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1 Introduction 

The Algorithm Theoretical Baseline Document (ATBD) provides a detailed description of the 

algorithms that are used within the ESA CCI Soil Moisture production system. The ESA CCI SM 

production system was initially developed within CCI Phases 1 & 2 and is continuously being 

updated within CCI+ to reflect the current state of the science driving the system. The aim of 

this document is to describe the algorithm development process for each of the ESA CCI SM 

products, as well as provide an executive summary setting them within framework for the CCI 

project and the ESA CCI SM production system.  

The structure of this document reflects the distinct domains of the ATBD. Sections 4 and 5 

provide a brief overview of the problem and of the ESA CCI SM production system respectively. 

Section 6 contains a brief description of soil moisture products from active microwave sensors 

used in in the ESA CCI Soil Moisture and points to the organizations responsible for their 

retrieval. Section 7 describes succinctly the VUA-NASA Land Parameter Retrieval Method 

(LPRM) for estimating soil moisture from passive microwave sensors, and section 8 provides 

a description of the methodology adopted for merging the active and passive soil moisture 

products. 

1.1 Purpose of the Document  

The ATBD is intended to provide a detailed description of the scientific background and 

theoretical justification for the algorithms used to produce the ESA CCI soil moisture data sets. 

Furthermore, it describes the scientific advances and algorithmic improvements which are 

made within the CCI project. This document is complemented by (Dorigo et al. 2017) which 

provides detailed information on the product including a quality assessment which shows the 

evolution of the product between versions. 

1.2 Targeted Audience 

This document targets mainly: 

1. Remote sensing experts interested in the retrieval and error characterisation of soil 

moisture from active and passive microwave data sets. 
2. Users of the remotely sensed soil moisture data sets who want to obtain a more in-

depth understanding of the algorithms and sources of error.  
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2 Change log 

2.1 Current version v05.2 

This document forms deliverable 2.1 of CCI+ and provides an update for the ESA CCI SM v05.2 

product expected to be publicly released in the Q3/2020. Changes between version v05.2 

algorithm and the previously used version 04.4 algorithm (temporally extended at v04.5 and 

v04.7 without algorithmic changes) involve improved CDF-matching, inter-sensor scaling 

regime of AMSR2 and the inclusion of SMAP data from April 2015. 

Version v05.2 provides data from 1978 (PASSIVE and COMBINED products) and 1991 (ACTIVE 

product) to the end of December 2019. 

2.1.1 ATBD Document 

• Updated for version v05.2. Tables and figures revised to include SMAP where 

applicable. SMAP and AMSR2 scaling regimes described (see section 8.3.2) and 

processing steps visualized (Figure 8). 

2.2 Pre v05.2 

The dataset and corresponding ATBD versions are summarised in Table 1. Further information 

can be found in the changelog provided with the data and the relevant documentation. 
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Table 1: Summary ESA CCI SM Versions 

Dataset 

Version 

Release date Public Key 

Users 

Project 

Partners 

Major Changes Since Previous Versions ATBD 

Version 

v05.2 Q3/2020 

(expected) 

X   Inclusion of SMAP data from April 2015, improved CDF-matching and 

updated inter-sensor scaling regime of AMSR2. 

5.2 

v04.7 12/03/2020 X   No algorithm changes since v04.4. Temporal extension to 2019-12-31.  4.7 

v04.5 2019-09-30 x   No algorithm changes since v04.4. Temporal extension 2018-12-31. 

ATBD documentation previously maintained separately for each of the 

ESA CCI SM datasets merged into a single document. Removal of the 

Active ATBD. 

4.5 

v04.4 2018-11-12 X   No algorithm changes since v04.1. GLDAS 2.1 now used. Flagging of 

high VOD for SMOS and AMSR2 method changed. Temporal extension 

to 2018-06-30. 

4.4 

v04.3 2018-04-17   X No algorithm changes since v04.1. Temporal extension to 2017-12-31. 

Not released, but used for State of the Climate BAMS report 2018. 

4.3 

v04.2 2018-01-12 X   No algorithm changes since v04.1. 4.2 

v04.1 2017-08-02  X X Masking of unreliable retrievals is undertaken prior to merging. - 

v04.0 2017-03-20   X The combined product is now generated by merging all active and 

passive L2 products directly, rather than merging the generated active 

and passive products. Spatial gaps in TC-based SNR estimates now 

filled using a polynomial SNR-VOD regression. sm_uncertainties now 

- 
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Dataset 

Version 

Release date Public Key 

Users 

Project 

Partners 

Major Changes Since Previous Versions ATBD 

Version 

available globally for all sensors except SMMR. The p-value based 

mask to exclude unreliable input data sets in the COMBINED product 

has been modified and is also applied to the passive product. 

v03.3 2017-11-13 X   Temporal extension of ACTIVE, PASSIVE and COMBINED datasets to 

2016-12-31. 

3.3 

v03.2 2017-02-14 X   SMOS temporal coverage extended. Uncertainty estimates for soil 

moisture now provided from 1991-08-05 onwards (ACTIVE),  and from 

1987-07-10 onwards (PASSIVE, and COMBINED). Two new quality flags 

introduced.  

3.2 

v03.1 2016-11-02  X X Blending made more conservative concerning the inclusion of single 

low-accuracy observations (on the cost of temporal coverage). 

Integration of Metop-B ASCAT. Error estimates which are used for 

relative weight estimation now provided alongside with the merged 

soil moisture  observations. 

- 

v03.0 2016-04-25   X Introduction of new weighted-average based merging scheme. Miras 

SMOS (LPRM) now integrated into the data products. Blending weights 

provided as ancillary data files. 

- 

v02.3 2016-02-08 X   Temporal extension to 2015-12-31. Valid_range in netCDF files now 

set to the packed data range. 

- 
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Dataset 

Version 

Release date Public Key 

Users 

Project 

Partners 

Major Changes Since Previous Versions ATBD 

Version 

v02.2 2015-12-17 X   No changes. - 

 2015-08-06  X X In ancillary files latitudes now goes from positive to negative values. - 

 2015-07-31  X X Email address added to metadata. - 

 2015-03-17   X Temporal coverage extended (Nov-1978 to Dec-2014). Improvement in 

the flagging of the active data where extreme high and low values are 

filtered. 

- 

v02.1 2014-12-03   X Change of product name to ESA CCI SM. Soil moisture values (flagged 

with values other than 0) are now set to NaN. 

- 

v02.0 2014-07-10 X   Provision of ancillary datasets (land mask, porosity map, soil texture 

data, AMSR-E VUA-NASA Vegetation Optical Depth averaged over the 

period 2002-2011, global topographic complexity and Global Wetland 

fraction. 

- 

v01.2 2014-03-03   X All datasets updated to include days where no observations are 

available. 

- 

v01.1 2014-02-19   X Active, passive and combined products made available. Dataset time 

span: 1978-11-01 to 2013-12-13 (passive and combined) and 1991-08-

05 to 2013-12-13 (active). Using new land mask based on GSHHG 

2.2.2. WindSat and preliminary AMSR2 included. ERS2 included in 

AMI-WS dataset. Active data resampled with Hamming window 

- 
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Dataset 

Version 

Release date Public Key 

Users 

Project 

Partners 

Major Changes Since Previous Versions ATBD 

Version 

function. Improved rescaling algorithm. Data gaps in 2003-02-16 to 

2006-12-31 filled with AMSR-E data. 

v 0.1 2012-06-18   X Combined product only including passive sensors (SMMR, SSM/I, TMI, 

AMSR-E; active: AMI-WS, ASCAT) with time span: 1978-11-01 to 2010-

12-31. NetCDF-3 classic CF1.5 compliant. 

- 
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3 Reference Documents 

The following references are of relevance to this document. Within the document, for the sake 

of clarity it has been sometimes necessary to provide sections of quoted texts taken from 

referenced documents, rather than just providing a reference to the document. In these cases, 

texts are “presented in quotes as italic text”. 

[RD-1] ESA Climate Change Initiative Plus, Statement of Work, European Space Agency, 

ESA_CCI-EOPS-PRGM-SOW-18-0118. 

[RD-2] Technical Proposal (Part 3) in response to ESA Climate Change Initiative Plus 

AO/1-9322.18/I-NB , Vienna University of Technology. 

[RD-3] W. Dorigo, R. Kidd, R. De Jeu, S. Seneviratne, H. Mittelbach, J. Pulliainen, W.A. 

Lahoz, N. Dwyer, B. Barrett, Eva Haas, W. Wagner. ESA CCI Soil Moisture Data 

Access Requirements Document, v1.2 

[RD-4] Wagner, W., W. Dorigo, R. De Jeu, D. Fernandez, J. Benveniste, E. Haas, M. Ertl 

(2012) Fusion of active and passive microwave observations to create an 

Essential Climate Variable data record on soil moisture. Proceedings of the ISPRS 

Congress 2012, Melbourne, Australia, August 25-September 1, 2012. 

[RD-5] Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, 

A. I. J. M., McCabe, M. F., Evans, J. P. (2011). Developing an improved soil 

moisture dataset by blending passive and active microwave satellite-based 

retrievals. Hydrology and Earth System Sciences, 15, 425-436, doi:10.5194/hess-

15-425-2011 

[RD-6] Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M., Wagner, W., McCabe, 

M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive 

and active microwave soil moisture retrievals, Remote Sensing of Environment, 

123, 280-297, doi: 10.1016/j.rse.2012.03.014. 

[RD-7] De Jeu R.A.M, T.R.H. Holmes, R. M. Parinussa, M Owe (2014). A spatially 

coherent global soil moisture product with improved temporal resolution,  

Journal of Hydrology 516, 284-296. 

[RD-8] Van der Schalie, R., Kerr, Y.H., Wigneron, J.P., Rodriguez-Fernandez, N.J., Al-

Yaari, and De Jeu, R.A.M. (2015). Global SMOS Soil Moisture Retrievals from the 

Land Parameter Retrieval Model. Int. J. Appl. Earth Observ. Geoinf., doi: 

http://dx.doi.org/10.1016/j.jag.2015.08.005. 
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Processing Model (DPM), Version 1.2, 26th November 2013. 
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4 Scope of ESA CCI Soil Moisture 

This Section is partially based on [RD-4]. 

