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Two satellites are currently monitoring surface soil moisture (SM) using L-band observations: SMOS (Soil Mois-
ture and Ocean Salinity), a joint ESA (European Space Agency), CNES (Centre national d'études spatiales), and
CDTI (the Spanish government agency with responsibility for space) satellite launched on November 2, 2009
and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration (NASA) satellite suc-
cessfully launched in January 2015. In this study, we used a multilinear regression approach to retrieve SM from
SMAP data to create a global dataset of SM, which is consistent with SM data retrieved from SMOS. This was
achieved by calibrating coefficients of the regression model using the CATDS (Centre Aval de Traitement des
Données) SMOS Level 3 SM and the horizontally and vertically polarized brightness temperatures (TB) at 40° in-
cidence angle, over the 2013–2014 period. Next, this model was applied to SMAP L3 TB data from Apr 2015 to Jul
2016. The retrieved SM from SMAP (referred to here as SMAP_Reg) was compared to: (i) the operational SMAP
L3 SM(SMAP_SCA), retrievedusing the baseline Single Channel retrieval Algorithm(SCA); and (ii) the operation-
al SMOSL3 SM, derived from the multiangular inversion of the L-MEB model (L-MEB algorithm) (SMOSL3). This
inter-comparison was made against in situ soil moisture measurements from N400 sites spread over the globe,
which are used here as a reference soil moisture dataset. The in situ observations were obtained from the Inter-
national Soil Moisture Network (ISMN; https://ismn.geo.tuwien.ac.at/) in North of America (PBO_H2O, SCAN,
SNOTEL, iRON, and USCRN), in Australia (Oznet), Africa (DAHRA), and in Europe (REMEDHUS, SMOSMANIA,
FMI, and RSMN). The agreement was analyzed in terms of four classical statistical criteria: Root Mean Squared
Error (RMSE), Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R). Results of the comparison of
these various products with in situ observations show that the performance of both SMAP products i.e.
SMAP_SCA and SMAP_Reg is similar and marginally better to that of the SMOSL3 product particularly over the
PBO_H2O, SCAN, and USCRN sites. However, SMOSL3 SM was closer to the in situ observations over the
DAHRA and Oznet sites. We found that the correlation between all three datasets and in situ measurements is
best (R N 0.80) over the Oznet sites and worst (R = 0.58) over the SNOTEL sites for SMAP_SCA and over the
DAHRA and SMOSMANIA sites (R= 0.51 and R=0.45 for SMAP_Reg and SMOSL3, respectively). The Bias values
showed that all products are generally dry, except over RSMN, DAHRA, and Oznet (and FMI for SMAP_SCA). Fi-
nally, our analysis provided interesting insights that can be useful to improve the consistency between SMAP
and SMOS datasets.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Lately, the importance of soil moisture has become increasingly ap-
parent, because soilmoisture is a key variable in better understanding of
the land-atmosphere interactions (Chen et al., 2016; Hirschi et al.,
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2014). The exchange of heat andwater between the land surface and at-
mosphere is influenced by soil moisture (Berg et al., 2014; Hupet &
Vanclooster, 2002; Seneviratne et al., 2010; Western et al., 2004),
which was recognized as an Essential Climate Variable (ECV) in 2010
(GCOS, 2010).

Global soil moisture information has become available via different
active and passive microwave remote sensing techniques with good
temporal and spatial resolutions (Bartalis et al., 2007; Kerr et al., 2001;
Njoku et al., 2002; Njoku et al., 2003; Owe et al., 2001; Ulaby et al.,
1996; Wigneron et al., 1995). However, the required temporal and spa-
tial resolutions strongly depend on the applications (e.g., agricultural
applications vs. climate studies). Recently, new global soil moisture
datasets, with a typical target accuracy of 0.04 m3/m3 (Jackson et al.,
2016; Kerr et al., 2010; Kerr et al., 2012) over bare, low vegetation
cover, and sparsely vegetated areas, have been produced based on mi-
crowave satellite observations at L-band (1.4 GHz, 21 cm). L-band is
considered optimal for soil moisture monitoring (Kerr et al., 2001;
Njoku et al., 2003;Wang & Choudhury, 1981) due to its higher sensitiv-
ity to soil moisture and penetration into vegetation and soil (Kerr, 2007;
Njoku et al., 2003; Owe & Van de Griend, 1998; Wang & Choudhury,
1981) than other higher frequencies (e.g., C-band, X-band, etc.). The
new L-band based datasets include surface soil moisture from two
spaceborne missions: ESA's (European Space Agency) Soil Moisture
and Ocean Salinity (SMOS) (Kerr et al., 2012) and NASA's (National
Aeronautics and Space Administration) Soil Moisture Active Passive
(SMAP) (Entekhabi et al., 2010). The SMOS and SMAP satellites were
launched in 2009 and 2015, respectively, and have been providing mi-
crowave brightness temperature (TB) observations since then. Soil
moisture information is retrieved from SMAP's and SMOS's TB observa-
tions based on the principle that soil TB is mainly determined by soil
moisture via soil dielectric constant (Njoku et al., 2002; Schmugge et
al., 1976; Ulaby et al., 1996). Nevertheless, the sensitivity of the SMOS
and SMAPTB observations to soil moisture is reduced by perturbing fac-
tors such as vegetation (attenuation of the emission from the soil and
additional upwelling emission toward the space-borne sensor), surface
roughness (scattering effects increase the emitting surface area), topog-
raphy, soil texture, soil bulk density, and soil temperature (Choudhury
et al., 1979; Grant et al., 2008; Holmes et al., 2006; Jackson &
Schmugge, 1991; Kerr et al., 2012; Njoku & Li, 1999; Njoku et al.,
2003; Wang et al., 1983; Wigneron et al., 2007; Wigneron et al., 2011;
Wigneron et al., 2017).

