω is the single scattering albedo, Γv the vegetation transmissivity,
er(P) the rough surface emissivity for H- or V-polarized radiation (all
dimensionless) and TC (in K) the canopy temperature, which is assumed
equal to the effective soil temperature (Teff). Because at L-band wave-
lengths the atmospheric contribution to the signal is very small (Kerr
et al., 2012), atmospheric opacity is assumed to be 0.

The value of er(P) is determined in three steps. First, the dielectric
constant of the soil is calculated trough the dielectric mixing model of
Wang and Schmugge (1980), which requires soil porosity, wilting
point, Teff and θ as input. Values of soil porosity and wilting point are
derived from the FAO soil texture map (Reynold, Jackosn, & Rawls,
1999). Second, the absolute value of the dielectric constant (k) and
incidence angle (u in radians) are combined with the Fresnel equations
to calculate the smooth surface reflectivity for both polarizations (R(P)).
Third, the model of Wang and Choudhury (1981) is used to calculate
er(P)

er P1ð Þ ¼ 1− 1−Qð ÞR P1ð Þ þ Q R P2ð Þ
� �

e−h cos u ð2Þ

where Q is the polarization mixing factor, P1 and P2 the two polariza-
tions, and h a dimensionless roughness. Finally, the value of Γv in the
radiative transfer model (Eq. 1) is defined as

Γv ¼ exp
−τv
cos u

� �
: ð3Þ

LPRM uses the analytical formula by Meesters et al. (2005) and
the Microwave Polarization Difference Index (MPDI) to calculate τv at
nadir as

τv ¼ cos u ln adþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
adð Þ2 þ aþ 1

q� �
ð4Þ

where

a ¼ 0:5
er Vð Þ−er Hð Þ

MPDI
−er Vð Þ−er Hð Þ

� �
ð5Þ

d ¼ 0:5
ω

1−ω

� �
ð6Þ

MPDI ¼ Tb Vð Þ−Tb Hð Þ
Tb Vð Þ þ Tb Hð Þ

ð7Þ

The analytical solution for τv is based on the assumption that τv is
independent of polarization,which is generally considered a reasonable
assumption for microwave observations from satellite platforms (De
Lannoy, Reichle, & Pauwels, 2013; Owe et al., 2001). Soil moisture is
retrieved by applying the LPRM model in forward mode for a range of
θ conditions. The resulting Tb(H) simulations are compared to the
satellite observed value and the θ resulting in the smallest residual is
selected as the best estimate.

3.2. Parameterization for the L-band frequency

Three parameters have to be determined in order tomake the LPRM
applicable to L-band microwave observations: Q, h and ω. The
polarization mixing factor, Q, has been assumed very small for L-band
(Wigneron et al., 2001), with commonly suggested values below 0.1
and often zero; hence Q values of 0 to 0.1 were tested.

At higher frequencies the roughness factor (h) describes the
geometric roughness of the land surface. At L-band, h depends more
on the distribution of water in the soil than at higher frequencies and
can be described as an apparent soil roughness (Schneeberger et al.,
2004). This makes h a dynamic variable that varies in time and space.
Several dynamic parameterizations of h have been proposed by
Escorihuela et al. (2007), Kerr et al. (2012), Panciera et al. (2009) and
De Jeu et al. (2009). In this study h is expressed as a function of θ and
two scaling parameters h1 and h2 as

h ¼ h1−h2 � θ: ð8Þ

Several studies showed that h can assume high values when used to
interpret SMOS observations, with reported values of nearly 2 (De
Lannoy, Reichle, & Vrugt, 2014; De Lannoy et al., 2013 and Sabater,
Rosnay, & Balsamo, 2011). Therefore h1 values of 0 to 2, and h2 values
of up to 4 times the used h1 value were tested.

The literature appears divided on appropriate assumptions about
the single scattering albedo, ω. Some studies suggest that the value is
typically low enough to be ignored to allow simplification of the radia-
tive transfer equation (Eq. 1), while othersfindvalues typically between
0.05 and 0.15, but varying in time and space (Van de Griend &
Wigneron, 2004; Wigneron et al., 2004). Furthermore, it is plausible
that ω depends on the incidence angle. Values of 0 to 0.2 were tested
here to cover the existing range presented in literature.