4.1 Soil Moisture Becoming an ECV 

Soil moisture is arguably one of the most important parameters for the understanding of 

physical, chemical and biological land surface processes (Legates et al. 2011). Therefore, it is 

for many geoscientific applications essential to know how much water is stored in the soil, and 

how it varies in space and time. For many years, soil moisture was considered to be only an 

"emergent ECV" because the retrieval of soil moisture was deemed too difficult with existing 

satellite sensors. Therefore, in recognition of the strong need for global soil moisture data 

sets, the European Space Agency (ESA) and the National Aeronautics and Space 

Administration (NASA) each decided to develop a dedicated satellite mission operating at 1.4 

GHz (L-band). The first mission is the Soil Moisture and Ocean Salinity (SMOS) satellite that 

was launched in November 2009 by ESA (Kerr et al. 2010). The second one is NASA's Soil 

Moisture Active Passive (SMAP) mission that was launched in January 2015 (Entekhabi et al. 

2010a). But, as already noted by (Wagner et al. 2007): “Besides these innovations in space 

technology, an initially less-visible revolution has taken place in algorithmic research. This 

revolution became possible thanks to the increasing availability of computer power, disk space, 

and powerful programming languages at affordable costs. This has allowed more students and 

researchers to develop and test scientific algorithms on regional to global scales than in the 

past. This has led to a greater diversity of methods and consequently more successful retrieval 

algorithms.” 

In line with the above-described developments, several global and continental-scale soil-

moisture datasets have been published and shared openly with the international community 

within the last 15 years. The very first remotely sensed global soil moisture dataset was 

published by the Vienna University of Technology (TU Wien) in 2002 and was based on nine 

years (1992-2000) of ERS C-band (5.6 GHz) scatterometer measurements (Scipal et al. 2002; 

Wagner et al. 2003). NASA released its first global soil moisture data retrieved from microwave 

radiometer measurements using the algorithms developed by (Njoku et al. 2003) in the 

following year. Since then several other soil moisture data products mostly based on 

microwave radiometers (AMSR E, Windsat, etc.) have become freely available, notably the 

multi-sensor soil moisture datasets produced by Vrije Universiteit Amsterdam (VUA) in 

cooperation with NASA (Owe et al. 2008), and the WindSat soil moisture dataset produced by 

the US Naval Research Laboratory (Li et al. 2010). The first operational near-real-time soil 

moisture service was launched by EUMETSAT in 2008 based on the METOP Advanced 

Scatterometer (ASCAT) and algorithms and software prototypes developed by TU Wien 

(Bartalis et al. 2007). Finally, SMOS Level 2 soil moisture data started to become available in 
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2010, with first validation results published in 201254 (Albergel et al. 2012). Data from NASA’s 

Soil Moisture Active Passive (SMAP) have become available in the course of 2015, but 

unfortunately, only after 3 months of operation its radar failed thus impeding the continuation 

of the foreseen downscaled product.  

Having a number of independent satellite soil moisture data sets does not mean that it is 

straight-forward to create long-term consistent time series suitable for climate change 

studies. In fact, for the assessment of climate change effects on soil moisture even subtle long-

term trends must be detected reliably. This means that any potential influences of mission 

specifications, sensor degradation, drifts in calibration, and algorithmic changes must be 

carefully corrected for. Also, it must be guaranteed that the soil moisture data retrieved from 

the different active and passive microwave instruments are physically consistent.  

4.2 Selected Satellite Sensors 

Microwave remote sensing measurements of bare soil surfaces are very sensitive to the water 

content in the surface layer due to the pronounced increase in the soil dielectric constant with 

increasing water content (Ulaby et al. 1982). This is the fundamental reason why any 

microwave technique, particularly in the low-frequency microwave region from 1 to 10 GHz, 

offers the opportunity to measure soil moisture in a relatively direct manner. Therefore, the 

CCI soil moisture project focuses at this stage on space-borne microwave systems operating 

at low-frequency bands. For soil moisture studies the most important bands are: L-band 

(frequency f = 1 – 2 GHz, wavelength  = 30 – 15 cm), C-band (f = 4 – 8 GHz,  = 7.5 – 3.8 cm), 

and X-band (f = 8 – 12 GHz,  = 3.8 – 2.5 cm).  

In microwave remote sensing, one distinguishes active and passive techniques. Active 

microwave sensors transmit an electromagnetic pulse and measure the energy scattered back 

from the Earth’s surface. For passive sensors (radiometers), the energy source is the target 

itself, and the sensor is merely a passive receiver (Ulaby et al. 1982). Radiometers measure 

the intensity of the emission of the Earth’s surface that is related to the physical temperature 

of the emitting layer and the emissivity of the surface. Despite the different measurement 

processes, active and passive methods are closely linked through Kirchhoff’s law which, 

applied to the problem of remote sensing of the Earth’s surface, states that the emissivity is 

one minus the hemisphere integrated reflectivity (Schanda 1986). Therefore, both active and 

passive techniques deal in principle with the same physical phenomena, though the 

importance of different parameters on the measured signal may vary depending on the sensor 

characteristics. 
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Figure 1: Active and passive microwave sensors used for the generation of the ESA CCI soil moisture 
data sets. 

Given that an ECV data record should be as long and complete as possible, it has to be based 

on both active and passive microwave observations. The CCI Soil Moisture project thus aims 

to combine C-band scatterometers (e.g. ERS-1/2 scatterometer, METOP Advanced 

Scatterometers) and multi-frequency radiometers (e.g., SMMR, SSM/I, TMI, AMSR-E, Windsat, 

AMSR2, SMOS, SMAP) as these sensors are characterised by their high suitability for soil 

moisture retrieval and a long technological heritage (Figure 1). As specified in [RD-1], other 

microwave sensors suitable for soil moisture retrieval, including Synthetic Aperture Radars 

(SARs) and radar altimeters, are not considered in this phase of the CCI programme due to 

their recentness and/or their unfavourable spatio-temporal coverage. Nevertheless, the ESA 

CCI SM production system has been set up in such a way as to allow the integration of all these 

sensors in the future. A complete list and a detailed technical description of all data products 

used in the ESA CCI SM production system is provided in [RD-10 and RD-11]. 

4.3 Baseline Requirements 

As part of the CCI Soil Moisture project a detailed assessment of the user requirements is 

carried out at regular intervals and reported in the User Requirement Document (URD). 

Nevertheless, based on the requirements as specified in [RD-1], and drawing from the 

experiences of the use of the currently available satellite soil moisture data sets, a number of 

baseline requirements can be specified already at this stage. 
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4.3.1 Scientific Requirements 

Thanks to the fact that several decade-long soil moisture data records have been released 

within the last few years the generic user requirements for ESA CCI soil moisture data records 

are already reasonably well understood. According to authors’ experience from the 

cooperation with users of the TU Wien and VUA-NASA soil moisture data sets (de Jeu et al. 

2008; Wagner et al. 2007), the most important of these are: 

1. Soil moisture is preferably expressed in volumetric soil moisture units (m3m-3). If soil 

moisture is expressed in a different unit, the conversion rule must be specified. 

2. From an application point of view, the ESA CCI SM data should preferably represent 

the soil moisture content in deeper soil layers (up to 1 m), not just the thin (0.5-5 cm) 

remotely sensed surface soil layer. Nevertheless, expert users typically prefer to work 

with data that are as close to the sensor measurements as possible, making the 

conversion of the remotely sensed surface soil moisture measurements to profile 

estimates themselves. 

3. When merging datasets coming from different sensors and satellites the highest 

possible degree of physical consistency shall be pursued. 

4. Due to the long autocorrelation length of the atmosphere-driven soil moisture field 

(Entin et al. 2000) a spatial resolution of ≤50 km is sufficient for climate studies. 

5. The temporal sampling interval depends on the chosen soil layer. For deeper soil layers 

(1 m) a sampling rate of 1 week is in general enough, but for the thin remotely sensed 

soil layer it is ≤1 day. 

6. Having a good quantitative understanding of the spatio-temporal error field is more 

important than working under the assumption of arbitrarily selected accuracy 

thresholds (e.g. like the often cited 0.04 m3m-3). 

7. Some soil moisture applications require a good accuracy (low bias), but for most 

applications it is in fact more important to achieve a good precision (Entekhabi et al. 

2010b; Koster et al. 2009). 

8. For climate change studies the drift in the bias and dynamic range of the soil moisture 

retrievals should be as small as possible. 

4.3.2 System Requirements 

The generation of an ESA CCI SM data set is not a one-off activity, but should in fact be a long-

term process where the ESA CCI SM product shall be continued and improved step by step 

with the active involvement of a broad scientific community. From a system point of view this 

requires that the ESA CCI SM Production System is modular so that 

• the system supports algorithm development and is most open to broad scientific 

participatory inputs 
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• algorithms can be improved while minimising reprocessing costs 

• upgrades of any of its parts are facilitated without repercussions elsewhere 

• the system can be moved to different operators if required, i.e. it allows adaptations 

to different data processing framework solutions 

But not only modularity is a major requirement. The design and operations of the system 

should also be as lightweight as possible in order to be able to 

• re-process ESA CCI SM data records on a frequent basis to account for Level 1 

calibration- and Level 2 algorithmic updates 

• update the ESA CCI SM datasets rapidly in case new Level 2 data sets become available 

• test alternative error characterisation, matching and merging approaches 

• keep operations and maintenance costs low  

Please consult [RD-10] for further details on the soil moisture ESA CCI SM production system, 

detailing its components, their functions, and interfaces. 
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5 ESA CCI SM Production Approach 

This Section is partly based on [RD-4]. 

5.1 Potential and drawbacks of merging Level 1 Microwave Observations 

Probably the most straight-forward approach to generating an ESA CCI soil moisture data set 

would be to feed the Level 1 backscatter- and brightness temperature observations of all 

different active and passive microwave remote sensing instruments into one Level 2 soil 

moisture retrieval system, delivering as direct output a harmonised and consistent active-

passive based ESA CCI surface soil moisture data set covering the complete period from 1978 

to the present. As ideal as this approach may seem from a scientific point of view, there are 

some major practical problems: 

• The technical specifications of the diverse active and passive microwave sensors 

suitable to soil moisture retrieval (ASCAT, AMSR-E, SMOS, SMAP, etc.) are so different 

that it appears hardly feasible to design one-can-do-it-all physical retrieval algorithm. 

