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Solar surface irradiance (SIS) and direct (SID) irradiance as well as effective cloud albedo (CAL) climate data
records (CDR) derived from the Meteosat first generation satellites (Meteosats 2 to 7, 1983–2005) are pre-
sented. The CDRs are available free of charge for all purposes from wui.cmsaf.eu at monthly, daily and hourly
means at a spatial resolution of 0.03∘.
The processing employed a climate version of the Heliosat algorithm combined with a clear sky model using
an eigenvector look-up table method. Modifications to the Heliosat method include a self-calibration
algorithm as well as a running mean based clear sky retrieval algorithm.
The datasets are validated using ground based observations from the Baseline Surface Radiation Network
(BSRN) as a reference. The validation threshold for the mean absolute bias between satellite-derived and
surface-measured radiation is given by the target accuracy for solar irradiance fields defined by the Global
Climate Observing system (GCOS) and a measurement uncertainty for the surface data. The results demon-
strate that the target accuracy is achieved for monthly and daily means. Furthermore, an intercomparison
with similar datasets reveal a better performance and climate monitoring potential of the CM SAF SIS CDR
at most BSRN sites compared to established data sets like e.g. ERA-reanalysis, GEWEX (Global Energy and
Water Cycle Experiment) and ISCCP (International Satellite Cloud Climatology Project). Lastly, the realistic
representation of both seasonal and inter-annual variability guarantees the applicability of the satellite-
based climate data sets for climate monitoring and analysis of extremes.
No trends in the normalized bias between the CM SAF and the BSRN datasets are detectable, which demonstrates
the stability and homogeneity of the global and direct irradiance for the period covered by BSRNmeasurements.
However, inconsistencies are detectable at few satellite transition dates for certain regions in earlier years.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

The radiation budget at the Earth's surface is a key parameter for cli-
mate monitoring and analysis. Satellite data allow the retrieval of the
surface radiation budget with high spatial and temporal resolution
and a large areal coverage (up to global). Through radiometricmeasure-
ments satellite sensors provide information on the interaction of solar
radiative fluxes with the atmosphere and the Earth's surface. This infor-
mation is the basis for the retrieval of surface radiation datasets.

A 23 year long (1983–2005) continuous and validated climate data
record (CDR) of surface solar irradiance (SIS), direct irradiance (SID)
and effective cloud albedo (CAL) has recently been generated by the Sat-
ellite Application Facility on ClimateMonitoring (CMSAF). CMSAF is part
of the EuropeanOrganization for the Exploitation ofMeteorological Satel-
lites (EUMETSAT) Satellite Application Facilities (SAFs) network. Within
CM SAF, special emphasis is placed on the generation of satellite-
derived data records for climate monitoring (Schulz et al., 2009).
ller).

rights reserved.
The presented SIS, SID and CAL CDR is based on the visible channel
(0.45−1 μm) of the MVIRI (METEOSAT Visible and Infrared Imager)
instruments on-board the Meteosat First Generation (MFG) satellites.
The processing employed a climate version of the Heliosat algorithm
(Beyer et al., 1996; Cano et al., 1986) which includes a self-calibration
method and an improved algorithm for the determination of the
clear-sky reflectivity. Both modifications to the original Heliosat
method are presented in Section 2.2 below. The purpose of the self-
calibration method is to automatically account for the degradation
of the individual satellite instruments during their lifetime and the
discontinuities induced by changes between different satellite instru-
ments in the generation of the climate data record.

The CM SAF SIS, SID and CAL datasets are presented in Fig. 1 as sea-
sonal means on the full disk. Within the annual cycle the datasets show
the correct patterns with the highest radiation values in regions with
highest sun elevation and lowest values in the winter hemispheres
(lowest sun elevation). Furthermore, the shadowing effect of clouds
on radiation is verywell depicted (especially for SID) in the stratocumu-
lus region close to the western, south African coast and in the tropics
with the large amount of cumulus clouds.

http://dx.doi.org/10.1016/j.rse.2011.11.016
mailto:richard.mueller@dwd.de
http://dx.doi.org/10.1016/j.rse.2011.11.016
http://www.sciencedirect.com/science/journal/00344257


Fig. 1. Seasonal means of SIS (upper row), SID (middle row) and CAL (lower row) for the whole CDR (1983–2005).
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For the solar surface irradiance SIS a number of similar datasets
exist. The HelioClim project (Cros et al., 2004; Lefèvre et al., 2007) also
applies a Heliosat algorithm to the MFG satellite data to obtain SIS on
the Meteosat disk from 1985 to 2005. Furthermore, the flux dataset
from the International Satellite Cloud Climatology project (Rossow &
Dueñas, 2004) and the surface radiation budget dataset from the Global
Energy andWater Cycle Experiment (Gupta et al., 2006) provide global
SIS in a time range from 1983 to 2005. Last but not least, the model-
based reanalysis dataset ERA-Interim from the European Center for
Medium-Range Weather Forecasts (Berrisford et al., 2009) does also
provide global SIS fields starting in 1989. These four datasets are used
as intercomparison datasets for the CM SAF SIS dataset. They are, thus,
further described in Section 2.4 and the results of the intercomparisons
are presented in Section 4.1.

The following Section 2 describes the Heliosat algorithm used to
derive the surface radiation from the satellite measurements includ-
ing the applied modifications. Section 3 presents the influences of
the modifications applied to Heliosat in comparison to the unmodi-
fied Heliosat. Section 4 presents the validation results by directly
comparing the results to surface measurements from the Baseline
Surface Radiation Network (BSRN, Ohmura et al., 1998) and to four
intercomparison datasets. The last Section 5 summarizes the results
and concludes this publication.

2. Methods and data

2.1. Heliosat

The solar surface irradiance is derived from the geostationary sat-
ellite measurements in a two-step approach. First, the Heliosat algo-
rithm uses the reflectance or radiance measurements to determine
the effective cloud albedo CAL (also denoted as cloud index n in pre-
vious literature) (Beyer et al., 1996; Cano et al., 1986; Hammer et al.,
2003). In a second step a clear sky model is used to calculate the clear
sky solar surface (or global) and clear sky direct irradiance (SIScs and
SIDcs). SIS and SID are finally determined by combining the clear sky
irradiances with the retrieved effective cloud albedo.

Traditionally, the Heliosat algorithm uses the digital count D of the
visible satellite channel. It neither depends on any calibration infor-
mation nor on information from other channels. The normalized
counts ρ are derived from D accounting for the dark offset, the solar
zenith angle and the Sun–Earth distance. The effective cloud albedo
is defined by the relation of the current satellite measurement and
the corresponding observations under clear-sky conditions for the
same satellite pixel. The brighter the pixel the more or thicker clouds
are present.