Themodel parametersQ, h andωwere adapted in order to optimize
the remotely sensed soil moisture product with ground observations
throughmaximizing the correlation andminimizing the RMSE between
the estimated and observed θ. Sensitivity tests were carried out and
visualized in Taylor diagrams (Taylor, 2001) to test the influence of
parameter uncertainty on retrieved θ and to identify the more critical
model parameters.

3.3. Effective soil temperature processing

3.3.1. MERRA-land
Another source of information required in the radiative transfer

Eq. (1) is the Teff. MERRA Tsurf represents the temperature at, or very
close to, the soil surface, while the observed L-band radiation is emitted
from a thicker layer; theoretically ranging between 0.015m and 0.15 m
depending on θ content at 50° incidence angle (Ulaby, Moore, & Fung,
1986). To account for this difference, the method of Holmes et al.
(2012) is applied to estimate soil temperature at 0.05 m depth and
assuming that to be the Teff.

In this method the amplitude reduction and phase-shift are linked
to the downward propagation of periodic temperature variations. The
theory for this, assuming a stable temperature at depth and conductive
heat transfer, was described by Van Wijk and De Vries (1963). Holmes
et al. (2012) found that using a phase-shift of 169min, and its associated
amplitude reduction, produced the best agreement with the soil
temperature at 0.05mdepth in a dense groundmeasurements network
in Oklahoma, USA. For this study the same phase-shift of 169 min was
applied on the MERRA Tsurf data. It should be noted that at very low
soil moisture levels the diffusivity is so low that the heat only dissipates
slowly in the soil, which theoretically leads to a much larger phase-
shift (Holmes et al., 2012) that is not corrected for in this method. A
detailed description on the used method can be found in Holmes et al.
(2012).

Splines were used to interpolate and estimate Teff at the time of the
satellite overpass over the OzNet area. The estimateswere subsequently
resampled to a regular 0.25° grid using area-weighted averaging for grid
cells covered by two grid cells in the original MERRA-Land 0.5 × 0.67°



Table 2
Optimized LPRM parameters per incidence angle.

Incidence angle ω h Q

45° 0.18 1.0–3.5 ∗ θ 0
52.5° 0.165 1.4–4.9 ∗ θ 0
60° 0.15 1.8–6.3 ∗ θ 0
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grid. Measurements with Teff b 273.15 K (N = 7) were removed, since
the retrieval model is not valid for these conditions.

3.3.2. ECMWF
The secondmethod uses a different approach to estimate the Teff and

was developed byWigneron et al. (2001), and validated and revised by
De Rosnay andWigneron (2005). It is based on a simple parameteriza-
tion to estimate Teff for passive microwave radiometry formulated by
Choudhury, Schmugge, and Mo (1982). The Teff here is calculated using
Tsurf and Tdeep (at a depthwhere it ismainly stable) using afitting param-
eter C that depends on θ and two constants w0 and b:

Teff ¼ Tsurf þ C � Tsurf−Tdeep

� �
ð9Þ

where

C ¼ θ
w0

� �b

: ð10Þ

The values forw0 and b used in this study are identical to those used
in the SMOS L3 algorithm, 0.3 m3m−3 and 0.3 respectively. Since LPRM
is applied in forward mode for a range of θ conditions, a corresponding
Teff is calculated for all the individual θ scenarios.

3.4. Evaluation techniques

Three bivariate statistical measures were used to evaluate the
retrieved θ estimates against the groundmeasurements: Pearson's coef-
ficient of correlation (r), mean bias and rootmean square error (RMSE).
A caveat is that there can be important conceptual differences between
satellite derived and ground observed soil moisture: they have different
spatial support (point vs. footprint), vertical support (in situ sensor vs.
Fig. 1. Taylor diagrams and bias over site Y-Bwhen optimizing for single scattering albedo (A), r
MERRA Teff and where the green to red coloring of the markers corresponds to an increasing p
microwave emitting layer) and differences in the time of acquisition
(Owe et al., 2001).

The confidence interval (CI) for the r, as used in Tables 3, 4 and 5,was
calculated using Fisher's transform with a 95% confidence level. The CI
for the bias was calculated as

CIbias ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

N

 !
σ2

I σ
2
R

� �vuut ð11Þ

with critical value z=1.96, while N is the length of the time series, and
σI and σR the standard deviations of the in situ and remote sensed time
series, respectively. In order to propagate the confidence interval from
the single sites to the total result, the sum of all the CI values per site
was divided by the square root of the number of sites (i.e., 16).