• The complexity of the retrieval algorithm and the requirements for high-quality 

ancillary data to constrain the retrieval process can be expected to increase drastically 

for a multi-sensor compared to a single-sensor Level 2 retrieval approach. This bears a 

certain risk of errors becoming less easily traceable. Also, the overall software system 

may not be scalable in terms of processing time and disk space. 

• For much of the historic time period (1978-2007) the spatio-temporal overlap of 

suitable active and passive microwave measurements is minimal. 

• Because the surface soil moisture content may vary within minutes to hours, combing 

measurements taken at different times of the day in multi-sensor approach may 

produce large errors. It can e.g. be noted that the measurements of ASCAT (9:30 and 

21:30 local time), AMSR-E (1:30 and 13:30) and SMOS (6:00 and 18:00) are currently 

well spread over the complete day. 

Each of these problems is serious enough to not consider an ESA CCI SM Production System 

based on the fusion of Level 1 microwave observations. Considered together one can conclude 

that such an ESA CCI SM Production system would neither be modular nor lightweight, which 

makes this approach technically intractable. Therefore, in the next section the fusion of Level 

2 soil moisture retrievals is discussed. 

5.2 Fusion of Level 2 Soil Moisture Retrievals 

The possibility of generating a long-term soil moisture data set based on Level 2 soil moisture 

retrievals was already demonstrated within the WACMOS project funded by the European 
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Space Agency (Su et al. 2010). The Level 2 fusion process of this early product involved the 

following steps, based on available level 2 products (Figure 2): 

1. Fusion of the active Level 2 data sets 

2. Fusion of the passive Level 2 data sets 

3. Fusion of the merged active and passive data sets from steps 2 and 3 

In this approach the three important steps in the fusion process were: 1) error characterisation 

(Su et al. 2010), 2) matching to account for data set specific biases (Drusch et al. 2005; Reichle 

et al. 2004), and 3) merging the bias-corrected datasets (Liu et al. 2011). The major advantage 

of this approach is that it allows combining surface soil moisture data derived from different 

microwave remote sensing instruments with substantially different instrument 

characteristics. It is only required that the retrieved Level 2 surface soil moisture data pass 

pre-defined quality criteria. In this way it is guaranteed that no sensor is a priori excluded by 

this approach. It is thus straight-forward to further enrich the ESA CCI SM data set with Level 

2 data from other existing and forthcoming sensors (e.g. SMAP, radar altimeters, Aquarius). 

 

 

Figure 2: Flow chart of the ECV Production System as first proposed in the ESA funded WACMOS 
project (Liu et al. 2011; Su et al. 2010). 

In this approach, the ESA CCI SM Production System does not include the different Level 2 

processors. In other words, the different Level 2 baseline data can be provided by the expert 

teams and organisations for the different sensor types (scatterometers, multi-frequency 

radiometers, SMOS, SMAP, etc.) and the ESA CCI SM Production System itself has to deal with 
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the fusion process only, as described above. This design is modular and lightweight, meeting 

the requirements as discussed in Section 4.3.2. 

The most serious concern related to this fusion approach is that Level 1 data processed with 

different Level 2 algorithms may not represent the same physical quantity. Fortunately, as an 

increasing number of validation and inter-comparison studies show (Albergel et al. 2012; 

Brocca et al. 2011; Gruhier et al. 2010; Rüdiger et al. 2009), the temporal soil moisture 

retrieval skills of SMOS, ASCAT and AMSR-E are often well comparable and of good quality in 

regions with sparse to moderate vegetation cover. Therefore, after bias correction and, if 

necessary, a conversion of units, the different Level 2 soil moisture data sets can be merged. 

Nevertheless, to maximise physical consistency it is advisable to process all active microwave 

data sets with one algorithm, and all passive microwave data with another algorithm. As a 

result, the combined active (scatterometer) and passive (multi-frequency radiometer) data 

sets may not always be directly comparable. Therefore, as illustrated in Figure 2 the ESA CCI 

SM Production System delivers, besides the fused and thus most complete active + passive 

(COMBINED) ESA CCI SM data set, the two active-only (ACTIVE) and passive-only (PASSIVE) 

ESA CCI SM data sets. It will be thus up to the user to decide, which of these merged soil 

moisture data sets is best suited for his or hers analyses.  

The basic fusion concept developed within WACMOS and CCI still holds today, even though 

noticeable modifications were made over the years. The current status of the merging 

methodology is described in Section 8.  
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6 Description of soil moisture products from active microwave sensors used in 
the ESA CCI Soil Moisture 

Active microwave soil moisture products (see Figure 1 for details) utilized in the generation of 

the CCI Active and Combined datasets are obtained from external operational sources as 

follows: 

• ERS-1 AMI surface soil moisture products have been generated at TU Wien (TU WIEN, 

2013). 

• ERS-2 AMI surface soil moisture data sets stem from reprocessing activities which have 

been carried out within ESA’s SCIRoCCo project (Crapolicchio et al., 2016). 

The ERS-2 data set used in all ESA CCI SM versions is the ERS.SSM.H.TS 25 km soil 

moisture time series product (ESA, 2017). 

• Metop ASCAT surface soil moisture data sets stem from the EUMETSAT Satellite 

Application Facility on Support to Operational Hydrology and Water Management 

(H SAF, http://h-saf.eumetsat.int/). ESA CCI SM v05.2 uses both the H SAF H115 Metop 

ASCAT SSM CDR v5 (H SAF, 2019a) and the H SAF H116 Metop ASCAT SSM CDR v5-

Extension (H SAF, 2019b). Each version of the ESA CCI SM dataset uses the most recent 

and updated Metop ASCAT CDR made available by H SAF. 

7 Methodological description on the retrieval of soil moisture from passive 
microwave sensors 

Contrary to the active microwave soil moisture products, which are obtained from external 

operational sources, soil moisture products from passive microwave sensors are produced 

within the CCI project itself. They are derived from level 1 brightness temperature 

observations using the Land Parameter Retrieval Model (LPRM; van der Schalie et al. 2015).  

7.1 Principles of the Land Parameter Retrieval Model 

Brightness temperatures can be derived from several passive microwave sensors with 

different radiometric characteristics, i.e. Nimbus SMMR, the Tropical Rainfall Measuring 

Mission (TRMM) Microwave Imager (TMI), Microwave Imaging Radiometer with Aperture 

Synthesis (MIRAS) on-board the Soil Moisture and Ocean Salinity (SMOS) mission and the 

Advanced Microwave Scanning Radiometer (AMSR-E) on the AQUA Earth observation satellite 

and the radiometer instrument aboard Soil Moisture Active Passive (SMAP) [RD-5]. The 

observed brightness temperatures are converted to soil moisture values with the Land 

Parameter Retrieval Model (LPRM; van der Schalie et al. 2015).This model is based on a 

microwave radiative transfer model that links soil moisture to the observed brightness 

temperatures. A unique aspect of LPRM is the simultaneous retrieval of vegetation density in 
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combination with soil moisture and surface temperature. A result of this physical 

parameterization is that any differences in frequency and incidence angle that exist among 

different satellite platforms are accounted for within the framework of the radiative transfer 

model based on global constant parameters [RD-7]. This important aspect makes LPRM 

suitable for the development of a long-term consistent soil moisture network within ESA’s CCI 

soil moisture project.  

The different processing steps of LPRM are described in detail in the next section, while 
Figure 3 presents a flowchart of the entire methodology. 

 

Figure 3: Flowchart of the main processes of the Land Parameter Retrieval Model (LPRM). Soil 
moisture is solved when the observed brightness temperature equals the modelled brightness 
temperature as derived by the radiative transfer. 

7.1.1 Methodology 

The thermal radiation in the microwave region is emitted by all natural surfaces, and is a 

function of both the land surface and the atmosphere. According to LPRM the observed 

brightness temperature (Tb) as measured by a space borne radiometer can be described as:  

  Eqn. 7-1 

Where a and v are the atmosphere and vegetation transmissivity respectively, Tb_s is the 

surface brightness temperature, er is the rough surface emissivity, Tb_extra, the extraterrestrial 

brightness temperature  and the  Tb_u and Tb_d are the upwelling and downwelling atmospheric 

ubvaextrabdbprpsbapb TTTeTT _
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brightness temperatures. The subscript p denotes either horizontal (H) or vertical (V) 

polarization.  

 

The vegetation/atmosphere transmissivity is further defined in terms of the optical depth, v/a, 

and satellite incidence angle, u, such that 

 
 Eqn. 7-2 

 

The upwelling brightness temperature from the atmosphere is estimated as (Bevis et al. 
1992): 

 )1(72.02.70,_ aapub TT −+=  
Eqn. 7-3 

 

Were Ta is the atmospheric temperature. In LPRM the downwelling Temperature (Td) is 

assumed to be equal to the upwelling temperature (Tu) and the Extraterrestrial temperature 

is set to 2.7 K (Ulaby et al. 1982). 

The radiation from a land surface (Tbp) is described according to a simple radiative transfer 

(Mo et al. 1982): 

 vvvprvvvprspsb TeTeTT −−−+−−+= )1()1)(1()1()1( ,,,_   
Eqn. 7-4 

Where Ts and Tv are the thermodynamic temperatures of the soil and the vegetation,  is the 

single scattering albedo. 

LPRM uses the model of Wang and Choudhury (1981) to describe the rough surface emissivity 

as: 

 
uh

pspspr erQrQe cos

1,2,1, ))1((1 −−+−=  Eqn. 7-5 

Where Q is the polarization mixing factor and h the roughness height. h is calculated using the 

related parameters h1, 𝐴𝑣  and 𝐵𝑣 , see Eqn. 4-6, to take into account the effects of soil 

moisture (θ, m3 m-3) and vegetation cover ([RD-8], [RD-9]) on the h. 𝑣̅ is an estimate of the 

vegetation density based on 𝑣 retrieved by calculating a primary LPRM run with 𝐴𝑣 and 𝐵𝑣 

set to 1 and 0, with preferably a smoothing of ± 10 days applied to the 𝑣 to remove noise 

from the signal. The minimum h in LPRM is set to h1(𝐵𝑣𝑣̅).        