The effective cloud albedo is derived from the normalized counts
ρ, the clear sky normalized counts ρcs and the normalized counts of
a compact (not convective) cloud deck as an estimation for the max-
imum possible normalized count ρmax by

CAL ¼ ρ−ρcs

ρmax−ρcs
: ð1Þ

In general, CAL takes values between 0 (clear-sky) and 1 (over-
cast). However, certain combinations of ρ, ρcs and ρmax result in CAL
values outside of this range. CALb0 might occur if either ρ or ρmax is
smaller than ρcs. The first case can for instance occur in areas with
melting snow where the evolution of ρcs lags the actual state of ρcs.
This effect is a pure artifact of our processing scheme and can be min-
imized by a fast adapting scheme for ρcs in case of a darkening of the
pixel (see Section 2.2). The second case can occur over bright surfaces
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like snow where ρcs can become larger than ρmax. If so, a CAL value
smaller than 0 can be understood to account for higher radiation
values due to reflections from the surface. In cases of very bright con-
vective clouds it might occur that ρ>ρmax so that CAL>1. This implies
that this clouds block the radiation more effectively than the “stan-
dard” cloud defined by ρmax. This is possible as the clouds used to de-
termine ρmax are more stratiform (see Section 2.2) but this effect is
bound to a maximum CAL value of 1.1 (see also Eq. 3).

The clear sky normalized count is determined for every pixel sep-
arately as the minimum value of normalized counts ρ during a certain
time period (e.g., 1 month). The “maximum” normalized count can be
determined in a similar fashion by choosing the maximum ρ per pixel
and time span (Beyer et al., 1996) or by using a single value for the
full disk that is dependent on the radiometer of the different satellites
(Hammer et al., 2003). Here, the maximum normalized count is de-
rived by the new self-calibration method presented in Section 2.2.
Also, a revised method to determine the minimum normalized
count is used in the present paper as outlined in Section 2.2.

The clear sky irradiance SIScs is calculated using an eigenvector look-
up table method (Mueller et al., 2009). It is based on the libRadtran radi-
ative transfer model (Mayer & Kylling, 2005) (http://www.libradtran.
org) and enables the use of extended information about the atmospheric
state. Accurate analysis of the interaction between the atmosphere, sur-
face albedo, atmospheric transmission and the top of atmosphere albedo
has been the basis for the new method, characterized by a combination
of parameterizations and “eigenvector” look-up tables. The source code
of the method (Mesoscale Atmospheric Global Irradiance Code —

MAGIC) is available under the gnu-public license at http://sourceforge.
net/projects/gnu-magic/.

SIS is derived by the combination of effective cloud albedo CAL and
clear sky irradiance SIScs.

SIS ¼ k CALð ÞSIScs ð2Þ

Thereby, k(CAL) denotes the clear sky index which relates to CAL
through the following relation (Hammer et al., 2003):

k CALð Þ ¼
1:2 for CAL≤−0:2
1−CAL for−0:2bCAL≤0:8
2:0667−3:667⋅CALþ 1:6667⋅CAL2 for 0:8bCAL≤1:1
0:05 for CAL > 1:1

:

8>><
>>:

ð3Þ

2.2. Heliosat modifications

2.2.1. Self-calibration
The self-calibration algorithm is based on the determination of the

“maximum” normalized count ρmax that serves as the self-calibration
parameter. In analogy to Rigollier et al. (2002) a histogram of all ob-
served normalized counts is generated. However, instead of using
an upper and a lower bound as in Rigollier et al. (2002), only the
95%-percentile in a specific cloudy target region is used as the self-
calibration parameter and set to ρmax. The method of Rigollier et al.
(2002) requires an absolute calibration of one image as a reference
for the initialization of the autocalibration and the spectral response
function (sensitivity) of the Meteosat sensors. Additionally, there is
a need to derive the statistical quantities for the complete disk,
which is computationally expensive. The use of the 95%-percentile
derived in a specific cloudy target region overcomes these limitations
and enables a flexible autocalibration without the need for any exter-
nal calibration information or for the sensor spectral response func-
tions. The method can also be applied to Meteosat-East and
Meteosat Second Generation (SEVIRI). In general, the derived solar
surface irradiance shows a remarkably good consistency, demonstrat-
ing the flexible functionality of the method (Posselt et al., 2011; T.
Huld, JRC, personal communication). Our empirical analysis has
shown that the use of the 95% percentile for ρmax results in the high-
est stability of the self-calibration parameter. The use of a percentile
value and not the maximum of the distribution excludes saturated
pixels and convective clouds which would introduce unrealistic
month-to-month variability.

The analysis of the full disk is computationally too expensive and
does not improve the accuracy, hence, a regional subset of the full
disk was selected. This region is located in the southern Atlantic be-
tween 15∘W to 0∘W and 58∘S to 48∘S. It features a frequent appear-
ance of frontal systems with high cloud amounts but hardly any
deep convective clouds. The self-calibration algorithm is applied to
the 1300 UTC slot, which accounts for the slight westward shift of
the region. The histograms are generated each month with a
month long input dataset. The resulting ρmax is then applied to cal-
culate the effective cloud albedo CAL for that month following
Eq. (1).

By definition the Heliosat method retrieves the effective cloud al-
bedo. This circumvents the requirement to use land surface targets to
calibrate the satellite radiances. In fact, by using a land surface target
in the self-calibration method errors could be introduced as the aging
detected by observation of clear sky radiances is different than that
detected with an appropriate cloud target. This effect is due to spec-
tral dependency of the aging of optical devices, which leads to differ-
ent rates of aging for different land surface types, due to different
spectral responses of the targets. In our self-calibration method the
aging effects of the “clear sky” observations for different surface
types is automatically considered by the retrieval of the clear sky nor-
malized digital counts ρcs.

2.2.2. Retrieval of clear sky reflection
The retrieval of the clear sky reflection (ρcs) is one of the key re-

quirements for the application of Heliosat when applied to MVIRI
data. A recently developed algorithm for the retrieval of the clear
sky reflection is used to calculate ρcs (Dürr & Zelenka, 2009;
Zelenka, 2001). Instead of using a monthly field of the clear sky nor-
malized counts ρcs, a seven day running mean of ρcs is used. Thus,
changes in ρcs, e.g., due to changes in the vegetation and snow
cover, are captured and represented faster than with the standard
method. In addition, unrealistic steps in the effective cloud albedo be-
tween different months are avoided. Further, the presented method
allows the detection of snow and, thus, provides the opportunity to
correct for some of the radiative properties of snow.