4. Results and discussion

4.1. Adjusting LPRM for L-band, parameterization

The optimized parameters of h,Q andω are listed in Table 2. Optimal
values of ω ranged between 0.15 and 0.18, decreasing with incidence
angle. The optimal Q was 0 in all cases, which is in line with findings
of Wigneron et al. (2001). Given the h parameterization in Eq. (8), h1
values were optimal from 1.0 to 1.8, with increasing incidence angle,
and similarly for h2 that valued from 3.5 to 6.3 (3.5 times h1). All
three parameters where independent of acquisition time and apply to
both the MERRA and ECMWF using their respective temperature
conversion methods (Sections 3.3.1 and 3.3.2). It is reiterated that
these valueswere optimized for theOzNet pixels, and are not necessarily
optimal elsewhere as systematic error in Teff may vary spatially
(Parinussa et al., 2011b).

To analyze the sensitivity of the LPRM parameterization on θ
retrievals, the values of r, RMSE, standard deviation and bias of the θ
retrievals are shown in Fig. 1, representing scenarios in which one
parameter is changed while all others are kept constant at their opti-
mized value (Table 2). Fig. 1 shows the optimization effect for the cell
of Y-B, whichwas chosen as an example representative for all evaluated
sites. The h is shown in the form of h1 used in Eq. (8) with h2 = 3.5 h1.

Variation inω showed to have themost significant impact on LPRM θ
retrievals, with r values changing from b0.5 to 0.8 for 45° and 52.5°
oughness (B) and polarizationmixing (C), using both ascending and descending data with
arameter value.

Image of Fig. 1


Table 3
Results of the optimized LPRM θ retrievals compared to the 16 OzNet grid cells (Table 1).

Incidence
angle

Swaths r ± CI RMSE
[m3 m−3]

Bias ± CI
[m3 m−3]

N

MERRA 45° Ascending 0.70 ± 0.47 0.085 −0.01 ± 0.09 1415
Descending 0.71 ± 0.49 0.078 0 ± 0.10 1189

52.5° Ascending 0.71 ± 0.44 0.074 −0.01 ± 0.08 1507
Descending 0.74 ± 0.46 0.071 0.01 ± 0.09 1152

60° Ascending 0.72 ± 0.43 0.075 0 ± 0.08 1424
Descending 0.71 ± 0.58 0.073 0.01 ± 0.10 921

Mean Ascending 0.74 ± 0.45 0.074 −0.01 ± 0.09 1288
Descending 0.75 ± 0.52 0.070 0.01 ± 0.10 864

ECMWF 45° Ascending 0.72 ± 0.51 0.081 −0.02 ± 0.10 1133
Descending 0.74 ± 0.52 0.076 −0.01 ± 0.10 953

52.5° Ascending 0.73 ± 0.47 0.073 −0.02 ± 0.08 1215
Descending 0.74 ± 0.53 0.070 0 ± 0.10 906

60° Ascending 0.75 ± 0.45 0.074 −0.01 ± 0.09 1146
Descending 0.70 ± 0.67 0.073 0 ± 0.11 720

Mean Ascending 0.77 ± 0.46 0.072 −0.01 ± 0.09 1035
Descending 0.76 ± 0.58 0.069 0 ± 0.11 679
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incidence angle and from 0.6 to 0.8 for 60° after increasing ω from 0 to
0.2. Theω variation also resulted in a significant decrease of RMSE (N0.1
to 0.04 m3 m−3 for 45° and 52.5° incidence angle and 0.08 to
0.04 m3 m−3 for 60°) and standard deviation (from 0.13, 0.11 and
0.09 to 0.07, 0.06 and 0.05 m3 m−3 for 45°, 52.5° and 60°) and a drop
in bias of more than 0.10 m3 m−3. Optimization of Q had no influence
on r, hardly impacted the RMSE and resulted in a slight decrease of
the standard deviation. An increase in h also resulted in a decrease in
standard deviation, improved the RMSE and produced a wetter bias.
These results suggest that the skill of LPRM θ retrievals ismostly impacted
by the ω parameter. The obtained sensitivity results may not necessarily
be transferable to other retrieval algorithms as the LPRM is more
Fig. 2. Evaluation statistics per grid cell, the MERRA and ECMWF datasets are the averag
heavily influenced by the ω compared to other retrieval algorithms,
this is likely due to the influence of ω on the vegetation effects in both
Eqs. (1) and (4) to (7) when τv is calculated following Meesters et al.
(2005).