 ℎ = ℎ1 (𝐴𝑣(1 − 2𝜃) + 𝐵𝑣𝑣̅)     Eqn. 7-6 

 

rs is the surface reflectivity and p1 and p2 are opposite polarization (horizontal or vertical). 

The surface reflectivity are calculated from the Fresnel equations: 

)
cos

exp( /
/

u
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
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Eqn. 7-8 

 

Where rs,H is the horizontal polarized reflectivity, and rs,V is the vertical polarized reflectivity 

and  the complex dielectric constant of the soil surface (=’+”i). The dielectric constant is 

an electrical property of matter and is a measure of the response of a medium to an applied 

electric field. The dielectric constant is a complex number, containing a real (’) and imaginary 

(”) part. The real part determines the propagation characteristics of the energy as it passes 

upward through the soil, while the imaginary part determines the energy losses (Schmugge et 

al. 1986). There is a large contrast in dielectric constant between water and dry soil, and 

several dielectric mixing models have been developed to describe the relationship between 

soil moisture and dielectric constant (Dobson et al. 1985; Mironov et al. 2004; Peplinski et al. 

1995; Wang and Schmugge 1980). In 1998 Owe and Van de Griend compared the Dobson and 

Wang and Schmugge model and they concluded that the Wang and Schmugge model had 

better agreement with the laboratory dielectric constant measurements. Consequently, LPRM 

uses the Wang and Schmugge model, which requires information on the soil porosity (P) and 

wilting point (WP), observation frequency (F), TS, and θ. 

A special characteristic of LPRM is the internal analytical approach to solve for the vegetation 

optical depth, v (Meesters et al. 2005). This unique feature reduces the required vegetation 

parameters to one, the single scattering albedo. LPRM makes use of the Microwave 

Polarization Difference Index (MPDI) to calculate v, The MPDI is defined as:  

 
HsbVsb

HsbVsb

TT

TT
MPDI

,_,_

,_,_

+

−
=  

Eqn. 7-9 

 

When one assumes that τ and ω have minimal polarization dependency at satellite scales, 

then the vegetation optical depth can be described as: 

 )1)(ln(cos 2 +++= aadaduv  Eqn. 
7-10 

 

Where 
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And 

 
)1(2

1





−
=d  

Eqn. 7-7 

 

By using all these equations in combination with the dielectric mixing model, soil moisture 

could be solved in a forward model together with a parameterization of the following 

parameters; atmosphere, soil and vegetation temperature (Ta, Ts, Tc), the optical depth of the 

atmosphere (a), the roughness parameters Q and h, soil wilting point (WP) and porosity (P), 

and the single scattering albedo (). 

The temperatures were estimated using Ka-band (37 GHz) observations according to the 

method of Holmes et al. (2009).  

For the day time (ascending) observations the following equation is used: 

 2.44898.0 37_ += Vbs TT  
Eqn. 7-8 

and for the night time (descending): 

 8.44893.0 37_ += Vbs TT  
Eqn. 7-9 

However, since the current L-band missions do not observe the Earth at the Ka-band 

frequency, they still require modelled TS from land surface models as an input, which is 

something that will be improved in the near future to ensure an entirely model-independent 

soil moisture dataset.    

The soil P and WP were derived from the FAO soil texture map (FAO, 2000), while All the other 

parameters were given a fixed value. Table 2 summarizes the values used for the different 

frequencies.  

 

Parameter Frequency    

 L-band (~1.4 GHz) C-band (~6.9 GHz)  X-band (~10.8 GHz) Ku-band (~19 GHz) 

τa 0 0.01 0.01 0.05 

ω 0.12 0.075 0.075 0.06 

h1 (h for Ku-band) 1.1 to 1.3 1.2 1.2 0.13 

Q 0 0.115 0.127 0.14 

AV 0.7 0.3 0.3 n/a 
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BV 2 2 2 n/a 

Table 2: Values of the different parameters used in LPRM for the different frequencies  

7.1.2 Soil Moisture Uncertainties 

An uncertainty analysis for soil moisture retrievals as derived from passive microwave 

observations according to the Land Parameter Retrieval Model (LPRM; Owe et al. 2008, van 

der Schalie et al. 2015) was presented in Parinussa et al. (2011). Their methodology was based 

on standard error propagation, as can be found in general statistical text books (Bevington 

and Robinson 2002), and provides information about how the uncertainty in each of the input 

parameters propagate to the soil moisture output. 

 
IxUUy =  

Eqn. 
7-10 

where U is the partial derivative matrix. When the errors and the internal correlations 

between the input parameters are known, the accuracy of soil moisture can be calculated. 

LPRM is a zero order radiative transfer based model. Several input parameters are affected by 

instrumentation uncertainties, data acquisition, reduction limitations, methodology and 

environmental factors. Each of these errors will introduce an uncertainty in the final soil 

moisture product as derived from LPRM. In general, we are not able to determine the actual 

error in the result if no considered true data are available for evaluation of the experimental 

model. Therefore, we need to develop a consistent error model for uncertainty 

determination. This error model informs us about the random errors, but not the biases and 

it does not tell us whether the model itself is correct or wrong. So the main task of an 

uncertainty analyses is to quantify the random error in the output of a model under the 

assumption that the model itself is physically correct. 

 Analytical Derivation 

Because of the high computational costs of statistical methods (e.g. Monte Carlo simulations), 

it’s not feasible to apply such techniques on a global and (sub-) daily scale. A possible solution 

is proposed in the following part, where the radiative transfer equation was rewritten and an 

analytical solution of the quantitative uncertainty for passive microwave remote sensing of 

soil moisture product was derived. 

The basis of the analytical solution to calculate the error in the soil moisture product lies in 

the use of the most basic error propagation methodology presented in most statistical 

textbooks; for example the function . 

 
 

Eqn. 
7-11 
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The methodology is adapted here to determine the variance  of the dielectric constant (k), 

using the variances of several input parameters. After the determination of the variance in the 

dielectric constant, a dielectric mixing model (Wang and Schmugge 1980) was used to 

calculate the uncertainty in soil moisture. The challenge in using the basic error propagation 

methodology is to define the partial derivatives. 

To define the partial derivatives, we used the Jacobian matrix. The Jacobian matrix is a matrix 

containing the first order partial derivatives of the radiative transfer equation with respect to 

each variable. In our case the Jacobian matrix (J) can be described as 

 

 

Eqn. 
7-12 

 

After applying the land surface temperature assumption, one is able to rewrite the radiative 

transfer equation (Parinussa et al. 2011) after putting  outside brackets, for convenience 

we drop subscript ‘P’ for polarization. 

  Eqn. 
7-13 

 

This can be rewritten to  

  Eqn. 
7-14 

 

For convenience we define the expressions  Eqn. 7-15 and  Eqn. 7-16 to rewrite 

equation Eqn. 7-12, resulting in Eqn. 7-13 

  Eqn. 
7-15 

 

  Eqn. 
7-16 

 

  Eqn. 
7-17 
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The rough surface emissivity  follows from Eqn. 7-17, wherein the horizontal (H) and 

vertical (V) polarization are reintroduced. This equation was written to calculate the rough 

surface emissivity in horizontal polarization. To calculate the rough surface emissivity at 

vertical polarization the (H) and (V) sign for polarization should be swapped. Q is the 

roughness parameter known as the cross polarization, h is the roughness and k refers to the 

dielectric constant. 

  Eqn. 
7-18 

 

where the last term refers to 

  Eqn. 
7-19 

 

The smooth surface emissivity was calculated using equation 7.22 and 7.23, for convenience 

we drop subscript ‘s’ from smooth emissivity. 

 
 

Eqn. 
7-20 

 

 
 

Eqn. 
7-21 

 

where the  term refers to 

  Eqn. 
7-22 

 

The following derivatives will be needed 

 
 

Eqn. 
7-23 
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From these derivations it follows that the Jacobian matrix Eqn. 7-12 can be calculated 

analytically 

 
 

Eqn. 
7-27 
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7-28 
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7-29 
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7-35 

 

  Eqn. 
7-36 

 

From LPRM, it follows that variations in the observed parameters , ω and 

are related to variations in the unknown model parameters , ω and . Combining this 

with the inverse Jacobian matrix results in the following expression: 
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Eqn. 
7-37 

 

The second line in this equation holds the result:  

 

 

Eqn. 
7-38 

Herein, the correlation between the errors in  and  is expressed in r. 

Figure 4 presents the global average error for AMSR-E C-band observation over 2008 resulting 

from the analytical error propagation analysis. It clearly shows standard deviation values 

below 0.06 m3m-3 for all the dry and semi-arid regions and higher value up to 0.1 m3 m-3 and 

beyond for the more densely vegetated regions. 

 

Figure 4: Average estimated standard deviation of AMSR-E C-band soil moisture for 2008 as 
derived from the analytical error propagation analysis proposed by Parinussa et al., (2011). 
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The known limitations in deriving soil moisture from passive microwave observations are 

listed and described in detail in this section. These issues do not only apply to the current CCI 

soil moisture dataset release (v05.2) but also to soil moisture retrievals from passive 

microwave observations in general.  
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7.1.4 Vegetation  

Vegetation affects the microwave emission, and under a sufficiently dense canopy the emitted 

soil radiation will become completely masked by the overlaying vegetation. The 

simultaneously derived vegetation optical depth can be used to detect areas with excessive 

vegetation, of which the boundary varies with observation frequency. Figure 5 gives an 

example of the relationship between the analytical error estimate in soil moisture as described 

in the previous section and vegetation optical depth. This figure shows larger error values in 

the retrieved soil moisture product for higher frequencies at similar vegetation optical depth 

values. For example, for a specific agricultural crop (VOD=0.5), the error estimate for the soil 

moisture retrieval in the C-band is around 0.07 m3·m−3; in the X-band, this is around 0.11 

m3·m−3, and in the Ku-band, this is around 0.16 m3·m−3. All relevant frequency bands show an 

increasing error with increasing vegetation optical depth. This is consistent with theoretical 

predictions, which indicate that, as the vegetation biomass increases, the observed soil 

emission decreases, and therefore, the soil moisture information contained in the microwave 

signal decreases (Owe et al., 2001). In addition, retrievals from the higher frequency 

observations (i.e., X- and Ku-bands) show adverse influence by a much thinner vegetation 

cover. Soil Moisture retrievals with a soil moisture error estimates beyond 0.2 m3m-3 are 

considered to be unreliable and are masked out 

 

 

Figure 5: Error of soil moisture as related to the vegetation optical depth for 3 different frequency bands 
(from Parinussa et al., 2011). 
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For the new L-band based retrievals from SMOS, the vegetation influence is less as compared 

to the C-, X- and Ku-band retrievals, which can be seen from the Rvalue and Triple Collocation 

Analysis (TCA) results in Figure 6. In Figure 6, the SMOS LPRM and AMSR-E LPRM (based on C-

band) are included and shows more stable results over dense vegetation, i.e. NDVI values of 

over 0.45. A complete analysis on the error for L-band soil moisture, comparable to the results 

from Figure 5, are planned in the near future.     