The algorithm to determine ρcs is based on a time series approach
by Zelenka (2001). Two tests are applied to the normalized counts
(ρ) in order to determine the temporal evolution of ρcs. If ρ exceeds
ρcs by up to �up, “Test ‘1” (see Eq. 4) applies a slow adaptation of ρcs

to the current minimum counts. This is the case if ρ is to a certain ex-
tend larger than ρcs. An adaptation time of 7 days is assumed which
corresponds to the time scale of involved processes (e.g., changes in
vegetation, soil properties). Additionally, a sudden strong decrease
in ρ below ρcs− �low also leads to a slow change of ρcs. This should
prevent the contamination of ρcs with cloud shadows. If ρ falls
below ρcs by up to �low, “Test 2” (see Eq. 5) executes a fast adaptation
of ρcs. This latter scheme applies to events with relatively fast pro-
cesses as, e.g., melting of snow.

If both tests fail, i.e., if ρ is rather large as occurring in case of
clouds and snow, ρcs is not changed. If this happens for a time span
of ts=28 subsequent days (i.e., the pixel is very bright at all times)
then this pixel is assigned to be snow covered. This algorithm is
based on the low temporal variability of snow compared to clouds.
Thus, continuously detecting very high reflectivities in one time slot
over a certain number of days indicate snow. This strategy can fail
in the cases of persistent cloud decks (e.g., marine stratocumulus or
fog). In case of a positive snow detection (i.e., ts is reached) ρcs subse-
quently evolves according to Eq. (5) so that ρcs increases to the range

http://www.libradtran.org
http://www.libradtran.org
http://sourceforge.net/projects/gnu-magic/
http://sourceforge.net/projects/gnu-magic/


Table 1
List of used BSRN stations for the validation.

Station Country Code Latitude
[∘N]

Longitude
[∘E]

Elevation
[m]

Data since

Bermuda Bermuda ber 32.27 −64.67 8 1.1.1992
Camborne UK cam 50.22 −5.32 88 1.1.2001
Carpentras France car 44.05 5.03 100 1.8.1996
De Aar South Africa daa −30.67 23.99 1287 1.5.2000
Florianopolis Brasil flo −27.53 −48.52 11 1.6.1994
Lerwick UK ler 60.13 −1.18 84 1.1.2001
Lindenberg Germany lin 52.21 14.12 125 1.9.1994
Payerne Switzerland pay 46.81 6.94 491 1.9.1992
Sede Boger Israel sbo 30.9 34.78 500 1.1.2003
Solar Village Saudi Arabia sov 24.91 46.41 650 1.8.1998
Tamanrasset Algeria tam 22.78 5.51 1385 1.3.2000
Toravere Estonia tor 58.25 26.46 70 1.1.1999
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of the current minimum normalized counts and the basic scheme
(i.e., Test 1 and Test 2) can be applied in the subsequent time steps.

Test 1 : ρcs;t≤ρt≤ρcs;t þ �up or ρtbρcs;t−�low

→ρcs;tþ1 ¼ 6
7
ρcs;t þ

1
7
ρt slow evolutionð Þ ð4Þ

Test 2 : ρcs;t−�low≤ρtbρcs;t

→ρcs;tþ1 ¼ 1
2
ρcst

þ 1
2
ρt fast evolutionð Þ ð5Þ

else : ρcs;tþ1 ¼ ρcs;t ð6Þ

The subscript t denotes the current and t+1 the subsequent time
step. We use variable bandwidths �up and �low depending on ρmax and
ρcs given in Dürr and Zelenka (2009) instead of the fixed ones used in
Zelenka (2001).

�up ¼ 0:125ρmax þ
8 ρcs−0:15ρmaxð Þ

0:25ρmax
ð7Þ

�low ¼ 0:0875ρmax þ
6 ρcs−0:15ρmaxð Þ

0:25ρmax
ð8Þ

In order to better account for snow events, a reduced ts=7 is ap-
plied in case the considered pixel already experienced a snow event
in the past (Zelenka, 2001). The shorter time range is chosen to still
avoid that persistent fog is mistaken for snow and that elevated
sites had the time to adapt ρcs after a sudden snow fall. A past snow
event is, on one hand, determined by a large amplitude of ρcs (given
by Δρcs ¼ ρcs;max−ρcs;min > 0:55ρmax) reflecting the range of the clear
sky reflectivity between snow and soil/vegetation. Further, a higher
probability of snow events is also given if ρcs>ρsnow with ρsnow
being an empirically derived snow threshold. It includes a term
ρsnow,min that is high enough to exclude oceans or other dark surfaces
and it includes a term ρsnow, range that accounts for the higher proba-
bility of a former snow event for pixels with a high amplitude ρcs.

ρsnow;min ¼ 0:48ρmax ð9Þ

ρsnow;range ¼ max 0:15ρmax;0:6ρcsð Þ ð10Þ

ρsnow ¼ max ρsnow;min;ρcs;min þ ρsnow;range

� �
ð11Þ

The calculation of the effective cloud albedo CAL for non-snow
pixels follows the standard Heliosat method (see Eq. 1). In case
snow is detected the calculation of the cloud albedo CAL is modified
according to Dürr and Zelenka (2009) in which ρcs is substituted by
ρsnow,min and ρmax is increased by a factor of 1.41 in order to artificially
increase the count range and, thus, enhance the contrast. This empir-
ically developed modified cloud albedo formulation generally gives
lower cloud albedo values in order to account for the radiative prop-
erties of snow. This includes mainly the reflectivity of the bright snow
surface which leads to higher surface irradiance values.

CALs ¼
ρ−0:48ρmax

1:41ρmax−0:48ρmax
¼ ρ−0:48ρmax

0:93ρmax
ð12Þ

2.3. Satellite data

Data from EUMETSAT's geostationary Meteosat satellites of the
First Generation (Meteosats 2–7) are used. They were in operation
from 1982 to 2005 at a location directly over the equator at a longi-
tude of 0∘ at an altitude of about 36,000 km. The resulting visible
disk reaches up to 80∘N/S and 80∘E/W, respectively. Meteosat 7 is
still operational above the Indian Ocean.
The satellites of Meteosat's First Generation carried MVIRI, a radi-
ometer with 3 spectral bands in the visible band (VISSN — 0.45
−1 μm), in the water vapor band (WV — 5.7−7.1 μm) and infrared
band (IR — 10.5−12.5 μm). One scan of the visible disk was accom-
plished within 30 min at a horizontal resolution of around 2.5 km at
the sub-satellite point.

The Meteosat data were obtained from Eumetsat's UMARF archive
in OpenMTP. They were converted into a binary format with one file
per slot to serve as input for the Heliosat algorithm. The output data
(global and direct radiation and cloud index) were regridded to a reg-
ular lon–lat grid with a 0.03∘ spacing using a triangulation technique.