4.2. LPRM soil moisture retrievals compared to OzNet

Comparison of the LPRM retrievals against ground measurements
revealed comparable results (Table 3 and Fig. 2) for the three different
incidence angles, the descending and ascending data and both Teff
approaches (using MERRA and ECMWF) . Mean r values were between
0.70 and 0.75, mean bias−0.02 to 0.01 m3 m−3 and mean RMSE 0.070
to 0.085 m3 m−3 for optimal parameters. Agreement for the simple
average of the retrievals from the three incidence angles (when all are
available) shows slightly improved results for r up to 0.77 (Table 3),
these combined estimates are shown in Fig. 2.

Although the results are comparable, small differences for the three
incidence angles are present. The retrievals for 52.5° and 60° are gener-
ally similar, with those at 52.5° showing the best performance in terms
of RMSE. The RMSE values of the retrievals for the 45° incidence angle
are consistently higher compared to the other incidence angles, however
it's just a small difference (on average 0.007 m3 m−3). It is suggested
that LPRM loses sensitivity to soil moisture at lower incidence angles,
caused by the smaller contrast between Tb(H) and Tb(V), used in the
MPDI (Eq. 7), therefore it is likely that themodel becomesmore sensitive
to errors in the input values. This was also the reason to remove SMOS
observations with uncertainties exceeding 3 K from the analysis
(Section 2.1). This decrease in stability can also be seen in the LPRM τv
retrievals at 45°, showing more outliers (Fig. 3F for cell Y-B, but applies
to all cells). These effects of input errors on τv retrievals are known for
LPRM and for example described by Liu, De Jeu, McCabe, Evans, and
e of the three different incidence angles, showing the r (A), RMSE (B) and bias (C).

Image of Fig. 2
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Van Dijk (2011), Liu, Van Dijk, McCabe, Evans, and De Jeu (2012b) and
De Jeu (2003).

Only minor differences between the ascending and descending
overpasses were presented in the averaged results. The RMSE for the
ascending overpass is consistently higher than for the descending over-
pass for the same incidence angles, and the descending estimates had a
slight wet bias against the ascending estimates (0.01–0.02 m3 m−3).
Some individual sites revealed better results for the ascending than for
the descending data (e.g., M-3; see Fig. 3) but the opposite also occurred
Fig. 3. Time series of ascending and descending soil moisture retrievals against the groundmeas
incidence angles and mean LPRM (A to D), SMOS L3 θ retrievals (E) and the LPRM τv (F). Date
(e.g., M-2). It is noted, however, that site M-2 contains the city of
Canberra, which could lead to increased Tb uncertainties due to the
high fraction of urban land cover (Ye, Walker, Rudiger, Ryu, & Gurney,
2011) and possible radio frequency interference (RFI) from major mili-
tary and space communication installations, while it is also surrounded
by mountains.

Despite using a very different approach to estimate Teff, the two dif-
ferent temperature methods also produced similar results. The ECMWF
method produced on average slightly higher r (+0.01 m3 m−3) and
urements and vegetation optical depth for cell Y-B, with LPRM θ retrievals for the different
in days from 1/1/2010 onwards.

Image of Fig. 3
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lower RMSE (−0.02 m3 m−3), but the differences are not significant.
For single cells, the results were inconsistent. For example, at M-7
ECMWF produced higher r values, whereas at Y-6 MERRA performed
better. Amore comprehensive comparison for individual sites is provided
in the Supplementary material.

In summary, with optimized parameters LPRM is able to retrieve
good quality (r ≥ 0.7) soil moisture estimates over OzNet using single-
angle L-band observations of SMOS. The influence of the time of over-
pass, incidence angle, and temperature estimation method appears to
be small, and therefore all options appear to be feasible in further
studies on applying LPRM to SMOS observations. The ability to optimize
SMOS LPRM to good correlations (r≥ 0.7) also suggests once again that
theOzNet network is a good representation of the regional soilmoisture
dynamics in the Murrumbidgee Catchment (Smith et al., 2012).
4.3. LPRM soil moisture retrievals compared to SMOS L3