 

 

 

Figure 6: Triple collocation analysis (TCA: top) and Rvalue results (bottom) for several soil moisture 
datasets, including SMOS LPRM and AMSR-E LPRM, for changing vegetation density (NDVI). Based on 
(van der Schalie et al. 2018). 



 

Algorithm Theoretical Baseline 

Document (ATBD) 

Product Version v05.2 

Doc Issue 1.0 

Date 29-05-2020 

 

  26  

7.1.5 Frozen surfaces and snow 

Under frozen surface conditions the dielectric properties of the water changes dramatically 

and therefore all pixels where the surface temperature is observed to be at or below 273 K 

are assigned with an appropriate data flag, this was determined using the method of Holmes 

et al. (2009).  

7.1.6 Water bodies 

Water bodies within the satellite footprint can strongly affect the observed brightness 

temperature due to the high dielectric properties of water. Especially when the size of a water 

body changes over time they can dominate the signal. LPRM uses a 5 % water body threshold 

based on MODIS observations and pixels with more than 5 % surface water are masked (Owe 

et al. 2008). 

7.1.7 Rainfall 

Rainstorms during the satellite overpass affect the brightness temperature observation, and 

are therefore flagged in LPRM. The flagging system for active rain is based on the rainfall index 

of Seto et al., 2005. This method makes use of the vertical polarized 36.5 GHz and 19 GHz 

observations to detect a rain event. Index values of 5 and beyond are used to identify an active 

rainstorm.  Soil moisture retrievals with these index values are flagged.   

7.1.8 Radio Frequency interference 

Natural emission in several low frequency bands are affected by artificial sources, so called 

Radio Frequency Interference (RFI). As a diagnostic for possible errors an RFI index is 

calculated according to De Nijs et al. (2015). Most passive microwave sensors that are used 

for soil moisture retrieval observe in several frequencies. This allows LPRM to switch to higher 

frequencies in areas affected by RFI. The new methodology that is now used for RFI detection 

uses the estimation of the standard error between two different frequencies. It uses both the 

correlation coefficient between two observations and the individual standard deviation to 

determine the standard error in Kelvin. A threshold value of 3 Kelvin is used to detect RFI. This 

method does not produce false positives in extreme environments and is more sensitive to 

weak RFI signals in relation to the traditional methods (e.g. Li et al., 2004).  

As the currently integrated SMOS mission does not have multiple frequencies to apply this 

method, here we base the filtering on the RFI probability information that is supplied by in the 

SMOS Level 3 data. 
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8 Methodological description on the merging process of soil moisture data sets 

8.1 Principle of the merging process 

The generation of the long-term (40 years) soil moisture data sets involve three steps (Figure 

7):  

(1) merging the original passive microwave soil moisture products into one product,  

(2) merging the original active microwave soil moisture products into one product, and  

(3) merging all original active and passive microwave soil moisture products into one 

dataset.  

The input datasets considered for the generating and validating the merged soil moisture 

product v05.2 are: 

• Scatterometer-based soil moisture products 

o ERS-1 AMI surface soil moisture products generated at TU Wien (TU WIEN, 

2013). 

o ERS-2 AMI WS soil moisture from ESA (ESA, 2017). 

o Metop-A ASCAT, Metop-B ASCAT soil moisture from H SAF 115 (H SAF 2019a) 

and H SAF 116 (H SAF 2019b).  

o Time span: 1991 – 2019-12-31 

• Radiometer-based soil moisture products  

o SMMR, SSM/I, TRMM, AMSR-E, AMSR2, Windsat, SMOS and SMAP produced 

within ESA CCI. 

o Retrieval method: VUA-NASA LPRM v6 model inversion package 

o Time span: 1978 – 2019-12-31 

• Modelled 0 – 10 cm soil moisture from the Noah land surface model of the Global Land 

Data Assimilation System (GLDAS; (Rodell et al. 2004)). 

o v2.1: Time span: 2000 – 2019-12-31 (0.25 degree resolution) 

o v2.0: Time span: 1948 – 2000 (0.25 degree resolution) 

• In situ measurements: 

o Various networks: ESA/TU Wien International Soil Moisture Network 

(http://ismn.geo.tuwien.ac.at) 

o Time period: variable depending on station 

o Probes and depths: variable depending on station 

 

The homogenised and merged products represent surface soil moisture with a global coverage 

and a spatial resolution of 0.25°. The time period spans the entire period covered by the 

individual sensors, i.e. 1978 – 2019-12-31, while measurements are provided at a 1-day 

sampling. 

http://ismn.geo.tuwien.ac.at/
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Figure 7: Overview of the three-step blending approach from the level 2l products to the final blended 
active & passive microwave soil moisture product for ESA CCI SM v05.2. (Adapted from Liu et al. 
2012). 

8.2 Overview of processing steps 

The level 2 surface soil moisture products derived from the active and passive remotely sensed 

data undergo a number of processing steps in the merging procedure (see Figure 8 for an 

overview): 

1. Spatial Resampling 

2. Temporal Resampling (including flagging of observations) 

3. Rescaling passive and active level 2 observations into radiometer and scatterometer 

climatologies (for the ACTIVE and PASSIVE product), and separately rescaling all level 

2 observations into a common climatology (for the COMBINED product) 

4. Triple collocation analysis (TCA)-based error characterisation of all rescaled level 2 

products 

5. Polynomial regression between VOD and error estimates  

6. Derivation of error estimates from the VOD regression in regions where they were not 

available after (4), i.e., where TCA is deemed unreliable 

7. Merging rescaled passive and active time series into the PASSIVE, ACTIVE, and 

COMBINED product, respectively. 
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Figure 8: Overview of the processing steps in the ESA CCI SM product generation (vv05.2): The merging  
of two or more data sets is done by weighted averaging and involves overlapping time periods, 
whereas the process of joining data sets only concatenates two or more data sets between the 
predefined time periods. The join process is performed on datasets of each lines and on datasets 
separated by comma within the rectangular process symbol. *The [SSM/I, TMI] period is specified not 
only by the temporal, but also by the spatial latitudinal coverage (see Figure 14). 

8.3 Description of Algorithms 

In this section the algorithms of the scaling and merging approach are described. Notice that 

several algorithms, e.g. rescaling, are used in various steps of the process, but will be described 

only once. 
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8.3.1 Resampling 

The sensors used for the different merged products have different technical specifications 

(Table 3). Obvious are the differences in spatial resolution and crossing times. Both elements 

need to be brought into a common reference before the actual merging can take place. 

 Spatial Resampling 

The merged products are provided on a regular grid with a spatial resolution of 0.25° in both 

latitude and longitude extension. This is a trade-off between the higher resolution 

scatterometer data and the generally coarser passive microwave observations without leading 

to any undersampling. The resolution of the products is often adopted by land surface models. 

Nearest neighbour resampling is performed on the radiometer input data sets to bring them 

into the common regular grid. Following this resampling technique each grid point in the 

reference (regular grid) data set is assigned to the value of the closest grid point in the input 

dataset. In general, the nearest neighbour resampling algorithm can be applied to data set 

with regular degree grid. For the active microwave data sets, where equidistant grid points 

are defined by the geo-reference location of the observation, the hamming window function 

is used to resample the input data to a 0.25° regular grid. The search radius is a function of 

latitude of the observation location, as the distance between two regular grid points reduces 

as the location tends towards the poles. In contrast, the active microwave data set uses the 

DGG, where the distance between every two points is the same. This main difference between 

the DGG (active) and the targeted regular degree grid is rectified by using a hamming window 

with search radius dependent on the latitude for the spatial resampling of the active 

microwave data. 
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 Temporal Resampling 

The temporal sampling of the merged product is 1 day. The reference time for the merged 

dataset is set at 0:00 UTC. For each day starting from the time frame center at 0:00 UTC 

observations within ±12 hours are considered. The elaborated temporal resampling strategy 

firstly searches for the valid observation that is closest to the reference time. In case there are 

only invalid observations, which are flagged other than “0” (zero), within a certain time frame, 

the closest measurement among these invalid observations is selected. In the event that there 

are no measurements available at all within a time frame, no action is taken. This strategy 

results in data gaps when no observations within ±12 hours from the reference time are 

available. For the modelled soil moisture datasets, no resampling is required as they already 

include the reference time stamp of 0:00 UTC. The LPRM (passive) soil moisture estimates 

based on night-time (often the descending mode) observations are more reliable than those 

obtained during the day (often the ascending mode). This is mainly caused by the complexity 

to derive accurate estimates of the effective surface temperature during the day. For this 

reason, only night-time soil moisture observations from radiometers are used for the merged 

product. 

During the temporal resampling stage, flagging is applied to the datasets where relevant 

information is available. For the LPRM products, the data is flagged for high VOD using the 

VOD fields provided in the data product. At vv05.2 of the ESA CCI SM, LPRM v6 is used for all 

passive sensors and the thresholds above which VOD is considered ‘high’ are set based on the 

saturation point in the VOD signal for each sensor and band. This is the point at which the VOD 

value is considered to equal 100% vegetation signal. 

8.3.2 Rescaling 

Due to different observation frequencies, observation principles, and retrieval techniques, the 

contributing soil moisture datasets are available in different observation spaces. Therefore, 

before merging can take place at either level, the datasets need to be rescaled into a common 

climatology. All soil moisture observations of each product are rescaled to the climatology of 

a different reference, namely AMSRE, ASCAT or GLDAS for the passive, active or combined 

product respectively. 