The data from the first two of the used MFG satellites (Meteosats 2
and 3) needed a special treatment before they could serve as input to
the Heliosat algorithm. The visible picture of the MFG satellites con-
sisted of two half-pictures from two sensors that measured concur-
rently two adjacent lines. Due to limited transmission bandwidth,
Meteosats 2 and 3 transferred the full visible image only every second
slot. For every other slot only one of the half-images was transmitted.
This leads to missing lines in the visible image. These were filled by
copying the adjacent existing line onto it to generate a full visible
image for the Heliosat input. Secondly, the data of Meteosats 2 and
3 were encoded with 6-bits instead of 8-bits as the later satellites.
EUMETSAT already converted this data to 8-bit by multiplying it
with 4. An uncertainty estimation of these two measures will be pre-
sented in Section 4.

2.4. Validation and intercomparison data

The validation of the new data sets for the surface incoming solar
radiation (SIS) and the surface incoming direct solar radiation (SID) is
performed by comparison with high-quality ground based measure-
ments from the Baseline Surface Radiation Network (Ohmura et al.,
1998). The BSRN stations used for the validation are listed in
Table 1 and their geographical positions are shown in Fig. 2. Thereby,
only those stations were used that have an overlap of at least
12 months with the satellite data. The selected 12 stations are located
mainly on the northern hemisphere but they cover the main climatic
regions and they span a substantial part (1992–2005) of the satellite
time period. The cloud albedo (CAL) as a pure satellite product cannot
be validated by comparison with ground based measurements direct-
ly. As the cloud albedo is the underlying driver for the calculation of
SIS, the accuracy evaluated for SIS can be used to indirectly infer the
accuracy of the cloud albedo.

To derive monthly and daily mean values from the surface mea-
surements, the hourly means of 1 month were calculated first to re-
duce the impact of missing data values on the averaging. These
hourly mean values are then averaged to derive the monthly and
daily mean radiation data to be used as the reference value for the
validation.



Fig. 2. Map of used BSRN stations for the validation.
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CM-SAF products and data sets are reviewed by external scientists.
A successful review is the pre-requisite for the release of the data
under the Eumetsat SAF umbrella. The review aims to guarantee the
completeness and quality of the documentation and an appropriate
accuracy of the data sets. For the latter purpose certain accuracy
limits (referring to the Mean Absolute Bias — MAB) are employed
for SIS and SID as well as for daily andmonthly means which are sum-
marized in Table 2. They are based on the target accuracy defined in
the CM SAF CDOP Product Requirements Document (www.cmsaf.
eu). At least the threshold accuracy has to be reached for a successful
release. Furthermore, the validation accounts for the non-systematic
Table 2
Validation threshold (Th), target (Ta) and optimal (Op) accuracy (all referring to Mean
Absolute Bias — MAB) for monthly mean as well as for daily mean SIS, SID and CAL.

SIS
[W m−2]

SID
[W m−2]

CAL
[−]

Th Ta Op Th Ta Op Th Ta Op

Monthly 15 10 8 20 15 12 0.15 0.1 0.05
Daily 25 20 15 30 25 20 0.2 0.15 0.1
error of the BSRN data of 5 W m−2 for solar irradiance measure-
ments (Ohmura et al., 1998).

In addition to the validation with surface measurements, the qual-
ity of the CM SAF surface radiation SIS CDR is evaluated with already
available datasets. Unfortunately, to the best of our knowledge, no
comparable data sets for SID are available.

These datasets include data from the HelioClim-Project (http://
www.soda-is.com; Cros et al., 2004; Lefèvre et al., 2007). HelioClim
also employs a Heliosat algorithm to the data from the visible channel
of the MFG satellites. In combination with the clear-sky models from
the European Solar Radiation Atlas (Rigollier et al., 2000; Scharmer &
Greif, 2000), SIS is obtained. This HC-1 database covers the time of the
MFG satellites (1985–2005) at a reduced resolution following the
ISCCP-B2 (Schiffer & Rossow, 1985) resolution on the Meteosat disk.

The flux dataset from the International Satellite Cloud Climatology
Project ISCCP FD (http://isccp.giss.nasa.gov/products/products.html;
Rossow & Dueñas, 2004) and the surface radiation budget dataset
from the Global Energy and Water Cycle Experiment (Gupta et al.,
2006) are used for the intercomparison. Both datasets are based on
the same cloud cover data retrieved within ISCCP from geostationary
and polar orbiting satellites which allow a global coverage. Differ-
ences between the datasets originate from the application of different

http://www.cmsaf.eu
http://www.cmsaf.eu
http://www.soda-is.com
http://www.soda-is.com
http://isccp.giss.nasa.gov/products/products.html
image of Fig.�2


Fig. 3. Evolution of ρmax in time, colored according to the operational satellite.
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algorithms to derive the clear sky solar surface irradiance — ISCCP
used the radiative transfer model from the NASA GISS climate
model (Zhang et al., 2004) whereas GEWEX used an algorithm devel-
oped by Pinker and Laszlo (1992). The spatial resolution also differs—
with 2.5∘ in the case of the ISCCP FD dataset and 1∘ for the GEWEX SRB
dataset. Daily means of the data were used for the comparison in the
time range from 1983 to 2005.

The model-based reanalysis dataset ERA-Interim from the Europe-
an Center for Medium-Range Weather Forecasts (ECMWF http://
www.ecmwf.int; Berrisford et al., 2009) also provide SIS. It spans
the time range between 1989 and the present. The resolution of the
data is 1∘ and daily means covering the time range from 1989 to
2005 were generated from the 6-hourly model output available
from the ECMWF archive. Monthly means for each data set were cal-
culated by averaging the corresponding daily means.

For the intercomparison, the four datasets were statistically ana-
lyzed in the same way as the CM SAF data set. Here, the same month-
ly/daily mean values from the surface observations were used, i.e.,
only those data are considered that are spatially and temporally cov-
ered by the BSRN and CM SAF dataset.

3. Influence of the Heliosat modifications

3.1. Self-calibration

Fig. 3 shows the temporal evolution of ρmax for the MVIRI period
from 1983 to 2005 for the different MVIRI satellites. It can be seen
that ρmax decreases substantially with the operation time of a satellite
(e.g., Meteosat 7) which reflects the degradation of the instrument
with time. Gain changes in the instrument are also visible as seen
for Meteosat 2. However, the differences of ρmax for the times of
Fig. 4. Changes in the effective cloud albedo CAL due to the modificatio
satellite changes are comparably small. This shows that the self-
calibration is able to capture the sensitivity changes (i.e.,
calibration) within the lifetime of the used instrument and, thus,
ρmax can serve as parameter to calibrate the time series toward
homogeneity.

3.2. Clear sky retrieval

The changes in the effective cloud albedo due to the modifications
in the derivation of the clear sky normalized counts plus the changed
definition of CAL for snow covered regions are shown in Fig. 4. There-
by, SNOW refers to the processing with the modified Heliosat where-
as ORIG applies the standard/original Heliosat algorithm. The
modification affects only ρcs whereas ρ and ρmax are the same in
both cases for each time step and pixel. Thus, the changes in CAL are
only caused by changes in ρcs (see Eq. 1) In general, a decrease in
the effective cloud albedo is observable. This implies that, due to the
modifications, the difference ρ−ρcs is smaller and, thus, ρcs is larger
than in the original Heliosat.