Comparing the optimized SMOS LPRM retrievals to the SMOS L3
retrievals suggests that their average quality is similar (Table 4). In
terms of correlation, SMOS L3 always performed slightly better (0.01–
0.06) but the RMSE was higher (0.011–0.030 m3 m−3). When looking
at the simple average of the LPRM retrievals from the three incidence
angles the difference in r becomes smaller (0–0.03). The main reason
for the higher RMSE in SMOS L3 ascending data is due to the fact that
SMOS L3 is not calibrated for OzNet and the Canberra site (M-2,
Table 4), where SMOS L3 soil moisture retrievals are overestimated.
The overall higher RMSE in the SMOS L3 retrievals is mainly the result
of a wet bias, 0.05 m3 m−3 for the ascending and 0.03 m3 m−3 for the
descending dataset, over study area. The LPRM algorithm seems to
compensate the potential error sources (urban cover, RFI, mountains)
in M-2 by calculating unrealistically high τv with much variation, for
the rest of the study area obtained results are very similar.
Table 4
Direct comparison between SMOS LPRM θ and the regridded SMOS L3 θ product over the sam

Angle Temperature Swath L3/LPRM

45° MERRA Ascending L3
LPRM

Descending L3
LPRM

ECMWF Ascending L3
LPRM

Descending L3
LPRM

52.5° MERRA Ascending L3
LPRM

Descending L3
LPRM

ECMWF Ascending L3
LPRM

Descending L3
LPRM

60° MERRA Ascending L3
LPRM

Descending L3
LPRM

ECMWF Ascending L3
LPRM

Descending L3
LPRM

Mean MERRA Ascending L3
LPRM

Descending L3
LPRM

ECMWF Ascending L3
LPRM

Descending L3
LPRM
When comparing the SMOS L3 directly to the LPRM retrievals, corre-
lations are high for bothwith r values between 0.82 and 0.88, increasing
to up to 0.92 when comparing the average LPRM retrievals to SMOS L3
(Table 5). The RMSE is still quite large, between 0.051–0.092 m3 m−3.
The bias shows clear differences for the time of overpass: the LPRM
soil moisture retrievals show dry biases compared to the SMOS L3
product for both overpasses, the ascending overpass show somewhat
larger bias values (between 0.05 and 0.07m3m−3) than the descending
overpass (b0.05 m3 m−3). The similar performance of SMOS LPRM
compared to the SMOS L3 soil moisture product, for both the compari-
son to the OzNet site as directly compared to each other, shows that
SMOS LPRM is able to retrieve soil moisture estimates from single
angle L-band observations of the SMOS satellite.

5. Conclusion and outlook

This work demonstrated that the LPRM is capable of retrieving soil
moisture estimates over OzNet using single-angle L-band observations
by the SMOS satellite of equivalent quality when compared to alterna-
tive methods and products. We focused our comparison on the official
SMOS L3, but existing literature (Su et al., 2013) also suggests a compa-
rable performance against other remotely sensed soilmoisture products
(ASCAT and AMSR-E LPRM). Optimization and evaluation against OzNet
in situ observations produced mean r values of 0.70–0.75 (0.75–0.77
for SMOS L3), mean bias of −0.02 to 0.01 m3 m−3 (0.03–0.06 m3 m−3

for SMOS L3) and mean RMSE of 0.070 to 0.085 m3 m−3 (0.084–
0.106 m3 m−3 for SMOS L3). Incidence angle, time of overpass and the
use of the MERRA or ECMWF temperature method did not exert a
large influence on retrieval quality. A major advantage of the SMOS
LPRM approach is that it minimizes the use of ancillary data (i.e. only
the FAO soil map and Teff are used to convert the dielectric constant
into soil moisture values) which is an important requirement for
climate studies (De Jeu et al., 2014).
e SMOS observations using OzNet θ measurements as a reference.

r ± CI RMSE
[m3 m−3]

Bias ± CI
[m3 m−3]