Scaling is performed using cumulative distribution function (CDF) matching which is a well-

established method for calibrating datasets with deviating climatologies (Drusch et al. 2005; 

Liu et al. 2007; Liu et al. 2011; Reichle et al. 2004, Moesinger et al. 2020). CDF-matching is 

applied for each grid point individually and based on piece-wise linear matching. This variation 

of the CDF-matching technique proved to be robust also for shorter time periods (Liu et al. 

2011). The matching is shown by means of an example for a grid point centred at 41.375oN, 

5.375oW. Figure 9 shows for this location the time series of soil moisture estimates from 
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GLDAS-Noah, AMSR-E and ASCAT, respectively. CDF-matching for these time series is 

performed in the following way: 

1. For the time-collocated data points CDFs are computed (Figure 9: a-c). In the passive 

product AMSR2 is scaled using the parameters derived from the last 3 years of AMSRE 

and first 3 years of AMSR2. SMAP is then scaled to the scaled AMSR2. 

2. If more than 400 time-collocated data points exist,  for each CDF curve the 0, 5, 10, 20, 

30, 40, 50, 60, 70, 80, 90, 95 and 100 percentiles are identified. Else evenly spaced 

percentile bins are generated such that each of them contains at least 20 observations.  

3. Use the npercentiles of the CDF curves to define n-1 segments. The CDF curves of these 

circled values are shown in Figure 10: a, b and c. 

4. The n percentile values from the AMSR-E and ASCAT CDF curves are plotted against 

those of Noah (Figure 10: d and e) and scaling linear equations (e.g., slope and 

intercept) between two consecutive percentiles are computed. 

𝑠𝑙𝑜𝑝𝑒𝑖 =
𝑝𝑟𝑒𝑓𝑖+1 − 𝑝𝑟𝑒𝑓𝑖

𝑝𝑠𝑟𝑐𝑖+1 − 𝑝𝑠𝑟𝑐𝑖
 

 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖 = 𝑝𝑟𝑒𝑓𝑖 − (𝑝𝑠𝑟𝑐𝑖 ∗ 𝑠𝑙𝑜𝑝𝑒𝑖) 

where 𝑖=1..12, is the number of the segments, and 𝑝𝑟𝑒𝑓 is the percentile of the 

GLDAS-Noah data (reference), and 𝑝𝑠𝑟𝑐 is the percentile of either AMSR-E or ASCAT 

data (source) respectively. 

5. An exception are the first and last segment. Instead of using the first and last 

percentile for interpolation, the slope is derived using least squares regression. This is 

more robust to outliers. 

6. The obtained linear equations are used to scale all observations of the target data set 

(i.e., also the time steps that do not have a corresponding observation in the 

reference data set) to the climatology of the reference data set (Figure 10: f). 

𝑠𝑚𝑟 = 𝑠𝑙𝑜𝑝𝑒𝑖 ∗ 𝑠𝑚 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖 

where 𝑠𝑚𝑟 is the rescaled soil moisture and 𝑠𝑚 is the original soil moisture value. 

𝑠𝑙𝑜𝑝𝑒𝑖 and 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖 are chosen depending on the 𝑠𝑚 value and its corresponding 

𝑖-percentile. 

The AMSR-E and ASCAT values outside of the range of CDF curves can also be 

properly rescaled, using the linear equation of the closest value. 
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Figure 9: Time series of surface soil moisture estimates from (a) GLDAS-Noah, (b) AMSR-E and (c) 
ASCAT for a grid cell (centered at 41.375° N, 5.375° W) in 2007. Circles represent days when Noah, 
AMSR-E and ASCAT all have valid estimates (Figure taken from Liu et al. 2011). 
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Figure 10: Example illustrating how the cumulative distribution function (CDF) matching approach 
was implemented to rescale original AMSR-E and ASCAT against Noah soil moisture product in this 
study. (a, b, c) CDF curves of AMSR-E, GLDAS-noah and ASCAT soil moisture estimates for the grid 
cell shown in Figure 8 (d) Linear regression lines of AMSR-E against Noah for 12 segments. (e) Same 
as (d), but for ASCAT and Noah. (f) CDF curves of GLDAS-Noah (black), rescaled AMSR-E (blue) and 
rescaled ASCAT (red) soil moisture products. (Figure taken from Liu et al. 2011) 

8.3.3 Error characterization 

Errors in the individual active and passive products are characterized by means of triple 

collocation analysis. These errors are used both for estimating the merging parameters and 

for characterizing the errors of the merged product (see section 8.3.4). 
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 Triple collocation analysis 

Triple collocation analysis is a statistical tool that allows estimating the individual random 

error variances of three data sets without assuming any of them acting as supposedly accurate 

reference (Gruber et al. 2016). This method requires the errors of the three data sets to be 

uncorrelated, therefore triplets always comprise of (i) an active data set, (ii) a passive data set, 

and (iii) the GLDAS-Noah land surface model, which are commonly assumed to fulfil this 

requirement (Dorigo et al. 2010). Error variance estimates are obtained as: 

 

 

𝜎𝜀𝑎
2 = 𝜎𝑎

2 −
𝜎𝑎𝑝𝜎𝑎𝑚

𝜎𝑝𝑚
 

𝜎𝜀𝑝
2 = 𝜎𝑝

2 −
𝜎𝑝𝑎𝜎𝑝𝑚

𝜎𝑎𝑚
 

Eqn. 8-1 

 

where 𝜎𝜀
2 denotes the error variance; 𝜎2and 𝜎 denote the variances and covariances of the 

data sets; and the superscripts denote the active (a), the passive (p), and the modelled (m) 

data sets, respectively. For a detailed derivation see (Gruber et al. 2016). Notice that these 

error estimates represent the average random error variance of the entire considered time 

period, which is commonly assumed to be stationary. Furthermore, the soil moisture 

uncertainties of the three products (ACTIVE, PASSIVE, and COMBINED) are determined by the 

above equations. 

8.3.4 Error gap-filling 

TCA does not provide reliable error estimates in all regions, mainly if there is no significant 

correlation between all members of the triplet, which often happens for example in high-

latitude areas or in desert areas. TCA error estimates are therefore disregarded in case of 

insignificant Pearson correlation (p-value < 0.05) between any of the data sets. In these areas, 

error estimates are derived from the mean VOD (derived from AMSR-E in the entire mission 

period) at that particular location: 

  

 𝑆𝑁𝑅𝑥 = ∑ 𝑎𝑖𝑉𝑂𝐷𝑥
𝑖

𝑁

{𝑖=0}

  
Eqn. 8-2 

Where the subscript denotes the spatial location; and the parameters 𝑎𝑖 are derived from a 

global polynomial regression between VOD and TCA based error estimates at locations where 

they are considered reliable (i.e., all data sets are significantly correlated). For TMI and 
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WINDSAT third order polynoms (N=3) are used and for all other sensors second order 

polynoms (N=2) are used, which was empirically found to provide the best regression results. 

8.3.5 Merging 

The merging procedure consists of (1) merging the original passive microwave product into 

the PASSIVE product, (2) merging the original active microwave products into the ACTIVE 

product, and (3) merging the original active and passive microwave products into the 

COMBINED product. The merging is performed by means of a weighted average which takes 

into account the error properties of the individual data sets that are being merged. Such 

weighted average is calculated as 

 Θ𝑚 = ∑ 𝑤𝑖 ⋅ Θ𝑖
𝑁
𝑖=1    Eqn. 8-2 

where Θ𝑚 denotes the merged soil moisture product; Θi are the soil moisture products that 

are being merged, and wi are the merging weights. 

 Weight estimation 

Per definition, the optimal weights for a weighted average are determined by the error 

variances of the input data sets and write as follows: 

 

 𝑤𝑖 =
𝜎𝜀𝑖

−2

∑ 𝜎𝜀𝑗
−2𝑁

𝑗=1

 
Eqn. 8-3 

where the superscripts denote the respective data sets; 𝑖 is the data set for which the weight 

is being calculated; and 𝑁 is the total number of data sets which are being averaged. The 

required error variances are calculated using Eqn. 8-3. Notice that error covariance terms are 

neglected as they cannot be estimated reliably.  

It should be mentioned that the above definition of the weights based on error variances 

assumes all data sets to be in the same data space. However, data sets usually vary in their 

signal variability due to algorithmic differences, varying signal frequencies, etc. Therefore, 

conceptually, it is more appropriate to define relative weights in terms of the data sets SNR 

properties rather than of their error variance (Gruber et al. 2017).  Nevertheless, the actual 

merging requires a harmonization of the data sets into a common data space, which in the 

case of the CCI SM data set is done using the CDF matching approach described in Section 

8.3.2. Therefore, the calculation of the weights using Eqn. 8-3 suffices, keeping in mind that 

they represent rescaled error variances of rescaled data sets. 
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 Merging passive microwave products 

Differences in sensor specifications, particularly in microwave frequency and spatial 

resolution, result in different absolute soil moisture values from SMMR, SSM/I, TMI and 

AMSR-E. Even though SMMR and AMSR-E have a similar frequency (i.e., C-band), their 

absolute values are different. Therefore, a Spearman and Pearson correlation analysis was 

performed between the different soil moisture products to identify differences and 

correspondences between the data sets (Liu et al. 2012). Based on this analysis, the AMSR-E 

soil moisture retrievals were identified as more accurate than the other passive products due 

to the relatively low microwave frequency and high temporal and spatial resolution of the 

sensor. Thus, soil moisture retrievals from AMSR-E are selected as the reference to which soil 

moisture retrievals from SMMR, SSM/I, TMI, WindSat, SMOS and AMSR2 are rescaled and 

merged on a pixel basis according to the following steps. SMAP is later CDF-matched to the 

rescaled AMSR2 data. 