The original Heliosat performs a monthly minimum value com-
posite for ρcs.The modifications use a 7 (clear sky) day running
mean as value for ρcs. This value is in general delimited at its lower
bound by the minimum value determined in the original Heliosat al-
gorithm. However, higher ρcs values are possible due to changes in
the surface albedo and/or cloud contamination within the regarded
month.

This effect is especially strong over snow and ice as well as in
cloudy regions close to the border of the disk (northern and southern
Atlantic). In those cloudy regions the contamination of ρcs with clouds
is more likely in SNOW than in ORIG leading to a lower amount of
clouds (lower CAL) in these regions. Furthermore, the altered calcula-
tion of CAL over snowy areas additionally lowers the effective cloud
albedo CAL. This leads to higher radiation in these areas for SNOW
than for ORIG.

A lower decrease of ρcs or even increase in effective cloud albedo
due to the modifications is visible during JJA over the southern hemi-
sphere. This effect might be caused by a trapping of ρcs at too low
values. The satellite data can contain significant noise in dark areas
due to low digital quantification. If the count D is within the magni-
tude of the dark offset D0, which occurs for dark surfaces, every
value of ρ which is lower than the preceding ρcs would automatically
ns (SNOW) in comparison to the original Heliosat method (ORIG).

http://www.ecmwf.int
http://www.ecmwf.int
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Fig. 5. Comparison of monthly mean Heliosat snow mask with monthly mean fractional snow cover derived from MODIS for DJF 2005.
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fulfill the bandwidth criteria. This is not problematic if the observed
normalized counts are correct but would lead to a trap for artificial
low normalized counts introduced by noise close to the dark offset.
Especially, as the decrease of ρcs is fast whereas the increase is slow.
Hence, this could lead to artificial low clear sky normalized counts
and, in turn, to an artificial overestimation of cloud albedo.

However, the modifications in the determination of ρcs with the
application of a 7 (clear sky) day running mean prevent unphysical
jumps of ρcs and thus CAL at the month's borders which serves the ho-
mogeneity of the dataset. In comparison to the original algorithm our
modifications generate a continuous seasonal cycle of ρcs. However,
validations are difficult due to missing measurements of this parame-
ter. ρcs is not the surface albedo but the planetary clear sky reflection
given in normalized counts and not in radiances.
Table 4
3.3. Snow mask

As part of the modifications to Heliosat a snowmask is determined
which influences the determination of the effective cloud albedo. The
snow mask detected by the modified clear sky albedo algorithm is
compared to the fractional snow cover derived from MODIS (Moder-
ate Resolution Imaging Spectroradiometer Hall et al., 2002) observa-
tions. For the comparison one has to keep in mind that the Heliosat
snow mask is only binary stating 0 for “no snow” and 1 for “snow”

whereas MODIS has fractional cloud cover ranging from 0 (no
snow) to 100% (all snow covered).

Fig. 5 shows the monthly mean snow mask/cover fields as well as
the comparison between Heliosat and MODIS for various MODIS
snow cover thresholds over Europe. Furthermore, for the comparison
betweenMODIS Snow Cover and the Meteosat snowmask the follow-
ing scores and skill scores were used: the proportion correct (PC), the
Bias and the Hansen–Kuipers-Discriminant (HK). Descriptions of
these scores and skill scores are given in Appendix B and the actual
values are listed in Table 3.
Table 3
Scores and skill scores for the comparison between MFG snow mask and different
MODIS snow cover thresholds.

PC BIAS HK

MODIS snow cover>20% 0.83 0.80 0.71
MODIS snow cover>30% 0.87 0.98 0.75
MODIS snow cover>40% 0.83 1.32 0.70
MODIS snow cover>50% 0.74 1.90 0.62
From Fig. 5 it can be seen that the overall snow cover pattern de-
termined by MODIS is reproduced by the Heliosat snow detection al-
gorithm. However, low snow amounts which correspond to low
MODIS snow cover values are not detected by Heliosat. The monthly
mean Heliosat snow mask corresponds best to a MODIS snow cover
field starting at 30% snow cover as for this threshold the largest PC
and HK are obtained as well as a Bias B close to 1 (see Table 3).

4. Validation of the dataset

The validation employs several statistical measures and scores to
evaluate the quality of the SIS, SID an CAL CDR. Beside the commonly
used bias, mean absolute bias (MAB) and standard deviation (SD), we
also use the correlation of the anomalies (AC) derived from the sur-
face measurements and the CM SAF dataset. For each dataset we fur-
ther provide the fraction of time steps (months or days) that exceed
the accuracy threshold (Fractime) to characterize the quality of the
data sets. The applied quality measures are defined in the Appendix C.

4.1. Solar surface irradiance–global irradiance

The results of the validation of the monthly mean SIS are summa-
rized in Table 4 for the overall performance of the CM SAF CDR at all
BSRN stations. It shows that the MAB of the dataset is well below the
requested accuracy threshold of 15 W m−2 and even fulfills the op-
timal accuracy requirement of 8 W m−2. In total only 11:35% of the
monthly mean data exceed the target accuracy. The dataset is also
able to reproduce the monthly mean anomalies of SIS that were mea-
sured at the surface, which is shown by the high anomaly correlation
of 0.89.

Table 5 provides the validation result for the daily means of the
CM SAF SIS CDR. As expected, the mean bias values are very
Statistics for the comparison of monthly mean SIS between the mean of all BSRN sta-
tions and CM SAF as well as HelioClim, ERA-Interim, GEWEX and ISCCP.

SIS
(monthly mean)

nmon Bias
[W m−2]

MAB
[W m−2]

SD
[W m−2]

AC Fracmon

>15 W m−2

%½ �
CM SAF–BSRN 855 4.40 7.99 8.14 0.89 11.35
HelioClim–BSRN 855 −17.90 22.76 16.87 0.74 58.83
ERAint–BSRN 855 5.71 10.61 12.15 0.80 25.26
GEWEX–BSRN 855 −2.56 12.26 11.12 0.82 32.75
ISCCP–BSRN 855 −0.03 11.79 11.37 0.78 29.94
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Table 5
Statistics for the comparison of daily mean SIS between the mean of all BSRN stations
and CM SAF as well as ERA-Interim, GEWEX and ISCCP.