N

0.77 ± 0.38 0.102 0.05 ± 0.11 1330
0.70 ± 0.47 0.085 −0.01 ± 0.10 1330
0.75 ± 0.41 0.089 0.03 ± 0.11 1146
0.71 ± 0.49 0.078 0.00 ± 0.10 1146
0.76 ± 0.44 0.106 0.06 ± 0.11 1082
0.72 ± 0.51 0.081 −0.02 ± 0.10 1082
0.75 ± 0.48 0.091 0.04 ± 0.11 929
0.73 ± 0.52 0.076 −0.01 ± 0.10 929
0.76 ± 0.36 0.100 0.05 ± 0.10 1418
0.71 ± 0.44 0.074 −0.01 ± 0.08 1418
0.77 ± 0.40 0.086 0.03 ± 0.11 1110
0.75 ± 0.46 0.071 0.01 ± 0.09 1110
0.76 ± 0.42 0.103 0.05 ± 0.11 1161
0.73 ± 0.47 0.073 −0.02 ± 0.08 1161
0.76 ± 0.48 0.088 0.04 ± 0.11 883
0.74 ± 0.53 0.069 0.00 ± 0.09 883
0.77 ± 0.37 0.101 0.05 ± 0.10 1337
0.72 ± 0.43 0.076 −0.01 ± 0.09 1337
0.77 ± 0.44 0.084 0.03 ± 0.12 896
0.71 ± 0.58 0.073 0.01 ± 0.10 896
0.76 ± 0.42 0.105 0.06 ± 0.11 1095
0.75 ± 0.45 0.076 −0.01 ± 0.09 1095
0.77 ± 0.51 0.087 0.03 ± 0.13 712
0.70 ± 0.67 0.073 0.00 ± 0.11 712
0.77 ± 0.40 0.102 0.05 ± 0.11 1212
0.74 ± 0.45 0.073 −0.01 ± 0.09 1212
0.77 ± 0.46 0.084 0.03 ± 0.12 840
0.75 ± 0.52 0.070 0.01 ± 0.10 840
0.76 ± 0.46 0.105 0.06 ± 0.12 988
0.76 ± 0.46 0.073 −0.01 ± 0.09 988
0.77 ± 0.53 0.088 0.03 ± 0.13 671
0.76 ± 0.58 0.069 0.00 ± 0.11 671



Table 5
Direct comparison of SMOSL3 θ versus SMOS LPRM θ retrievals, using SMOS L3 as baseline.

Incidence
angle

Swaths r ± CI RMSE
[m3 m−3]

Bias ± CI
[m3 m−3]

N

MERRA 45° Ascending 0.83 ± 0.20 0.086 −0.06 ± 0.12 1330
Descending 0.83 ± 0.22 0.059 −0.03 ± 0.11 1146

52.5° Ascending 0.84 ± 0.16 0.080 −0.06 ± 0.10 1418
Descending 0.88 ± 0.17 0.051 −0.02 ± 0.10 1110

60° Ascending 0.83 ± 0.18 0.082 −0.05 ± 0.11 1337
Descending 0.86 ± 0.23 0.052 −0.01 ± 0.12 896

Mean Ascending 0.86 ± 0.17 0.079 −0.06 ± 0.12 1212
Descending 0.92 ± 0.15 0.046 −0.02 ± 0.12 840

ECMWF 45° Ascending 0.83 ± 0.21 0.092 −0.07 ± 0.12 1082
Descending 0.82 ± 0.25 0.069 −0.05 ± 0.12 929

52.5° Ascending 0.84 ± 0.17 0.088 −0.07 ± 0.11 1161
Descending 0.87 ± 0.19 0.059 −0.04 ± 0.11 883

60° Ascending 0.84 ± 0.20 0.091 −0.07 ± 0.11 1095
Descending 0.85 ± 0.25 0.059 −0.04 ± 0.13 712

Mean Ascending 0.86 ± 0.18 0.090 −0.07 ± 0.12 988
Descending 0.91 ± 0.17 0.054 −0.04 ± 0.13 671
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Several input parameters required for radiative transfer equation
based soil moisture retrievals (e.g. Q, h, ω) were optimized for the
OzNet sites in the Murrumbidgee catchment. The roughness parameter
h andωwere found to be important parameters and showeddependency
on the incidence angles when optimized against in situ soil moisture.
When using LPRM for SMOS L-band observations, it would appear
that ω is the most important parameter for its performance based on
correlations. Better understanding of the behavior of ω may be an
important step towards further improvement of the LPRM algorithm.

Two proposed methods to estimate effective temperature (De
Rosnay & Wigneron, 2005; Holmes et al., 2012; Wigneron et al., 2001),
using MERRA and ECMWF model outputs, were evaluated for LPRM
and similar evaluation resultswere obtained. However, further research
is needed to assess their performance in other regions or globally as
systematic errors in Teff may vary spatially (Parinussa et al., 2011b).

These results currently only apply to the OzNet sites but the evalua-
tion results presented may serve as a baseline for further development
of the LPRM model for L-band observations, with further focus on the
ω, h and combining retrievals from different incidence angles towards
a global soil moisture product.
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