Merging SSM/I and TMI with AMSR-E 

1. Rescale original TMI against the AMSR-E reference using the piece-wise linear 

cumulative distribution function (CDF) matching technique (Section 8.3.2) based on 

their overlapping period (Figure 11a), 

2. Decompose SSM/I and AMSR-E time series into their own seasonality and anomalies 

(Figure 11b). This is done for their overlapping period from July 2002 through 

December 2007. The seasonality for each sensor was calculated by taking the average 

of the same day of the year for their overlapping period. The seasonality ( SM ) is one 

time series of 366 values, one value for each day of the year (DOY):
  

 

 NSMSM
YR

YR

DOYDOY 







= 

=

2007

2002

 
Eqn. 8-4 

where YR represents the year 2002 through 2007; N represents the number of valid 

soil moisture retrievals. The value of 366SM is only taken from the year 2004 as that is 

the only leap year (i.e., 366 days) between 2002 and 2007. The anomalies (ANO) over 

their individual entire periods were obtained by removing the sensor’s seasonality 

SM from the original (ORI) time series: 

 DOY
YR

DOY

YR

DOY SMORIANO −=  
Eqn. 8-5 

 

where YR represents the year 1987 through 2007 for SSM/I and 2002 through October 

2011 for AMSR-E. 
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3. Rescale “anomalies of SSM/I” against “anomalies of AMSR-E” using the piece-wise 

linear CDF matching technique (Figure 11c).  

4. Add the AMSR-E seasonality to the “rescaled SSM/I anomalies” (from Step 3) and 

obtain reconstructed SSM/I (Figure 11d). 

5. Merge the reconstructed SSM/I, rescaled TMI, and original AMSR-E to obtain the 

merged SSM/I-TMI-AMSR-E dataset (Figure 11e). The lower the measurement 

frequency, the more accurate soil moisture retrievals can be expected. Therefore 

AMSR-E is used for July 2002 – December 2008 and the rescaled TMI is used for January 

1998 – June 2002 between N40o and S40o. Otherwise the reconstructed SSM/I is used. 

Merging SMMR with SSM/I-TMI-AMSR-E 

The overlapping period between SMMR and other sensors is too short to perform the rescaling 

as conducted on retrievals from other sensors. In order to incorporate SMMR (1979 – 1987) 

soil moisture retrievals into the merged product, we assumed that the dynamic range of SMMR 

retrievals is the same as the range of merged SSM/I-TMI-AMSR-E dataset. Following this 

assumption, we produced the rescaled SMMR (Nov 1978 to July 1987) by matching the CDF 

curve of SMMR against that of the merged SSM/I–TMI–AMSR-E dataset for each grid point. 

The CDF curve is calculated based on all observation of both data sets. Together with the 

merged SSM/I-TMI-AMSR-E dataset, we obtained the merged SMMR-SSM/I-TMI-AMSR-E soil 

moisture product covering the period Nov 1978 – Sep 2007 (Figure 11). It should be 

emphasized that the CDF matching process changes the absolute values of SMMR, SSM/I and 

TMI products, but does not change the relative dynamics of the original retrievals, which is 

demonstrated in Liu et al. (2011). 

 

Table 4 Used passive sensors in the PASSIVE product 

Time Period Passive Sensors (mode: ascending (a) or descending (d)) 

01/11/1978 – 31/07/1987 SMMR (d) 

01/09/1987 – 31/12/1997 SSM/I (a) 

01/01/1998 – 18/06/2002 SSM/I (a) [90N – 40N], [90S – 40S], TMI (a/d) [40N – 40S] 

19/07/2002 – 30/09/2007 AMSR-E (d) 

01/10/2007 – 14/01/2010 AMSR-E (d), Windsat (d) 

15/01/2010 – 04/10/2011 AMSR-E (d), WindSat (d), SMOS (a) 

05/10/2011 – 30/06/2012 WindSat (d), SMOS (a) 

01/07/2012 – 2015/03/30 SMOS (a), AMSR2 (d) 
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2015/03/31 - 2019-12-31 SMOS (a), AMSR2 (d), SMAP (d) 

 

Merging SMOS, WindSat, SMAP, and AMSR2 with SMMR, SSM/I, TMI, AMSR-E 

WindSat data (1 October 2007 to 31 June 2012) bridge the operational time gap between 

AMSR-E, which failed to deliver data from 4 October 2011 onwards, and AMSR2, for which 

data are available from 02 July 2012 onward. SMOS data in ascending satellite mode are 

available from 1 July 2010 onward. The CDFs between WindSat and AMSR-E, and SMOS and 

AMSR-E are calculated based on their respective overlapping time periods with AMSR-E. 

AMSR2 and SMAP do have no temporal overlap with AMSR-E and can therefore not be 

rescaled directly to it. Instead, the first 3 years of AMSR2 are scaled to the last 3 years of 

AMSRE. SMAP is the scaled to the rescaled AMSR2. 

Within the time period from 1 October 2007 to May 2015 there are various combinations of 

data overlap Figure 8, Table 4, and Figure 14b illustrate these overlaps. The data periods 

AMSR-E & WindSat (1 October 2007 to 30 June 2010), AMSR-E & WindSat & SMOS (1 July 2010 

to 3 October 2011), WindSat & SMOS (4 October 2011 to 30 June 2012), are then extended 

with AMSR2 & SMOS (1 July 2012 to 31 December 2018). The resulting product hereafter is 

referred to as the PASSIVE product. The following paragraph describes the in more detail the 

process of merging these datasets, when more than one sensor is used. 
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Figure 11: Example illustrating how (a) the TMI was rescaled against AMSR-E, (b-e) the SSM/I 
anomalies were rescaled against AMSRE-E anomalies, reconstructed and merged with rescaled TMI 
and AMSR-E, and (e) the SMMR was rescaled and merged with the others. The grid cell is centred 
at 13.875°N, 5.875°W (Image courtesy Liu et al. 2012). 

 

Merging in periods where more than one sensor is used 

As it can be seen from Figure 14 there are periods where more than one passive dataset is 

available, i.e., AMSR-E & WindSat. In these periods, a weighted average of the respective 

sensors is used to construct the merged PASSIVE product (see Eqn. 8-5). Error estimates are 

obtained from triple collocation analysis (see section 8.3.3) using ASCAT/ERS and GLDAS-Noah 

data to complement the respective triplets. 
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Notice that soil moisture estimates of the various sensors are not available every day, hence 

there are certain dates during the overlapping periods on which not all data sets provide a 

valid estimate to calculate the weighted average.  In such cases, the weights are re-distributed 

amongst the remaining data sets, again based on their relative SNR properties.  

However, this re-distribution of weights could significantly worsen data quality on these days 

because of the increasing contribution of measurements which initially would have had a low 

weight due to their (relatively) low SNR. Therefore, soil moisture estimates in the merged 

product on days where not all data sets provide valid estimates are set to NaN values (Not a 

Number), if the sum of the initial weight of the remaining data sets is lower than 1/(2N) where 

N is the total number of data sets that are potentially available for the corresponding merging 

period. This threshold has been derived empirically to provide a good trade-off between 

temporal measurement density and average data quality.  

 Merging active microwave products 

Different sensor specifications between ERS1/2 and ERS2 (e.g. spatial resolution) need to be 

compensated by using the same rescaling techniques performed on the radiometer data sets. 

The CDF curves for ERS2 are calculated based on the overlap with ERS1/2. Rescaling ERS2 

against ERS1/2 and then merging them generates the AMI-WS active data set, which is 

subsequently scaled and merged to the Metop-A ASCAT data (Figure 8). 

Table 5 and Figure 14a show the sensors used in the ACTIVE product for the individual  time 

periods. 

 

Table 5 Used active sensors in the ACTIVE product 

Time Periods Active Sensors 

05/08/1991 – 19/05/1997 ERS1/2 (AMI-WS) 

20/05/1997 – 17/02/2003 ERS2 (AMI-WS) 

18/02/2003 – 31/12/2006 ERS1/2 (AMI-WS) 

01/01/2007 – 05/11/2012 Metop-A ASCAT 

06/11/2012 – 2019-12-31 Metop-A ASCAT, Metop-B ASCAT 

 

An example of a soil moisture time series from AMI-WS ERS1/2 and Metop-A ASCAT for the 

grid point centred at 13.875°N, 5.875°W (Niger River basin in southern Mali) is shown in Figure 

12, where the AMI-WS ERS1/2 is labelled as SCAT to denote its predecessor role to ASCAT. The 

AMI-WS ERS1/2 and Metop-A ASCAT soil moisture variations are scaled between the lowest 

(0%) and highest (100%) values over their individual operational period. The limited overlap 
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in time (i.e., a few months) and space (i.e. only Europe, Northern America and Northern Africa) 

rules out the global adjustment method based on the information of their overlapping period, 

such as applied between TMI and AMSR-E. Figure 12 also shows the evident AMI-WS ERS1/2 

data gap from 2001 to 2003.  

As retrievals from Metop-A ASCAT and AMI-WS capture similar seasonal cycles (Liu et al. 

2011), we assume that their dynamic ranges are identical and use for each grid point the CDF 

curves of both datasets to rescale AMI-WS to Metop-A ASCAT before merging them (Figure 

12b). Metop-A ASCAT data from 1 January 2007 to 5 November 2012 are joined with AMI-WS 

data from 5 August 1991 to 31 December 2006. In the time period from 6 November 2012 to 

2019-12-31 Metop-A ASCAT and Metop-B ASCAT data are available. These two datasets are 

merged by applying the arithmetic average for locations, where both observations are 

available, otherwise either one of the two is then used. Joining AMI-WS & Metop-A ASCAT 

from 5 August 1991 to 5 November 2012 with Metop-A ASCAT & Metop-B ASCAT from 6 

November 2012 to 2019-12-31 generates the ACTIVE product (Figure 8 and Figure 14a). 

 

Figure 12: Example illustrating fusion of ERS1/2 (SCAT) with ASCAT. Note the data gap from 2001 – 
2003, which will be filled by ERS2 data. The grid point is centred at 13.875°N, 5.875°W (Image 
courtesy Liu et al. 2012) 
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 Merging passive and active microwave products 

  

 

Figure 13: Rescaling the merged passive and active microwave product against the GLDAS-1-Noah 
simulation. (a) GLDAS-1-Noah soil moisture; (b) merged passive microwave product and one 
rescaled against GLDAS-1-Noah; (c) same as (b) but for active microwave product. The grid cell is 
centred at 13,875°N, 5.875°W (Image courtesy Liu et al. 2012). Since CCI SM v04.4 released in 
November 2018 GLDAS 2.1 is used for rescaling all products. 

 

For generating the combined product, climatologies of all passive and active level 2 data sets 

are first harmonized by rescaling against GLDAS-2.1 (see Sec. 6.2). Considering the covering 

period of each microwave instrument we divided the entire time period (1978 – 2019-12-31) 

into eleven segments. Table 6 list these time periods, and Figure 14c illustrates also the spatial 

sensor usage at global scale. 