SIS
(daily mean)

nday Bias
[W m−2]

MAB
[W m−2]

SD
[W m−2]

AC Fracday
>25 W m−2

%½ �
CM SAF–BSRN 28,674 4.58 15.52 23.73 0.92 17.08
HelioClim–BSRN 28,674 −17.94 34.89 43.13 0.74 50.09
ERAint–BSRN 28,674 5.64 26.86 39.14 0.74 36.62
GEWEX–BSRN 28,674 −2.81 22.90 31.31 0.85 32.89
ISCCP–BSRN 28,674 0.40 26.62 37.22 0.76 37.65
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comparable to of the ones previously shown for the monthly means
while the MAB values for the daily means are about twice as high as
those for the monthly means. Still, the MAB of the CM SAF SIS daily
mean data set (i.e., 15.52 W m−2) is well below the limit of
25 W m−2 and very close to the optimal accuracy of 15 W m−2.
Nearly83% of the individual daily absolute bias values meet the target
accuracy.

Also included in these tables are the corresponding values for the
four intercomparison datasets. It is visible that for nearly all quality
measures the CM SAF SIS CDR has the highest quality among the eval-
uated data sets. Especially the spread (SD) and the fraction of month
above the target accuracy of the intercomparison datasets are consid-
erably larger, resulting in higher uncertainties. However, the higher
spatial resolution of the CM SAF dataset improves the colocation
with the BSRN stations. This in turn is partly responsible for the better
performance in comparison to the other datasets.

A detailed illustration of the absolute bias at each considered BSRN
station and for all stations (last column) is shown in Fig. 6. The box–
whisker plots represent the range between the 25% and 75% percen-
tiles (1st and 3rd quartiles — Q1 and Q3) with the colored boxes and
the whiskers extend to 1.5 times the interquartile range IQR=Q3

−Q1 (see also Wilks, 2006). The IQR is a measure for the spread of
the corresponding absolute bias distribution. Additionally, the
Fig. 6. Absolute bias [W m−2] of SIS for the monthly (top) and daily (bottom) difference b
ISCCP FD, respectively.
median (2nd quartile — Q2) and the mean value which corresponds
to the MAB are depicted.

The CM SAF dataset has the lowest MAB of all four monthly mean
datasets (Fig. 6 top panel). Furthermore, the spread of the absolute
bias is also very small. HelioClim shows for some stations extremely
large deviations from the surface measurements as well as from the
other intercomparison datasets. This could be due to the reduced spa-
tial resolution of the freely available Helioclim data. The high resolu-
tion data might perform better at these stations. ISCCP FD and GEWEX
SRB strongly underestimate the incoming solar radiation at the desert
stations of Sede Boqer (sbo), Solar Village (svo) and Tamanrasset
(tam) resulting in large absolute biases. The CM SAF SIS CDR and
ERA-Interim perform much better at these stations. At the station of
Lerwick (ler) the opposite can be observed. ISCCP FD and GEWEX
SRB yield much better SIS values than CM SAF. This might be due to
the position of the station, which is located far north and thus, close
to the border of the satellite's visible disk. Additional information
from polar orbiting satellites that are used in ISCCP FD and GEWEX
SRB datasets are likely to help to constrain SIS in such areas.

The daily mean absolute bias for the individual BSRN stations are
shown in Fig. 6 (bottom). Generally, the CM SAF SIS CDR shows the
best performance with lowest MAB and smallest spread. At nearly
all stations the target accuracy is reached. The only exception is Flor-
ianopolis, where the MAB marginally misses the target accuracy of
25 W m−2. However, the intercomparison datasets perform even
worse at Florianopolis with extremely large spreads. Problems with
the surface measurements (that cancel out when calculating monthly
averages) could be responsible for this anomalous behavior in all
datasets.

The intercomparison between the various datasets for the season-
al means on the full disk is shown in Fig. 7. HelioClim is not included
here because the retrieval via the SoDa service allows only point ex-
traction of the data. The overall, seasonally induced patterns are
equally well represented in all four datasets. Differences occur espe-
cially in the tropics along the inner-tropical convergence zone
etween BSRN surface measurements and CM SAF, ERAint, GEWEX SRB, Helioclim and
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Fig. 7. Seasonal means for the CM SAF dataset compared to the datasets from ERAint, GEWEX SRB and ISCCP FD.
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(ITCZ) and in the stratocumulus region off the coast of South-West
Africa. Unfortunately, no surface stations applicable for validation
are available in these regions. Hence, no conclusion about which data-
set represents the actual state better can be drawn.
4.2. Direct radiation

Table 6 shows the validation results of the CM SAF SID CDR. The
MAB is 11.0 W m−2 and hence, well below the required validation
threshold of 20 W m−2 and also below the optimal accuracy of
12 W m−2. Thus, the accuracy requirement is fulfilled. The standard
deviation and, thus, the spread is also larger for SID than for SIS
(12.69 W m−2 compared to 8.14 W m−2). The fraction of months
that show differences outside of the accuracy requirement is compa-
rable to the corresponding value for SIS. The anomaly correlation is
still very good with a value of 0.83.

The validation results for the daily means of the CM SAF SID CDR
are shown in Table 7. The MAB is slightly larger than for the daily
mean SIS CDR (20.73 W m−2 compared to 15.52 W m−2), but it
is well below the required validation threshold of 30 W m−2 and
close to the optimal accuracy of 20 W m−2. Thus, the accuracy re-
quirement is fulfilled. As for SIS, also the daily mean SID shows a larg-
er spread than the monthly means.

The results for the individual BSRN stations are shown in Fig. 8. For
nearly all stations the accuracy requirement is met for the monthly as
well as for the daily means. The MAB is well within the requested
Table 6
Statistics for the comparison of monthly mean SID between the mean of all BSRN sta-
tions and CM SAF.

SID
(monthly mean)

nmon Bias
[W m−2]

MAB
[W m−2]

SD
[W m−2]

AC Fracmon

>20 W m−2

%½ �
CM SAF–BSRN 805 0.89 11.00 12.69 0.83 15.40

Table 7
Statistics for the comparison of daily mean SID between the mean of all BSRN stations
and CM SAF.

SID
(daily mean)

nday Bias
[W m−2]

MAB
[W m−2]

SD
[W m−2]

AC Fracday
>30 W m−2

%½ �
CM SAF–BSRN 26,614 0.74 20.73 30.34 0.89 23.42
20 W m−2 for monthly means (top panel) and 30 W m−2 for
daily means (bottom panel), respectively.

In comparison to SIS, SID MAB is within the limits at Lerwick.
However, the spread is still substantial. At Lerwick the validation
thresholds are exceeded during several months. The possible causes
outlined for SIS should also hold for SID.

Larger issues are present at the station of Tamanrasset where SID
is substantially underestimated by the CM SAF CDR. Also the two
other desert stations, Sede Boqer and Solar Village, show relatively
high MABs and spreads. At all three stations, however, the relative
error is small as these stations experience high direct solar radiation.
The cloudless conditions result in a higher sensitivity of SID on the di-
rect clear sky radiation, which depends on the prescribed atmospher-
ic conditions. Especially uncertainties in the optical properties of
aerosol particles (e.g., in dust storms) result in substantial uncer-
tainties in the direct clear sky radiation. For example the fact that
the SIS is replicated with little error, while SID is not, suggests that
there might be a problem with aerosols in Tamanrasset.

4.3. Homogeneity

The homogeneity of a climate data set is particularly necessary in
order to enable a meaningful statistical trend analysis. Artificial steps
and/or temporal trends in the dataset, e.g., due to changes in the sat-
ellite instrument, would result in unrealistic changes and trends,
which do not represent changes or trends of the climate. Special at-
tention is therefore given to the times when the satellite instruments
changed. Table 8 gives an overview over the major operational pe-
riods (longer than 3 months) of the individual Meteosat satellites.
Switches between satellites for a few days due to the decontamina-
tion procedure are not listed here. For a complete listing of Meteosat
operational periods see Rigollier et al. (2002).

A simple method to test for homogeneity is to analyze the anom-
alies with respect to any obvious steps. Changes in the mean state
from one satellite to the other would be visible as an increase or de-
crease in positive or negative anomalies. Another, more objective
way to test the homogeneity of a time series is to analyze the tempo-
ral derivative of the time series. Inhomogeneities and change points
then appear as systematic (i.e., for a wide range of pixels) positive
or negative values for one time step. Fig. 9 shows the Hovmoeller di-
agram of the temporal derivative of the monthly mean anomalies of
SIS. The dashed vertical lines mark the satellite switches listed in
Table 8. The zonal means were calculated for the longitude band
from 10∘W to 30∘E (contains Europe, the Sahara and the South Atlan-
tic). The time range contains all satellites starting with Meteosat 2 in
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Table 8
Major operational periods for the used Meteosat satellites.

Satellite From To

Meteosat 2 16 Aug 1981 11 Aug 1988
Meteosat 3 11 Aug 1988 19 Jun 1989
Meteosat 4 19 Jun 1989 24 Jan 1990
Meteosat 3 24 Jan 1990 19 Apr 1990
Meteosat 4 19 Apr 1990 4 Feb 1994
Meteosat 5 4 Feb 1994 13 Feb 1997
Meteosat 6 13 Feb 1997 3 Jun 1998
Meteosat 7 3 Jun 1998 31 Dec 2005

Fig. 8. Absolute bias [W m−2] of SID for the monthly (top) and daily (bottom) difference between BSRN surface measurements and CM SAF.
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1983 until Meteosat 7 in 2005. The Hovmoeller diagram for the SID
CDR resembles the ones shown in Fig. 9 and is therefore not shown
here.

The temporal derivative of the anomaly shows a small jump from
Meteosat 3 to Meteosat 4 in April 1990. This feature is mostly prom-
inent from the Equator to 40∘N, thus, covering the region of the Saha-
ra and North Africa. Also, there seems to be a slight inconsistency
Fig. 9. Hovmoeller diagram of monthly mean ano
during the switch from Meteosat 5 to 6 in February 1997, which is
however, limited to the region between the Equator and 20∘N. For
the mentioned regions and time spans, the CM SAF SIS and SID CDR
should be used with care.

Inhomogeneities and artificial jumps might be induced by the self-
calibration method, discussed in Section 3.1. The stability and perfor-
mance of the self-calibration has been evaluated against ground mea-
surements from the Baseline Surface Radiation Network (BSRN)
(Ohmura et al., 1998) as these data constitutes a reliable reference.
The BSRN measurements have quite different start and end points,
leading to different weights of local bias values. In order to avoid cor-
ruption of the analysis induced by local bias values the local bias
values are corrected, leading to a bias of zero for each station. Howev-
er, trends induced by temporal changes in the monthly differences
are not affected by this normalization procedure. The differences be-
tween the monthly means of the BSRN and satellite data are then av-
eraged over all available stations, whenever monthly means from at
least 3 stations are available. This leads to an overall time series of
“normalized” differences of monthly means, referred to as normalized
maly derivation averaged over 10∘W to 30∘E.

image of Fig.�8
image of Fig.�9


Fig. 10. Temporal evolution of the normalized bias between the CM SAF data set and
the BSRN data including the trend colored in red. The green line is the neutral axis.
The blue lines at the bottom of the plot indicate the change of satellites (Meteosat-5,
Meteosat-6, Meteosat-7). The slight slope of the red line is statistically not significant,
hence no significant trend is apparent.
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bias. Fig. 10 shows the temporal evolution of the normalized bias be-
tween the CM SAF data set and the BSRN data.

As can be seen in Fig. 10 there is no detectable trend in the tempo-
ral evolution of the normalized bias (monthly differences), which
proves evidence of the homogeneity of the SSI data for the analyzed
time period. In contrast, the satellite raw counts show a significant
and large trend, a decrease of the sensibility due to aging (see
Fig. 3). In contrast to CM-SAF, a significant trend in the normalized
bias is apparent in the GEWEX and ISCCP data set (not shown here).
A more complete homogeneity analysis will be carried out in a
follow-up study.

5. Summary and conclusion

The satellite-derived data sets of the surface global and direct irra-
diance (SIS and SID) as well as the effective cloud albedo from CM SAF
have been presented in this publication. The dataset employed data
from visible channel of the Meteosat first generation satellites and,
thus, spans a time range from 1983 to 2005. The dataset is freely
available for all purposes under wui.cmsaf.eu as monthly, daily and
hourly means at a spatial resolution of 0.03∘.

The applied climate version of the Heliosat algorithm included
various modifications to ensure the generation of a homogeneous cli-
mate data record. These modifications include a self-calibration
algorithm and changes in the derivation of the clear sky normalized
counts. Within the self-calibration the degradation of the satellites
as well as gain changes are captured. The modifications in the clear
sky algorithm lead mainly to lower effective cloud albedos in the
strongly cloud covered region at the north and south rims of the
Meteosat disk.

However, an advantage compared to the original algorithm is the
application of a running mean preventing unrealistic jumps of ρcs at
the month borders. Still, improvements to the method applied to re-
trieve the clear sky reflection are necessary and will be subject of fu-
ture CM SAF projects. For instance, the MVIRI thermal channel could
be concurrently used together with the VIS channel to retrieve clear
sky pixels.

The SIS and SID datasets are validated by comparison with obser-
vations from 12 high-quality ground based stations of the BSRN
network. The applied validation thresholds combine the target accu-
racy, which is based on the GCOS accuracy requirement for the vari-
ables of the surface radiation budget, and the systematic error of the
BSRN surface measurements.

The MABs of the monthly means of SIS and SID are well below the
target accuracy of 10 W m−2 and 15 W m−2 for the Mean Absolute
Bias. The validation target is also reached for most considered sta-
tions, only at stations close to the border of the visible disk (SIS and
SID) and at desert stations with high solar insulation (SID) the abso-
lute bias exceeds the target accuracy. At Tamanrasset SID shows quite
large bias values, but this could be also due to inaccurate SID ground
measurement. However, about90% (SIS) and85% (SID) of the month-
ly absolute bias values are below the respective target accuracy.