 

 

 

 



 

Algorithm Theoretical Baseline 

Document (ATBD) 

Product Version v05.2 

Doc Issue 1.0 

Date 29-05-2020 

 

  45  

 

Table 6 Used sensors in individual time periods. Note that Metop-B ASCAT data are available from 06 
November 2012 onwards. 

Time Periods Active Sensors Passive Sensors 

01/11/1978 – 31/08/1987 N/A SMMR 

01/09/1987 – 04/08/1991 N/A SSM/I 

05/08/1991 – 31/12/1997 AMI-WS SSM/I 

01/01/1998 – 18/06/2002 AMI-WS SSM/I [90N-40N], [90S-40S], TMI 

[40N-40S] 

19/06/2002 – 31/12/2006 AMI-WS AMSR-E 

01/01/2007 – 30/09/2007 Metop-A ASCAT AMSR-E 

01/10/2007 – 30/06/2010 Metop-A ASCAT AMSR-E, WindSat 

15/07/2010 – 04/10/2011 Metop-A ASCAT AMSR-E, WindSat, SMOS 

05/10/2011 – 30/06/2012 Metop-A ASCAT WindSat, SMOS 

01/07/2012 – 30/03/2015 Metop-A ASCAT, Metop-B 

ASCAT 

AMSR2, SMOS 

31/03/2015 - 2019-12-31 Metop-A ASCAT, Metop-B 

ASCAT 

AMSR2, SMOS, SMAP 
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Figure 14: Spatial and temporal coverage of soil moisture products from different sensors in the CCI 
SM vv05.2 COMBINED product. Figure adapted from (Dorigo et al. 2017). 

 

Similar to the generation of the PASSIVE product, relative weights at each time step are 

derived from the TCA- or VOD-regression based error estimates for each individual sensor. 

Depending on how many sensors are available within a particular period, a (1/2N) threshold 

for the minimum weight of a particular sensor was applied if not all sensors provide a soil 

moisture estimate at that day. 
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8.4 Known Limitations 

8.4.1 Passive merged CCI product 

 Using night-time observations only 

For the current version of the merged passive product only descending overpasses, 

corresponding to night-time / early morning observations, were considered. This is because 

near surface land surface temperature gradients are regarded to be reduced at night leading 

to more robust retrievals (Owe et al. 2008). However, recent studies (Brocca et al. 2011) 

suggest that for specific land cover types day-time observations may provide more robust 

retrievals than night-time observations, although the exact causes are still unknown. If day-

time observations could be introduced to the blended product, this would significantly 

increase the observation density.  

8.4.2 Active Product 

 Intercalibration of ERS and ASCAT 

The generation of the ERS and ASCAT products is still based on their individual time series. The 

merged ERS + ASCAT could significantly profit from an appropriate Level 1 intercalibration. 

Besides improving the quality of the individual measurements this would improve the 

robustness of the calculation of the dry and wet references.  

8.4.3.2 Data gaps 

Similar as for the passive products, merging ERS and ASCAT into a merged dataset is based on 

a strict separation in time. Gaps in ASCAT time series can be potentially filled with ERS 

observations, although the spatial and temporal overlap between both sensors is limited. 

 

8.5 Scientific Advances under Investigation 

8.5.1 All products 

 Separate blending of climatologies and anomalies 

Currently the SNR-based merging scheme applies a relative weighting of data sets based on 

their relative error characteristics. However, studies have shown that different spectral 

components may be subject to different error magnitudes (Su et al. 2015, Draper et al. 2015). 

Therefore, we will investigate the feasibility of blending the climatologies and the anomalies 

of the data sets separately.  
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 Improved sensor inter-calibration 

Currently, inter-calibration between active and passive data sets is done using CDF-matching 

against a long-term consistent land surface model. However, in order to achieve a full model-

independence of the CCI SM products, we will investigate alternative inter-calibration 

approaches, for instance using lagged-variable based approaches or homogeneity tests (Su et 

al. 2015, 2016). 

 Data density and availability  

In the current versions, gaps are only filled if the weight of the available product is above a 

relatively crudely defined empirical threshold. This threshold will be refined to find a best 

compromise between data density and product accuracy. 

8.5.2 ACTIVE product only 

 Metop ASCAT wetting trend correction 

Measurements of sensors operating in RFI sensitive frequency bands (C, L) may be disturbed 

by external sources and show behaviour that is not representative of the actual soil moisture 

conditions in some areas. These areas should either be flagged as unreliable (passive sensors) 

or measurements have to be corrected. Within HSAF, soil moisture from ASCAT was found to 

show RFI caused positive trends in the measured backscatter signals that result in erroneous 

wetting trends in ASCAT SM in some areas. The impacts of an experimental version of the H-

SAF-produced Metop ASCAT dataset where the wetting trend has been corrected are 

presently being evaluated. 

8.5.3 PASSIVE product only 

 Development of a solely satellite based soil moisture data record 

Within the climate community there is a strong preference for climate records that are solely 

satellite based. Any additional dataset that is used in a soil moisture retrieval algorithm could 

potentially lead to a dependency between a model and an observation. This is also why 

research was set up to investigate the possibility to develop an independent ancillary free soil 

moisture data set.  

In addition, ancillary data could also have a strong impact on the spatial distribution of soil 

moisture as shown in Error! Reference source not found.. Here the artificial squared patterns o

f the 1 degree FAO soil property map are still visible in the original LPRM soil moisture product. 

However, these patterns disappear when only the dielectric constant is used. A study is set up 

to derive soil moisture from the dielectric constant records without making use of any ancillary 
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datasets, with such an approach you will create an independent dataset that could be used as 

a benchmark for different modelled soil moisture datasets. 

 

 

Figure 15: (A) Original descending LPRM Soil Moisture of May 18, 2007 of Australia and (B) the LPRM 
ancillary data free dielectric constant dataset from the same brightness temperatures. Note the 
disappearance of the artificial squared patterns in south-eastern Australia. 

 Updated temperature input from Ka-band observations 

The land surface temperature plays a unique role in solving the radiative transfer model and 

therefore directly influences the quality of the soil moisture retrievals. The current linear 

regression to link Ka-band measurements to the effective soil temperature has been adjusted 

and optimized by Parinussa et al. (2016) for day-time observations. This is done using an 

optimization procedure for soil moisture retrievals through a quasi-global precipitation-based 

verification technique, the so-called Rvalue metric. In this optimization, different biases were 

locally applied to the existing linear regression and final results have been used to create an 

updated global linear regression. The focus on this study was to improve the skill to capture 

the temporal dynamics of the soil moisture. After the updated linear regression for the land 

surface temperature, the Rvalue increased on average with 16.5% (Error! Reference source not f

ound.) and the triple collocation analysis showed an average reduction in RMSE of 15.3%. This 

shows an improved skill in daytime retrievals from LPRM and giving way to using both daytime 

and night-time retrievals together in the future.  
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Figure 16: (up) comparison of Rvalue with the old and new daytime land surface temperature binned over 
NDVI, (down) the difference in Rvalue compared to the old temperature parameterization in [%]. 

 

Further work here will focus on similarly updating the temperature for night-time 

observations. Also, in order to remove model dependency for the L-band soil moisture 

retrievals, we will look into combining the L-band observations with Ka-band observations 

from other satellites with similar overpass times. For this, the Ka-band linear regressions need 

to be optimized specifically to match the L-band sensing depth and overpass times and will 

follow an approach similar to the one used by Parinussa et al. (2016).  
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 Update error characterization 

As a solid knowledge of the uncertainties and errors of the soil moisture datasets is important 

for many applications. The results in Section 7.1.2 on the soil moisture uncertainties need to 

be updated to include results based on L-band observations and the latest parameterization 

update for the C- and X-band. 

 Using night-time observations only 

Based on extensive product validation and triple collocation we will try to address the 

uncertainty of both modes. Based on these results we will decide how both observations 

modes can be considered in the generation of a single merged passive product, potentially 

leading to improved observation frequency with respect to the single descending mode used 

in the CCI SM product. An important step in this step was made by Parinussa et al. (2016). 

8.5.4 COMBINED product 

 L-Band Reference climatology 

Soil Moisture simulations from NASA’s GLDAS Noah model (Rodell et al. 2004) are currently 

used as the scaling reference to harmonise L2 input data for the combined product prior to 

estimating uncertainties for merging (Gruber et al. 2019). This leads to the ESA CCI SM 

(COMBINED) observations remaining in the value domain of GLDAS Noah SM afterwards. 

Features in the satellite observations (e.g. impact of irrigation) are potentially attenuated in 

this process. Independence from model SM is therefore desired. Harmonised L-band 

observations from SMAP and SMOS could be used to create an alternative scaling reference. 

The comparably short time periods of available L-band SM and effects such as radio frequency 

interference (RFI) in this frequency domain must be considered as they could negatively affect 

the creation of a scaling reference. 

 SMOS L2 product 

Soil Moisture from passive sensor observations (including SMOS) in the ESA CCI SM is derived 

using the Land Parameter Retrieval Model. SMOS IC (Fernandez-Moran et al. 2017) is an 

alternative SM product derived from SMOS brightness temperature measurements, that is as 

independent as possible from any ancillary data. Replacing the current SMOS LPRMv6 SM with 

SMOS-IC could improve the passive and combined product quality in the according sub-

periods.  

 Break detection and correction 

When merging active and passive sensors into the combined product, inhomogeneities (or 

structural breaks) in then mean and variance of observations within adjacent sensor periods 

(see Figure 14) are potentially introduced. Su et al. (2016) used statistical tests to detect 
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breaks in the data set. Preimesberger et al. (in review) describe methods to reduce the 

number of breaks in the dataset that are detected this way and explore their impact on the 

data. A method based on relative, empirical distribution matching is found which reduces 

both, inhomogeneities in mean and variance with respect to a reference reanalysis dataset. 

 Gap-filled product 

Due to temporally varying data availability, the current products contain data gaps. Gaussian 

process regression models are under investigation to fill those. The development is mostly 

driven by Vegetation Optical Depth data but a transition to soil moisture is planned in the near 

future. 

 

For details of recently undertaken work including quality assessment of the combined 

product, please refer to (Dorigo et al. 2017) 
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