The MAB for the daily means is also below the target accuracy of
20 and 25 W m−2 for SIS and SID for the complete data set and
also for most individual stations. The problematic stations are the
same as for the monthly means. The target accuracy is fulfilled at
about 85% (SIS) and 75% (SID) of all considered individual days at
all considered stations.

The evaluation of the SIS CDR with the SIS datasets from Helio-
Clim, ERA-Interim, GEWEX SRB and ISCCP FD demonstrated that the
monthly and daily mean CM SAF SIS CDR has a higher quality than
the inter-comparison data sets. The MAB of the CM SAF SIS dataset
is substantially lower and the differences to the BSRN measurements
have a much smaller spread than the three evaluation datasets. More-
over the amount of absolute bias values above the target of
10 W m−2 (plus uncertainty of ground measurements) is much
lower for the CM-SAF climate data record. This is especially important
for a reliable monitoring of extremes.

Overall, it was shown that the target accuracy is achieved for
monthly and daily means of the global and direct surface solar irradi-
ance in the CM SAF CDR. The effective cloud albedo is a central input
quantity for the calculation of SIS and SID. The high accuracy of these
data sets demonstrates in turn the high quality of the effective cloud
albedo.

In general, the validation demonstrates the outstanding quality of
the CM-SAF data set for climate monitoring and analysis, also in inter-
comparison with other data sets. As a consequence of the high spatial
resolution the CM-SAF data can be also applied to regional climate
monitoring and analysis. Moreover, the successful retrieval of high
quality data from the non-calibrated Meteosat First Generation satel-
lite enables the generation of long term data sets. Heliosat in combi-
nation with MAGIC can be also applied to the Meteosat Second
Generation satellites, which enables the prolongation and continua-
tion of this high quality data set. Thus, the analysis of climate trends
and extremes becomes possible. The self-calibration approach en-
ables the application of Heliosat to other geostationary satellites,
e.g. GOES, as well as to the Meteosat-East satellites. Within this
scope Heliosat has been implemented at the Joint Research Center
for the processing of Meteosat East data. The first validation results
show a similar accuracy (T. Huld, personal communication). The ap-
plication of the method to other geostationary satellites enables the
extension of the data set toward a geostationary ring, which increases
the attractivity of the data set for further applications, e.g. the evalu-
ation of global climate models.

Appendix A.

Nomenclature

D digital count (range 0–1023)
D0 dark offset in digital count
ρ normalized count
ρcs clear sky normalized count
ρmax maximumnormalized count that serves as satellite calibration

parameter
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CAL effective cloud albedo (formerly also known as cloud index)
SIS solar surface irradiance = global radiation
SIScs clear sky solar surface irradiance
SID direct irradiance = direct radiation
SIDcs clear sky direct irradiance = direct radiation

Appendix B. Applied scores and skill scores

The definitions of the scores and skill scores are taken from Wilks
(2006). The applied contingency table for “forecasted” and “ob-
served” snow events is shown in Table B.1.
Table B.1
Contingency table for comparison between MODIS snow cover and Meteosat snow
mask.

MODIS (=observation)

Snow No snow

MFG (=forecast) Snow a b
No snow c d
Accuracy reflects the correspondence between pairs of forecasts and
observations. A perfectly accurate forecast would result in b=c=0.
One accuracy measure is the proportion correct (PC) given by

PC ¼ aþ d
aþ bþ cþ d

: ðB:1Þ

The worst PC to obtain is 0 and the best is 1.
Bias is the comparison of the average forecast to the average ob-

servation. It is defined as the ratio of the number of forecasted to
the number of observed events.

B ¼ aþ b
aþ c

ðB:2Þ

Thereby, unbiased forecasts yield B=1. For Bb1 and B>1 the
events are under- and overforecasted, respectively. The bias provides
no information about the correspondence of the events.

Hansen–Kuipers-Discriminant or Peirce skill score is a skill score
based on PC. Skill scores quantify the improvement of the actual fore-
cast in comparison to a reference forecast (in case of HK it is a random
(unbiased) forecast). The HK can also be understood as the difference
of two conditional probabilities, the “probability of detection” (POD)
and the “probability of false detection” (POFD).

HK ¼ POD−POFD ¼ a
aþ c

− b
bþ d

¼ ad−bc
aþ cð Þ bþ dð Þ ðB:3Þ

The forecast has skill in comparison to the reference forecast if
HK>1. For HK≤1 the forecast has equal or less skill than the refer-
ence forecast.

Appendix C. Statistical measures for the validation

In the following, the applied quality measures are described. The
definitions of the statistical measures are taken from Wilks (2006).
Thereby, the variable y describes the dataset to be validated (e.g.,
CM SAF) and o denotes the reference dataset (i.e., BSRN). The individ-
ual time step is marked with k and n is the total number of time steps.
Bias

The bias (or mean error) is simply the mean difference between
the two considered datasets. It indicates whether the dataset on aver-
age over- or underestimates the reference dataset.

Bias ¼ 1
n

Xn
k¼1

yk−okð Þ ¼ �y−�o ðC:1Þ

Mean absolute bias (MAB)

In contrast to the bias, the mean absolute bias (MAB) is the aver-
age of the absolute values of the differences between each member
of the time series.

MAB ¼ 1
n

Xn
k¼1

yk−okj j ðC:2Þ

Standard deviation (SD)

The standard deviation SD is a measure for the spread around the
mean value of the distribution formed by the differences between the
generated and the reference dataset.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn
k¼1

yk−okð Þ− �y−�oð Þð Þ2
vuut ðC:3Þ

Anomaly correlation (AC)

The anomaly correlation AC describes to which extent the anoma-
lies of the two considered time series correspond to each other with-
out the influence of a possibly existing bias. The correlation of
anomalies retrieved from satellite data and derived from surface mea-
surements allows the estimation of the potential to determine anom-
alies from satellite observations.

AC ¼ ∑n
k¼1 yk−�yð Þ ok−�oð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
k¼1 yk−�yð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k¼1 ok−�oð Þ2
q ðC:4Þ

Here, for each station the mean annual cycle �y and �o were derived
separately from the satellite and surface data, respectively. The
monthly/daily anomalies were then calculated using the correspond-
ing mean annual cycle as the reference.

Fraction of time steps above the validation threshold (Frac)

Ameasure for the uncertainty of the derived dataset is the fraction
of the time steps that are outside the requested thresholds Th.

Frac ¼ 100
∑n

k¼1f k
n

with f k ¼ 1 if yk > Th
f k ¼ 0 otherwise

�
ðC:5Þ
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