There are several remotely sensed soil moisture products available
(in addition to SMOS and SMAP); however, these cover different pe-
riods and are not consistent in terms of spatial and temporal resolutions,
period availability, grid, etc. Given the wide availability of soil moisture
datasets retrieved from different microwave observations, studies fo-
cusing on the merging of these products are important to advance in
the field of producing long-term and consistent datasets of several cli-
matic variables. A great effort has beenmade by the scientific communi-
ty in the last decade to build a coherent and consistent long term soil
moisture datasets such as the ESA Climate Change Initiative (CCI) soil
moisture data record (e.g., Enenkel et al., 2015; Liu et al., 2012; http://
www.esa-soilmoisture-cci.org/; Wagner et al., 2012), deemed neces-
sary for global soil moisture monitoring, drought monitoring, climate
forecasts, etc. The CCI product is estimated based on a posteriori merg-
ing i.e. merging the retrieved soil moisture datasets based on the rela-
tive errors of soil moisture products and a CDF (cumulative
distribution function)-matching used to rescale the different soil mois-
ture products into a common climatology. An alternative approach is
to use data fusion i.e. merging of microwave datasets prior to the re-
trieval (e.g., through the use of a common retrieval algorithm as pro-
posed later in this paper). This method allows better exploitation of
the complimentary of information provided by the different sensors
not included in the posteriori combination approach (Aires et al.,
2012; Kolassa et al., 2013). A recent project was established by ESA to
investigate the integration of SMOS soil moisture estimates within the
CCI soil moisture data record using three approaches that implement
the data fusion strategy:

(i) multi-linear regression (Al-Yaari et al., 2016);
(ii) neural networks (Rodríguez-Fernández et al., 2016); and
(iii) the Land Parameter Retrieval Model (LPRM; Van der Schalie et

al., 2016).

Al-Yaari et al. (2016), for instance, demonstrated the efficiency of
physically-based multiple-linear regression equations (Wigneron et
al., 2004), referred to here as Linear RegressionMethod (LRM) in the fol-
lowing, to retrieve soil moisture from the Advanced Microwave Scan-
ning Radiometer Earth Observing System (AMSR-E) TB observations.
The LRM has several advantages: quickness, simplicity, and no strong
demand on auxiliary datasets (Al-Yaari et al., 2016) such as the normal-
ized difference vegetation index (NDVI) product used by the SMAP Sin-
gle Channel Algorithm (SMAP_SCA), to estimate vegetation effects. The
purpose of that initial studywas to extend the SMOS soil moisture prod-
uct into the past i.e., 2003–2009, using AMSR-E TB observations. The
current study follows the same strategy to retrieve soil moisture from
SMAP TB observations (SMAP_Reg) with a purpose to improve the tem-
poral sampling rate togetherwith the SMOS soilmoisture product at the
global scale. Themain interest in the SMAP-Reg soil moisture product is
that it is fully consistent (coherent in temporal dynamics and absolute
values) with the SMOS Level 3 soil moisture product, as the regression
equations are calibrated based on SMOS Level 3 data (soil moisture
and TB). Furthermore, the idea here is to re-build a coherent and consis-
tent soil moisture dataset rather than to develop a new algorithm or to
surpass the well-established radiative transfer models (e.g. the L-band
Microwave Emission of the Biosphere (L-MEB) model, LRPM, etc.).

To this end, two specific objectives of this study are listed below:

(i) produce a soil moisture product (SMAP_Reg) from SMAP TB that
is consistentwith SMOS soil moisture retrievals using physically-
based regression equations; and

(ii) compare SMAP_Reg with operational SMAP and SMOS soil mois-
ture retrievals against ground-based soilmoisturemeasurements.

Since SMAP soil moisture products are relatively recent, their evalu-
ation and their inter-comparison with other soil moisture datasets are
required (Chan et al., 2016; Zeng et al., 2016). To advance our goal,
therefore, the second objective of this study is two-fold: to evaluate
the SMAP_Reg product, and to carry out a first evaluation of the agree-
ment between SMAP and SMOS Level 3 soil moisture products on a
global scale and against ground-based measurements (sparse and
dense networks). The aim is not to establish which product is more ac-
curatewith respect to in situ but to understand the spatio-temporal pat-
terns of SMAP relative to SMOS and how SMAP differs from SMOS
globally. The agreement and degree of dispersion between the SMAP
and SMOS soil moisture products are analyzed here in terms of four
classical statistical criteria: Root Mean Squared Error (RMSE), Bias, Un-
biased RMSE (UnbRMSE), and correlation coefficient (R) during the
overlapping period (from Apr 2015 to Jul 2016).

The datasets, the local regression method, and the evaluation met-
rics used in this study are described in Section 2. Results are presented
in Section 3. Finally, discussion and conclusions are provided in
Section 4 and Section 5, respectively.

2. Materials and methods

2.1. Datasets

2.1.1. SMOS level 3 TB and soil moisture products
SMOS is a joint ESA, CNES (Centre national d'études spatiales), and

CDTI (the Spanish government agency with responsibility for space)
mission that was launched on November 2, 2009 (Kerr et al., 2012).

http://www.esa-soilmoisture-cci.org/;
http://www.esa-soilmoisture-cci.org/;
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The SMOS satellite carries an interferometric radiometer that operates
at L-band, with multiple incidence angles, a spatial resolution of
35 km at the center of the field of view, a revisit time of 3 days, and as-
cending and descending overpasses at 6:00 AM (local time) and
6:00 PM, respectively (Kerr et al., 2001; Kerr et al., 2010). Global
SMOS Level 3 gridded multi-angular TB and soil moisture (top 0–5 cm
surface layer) products (SMOSL3; version R04 + OPER) are generated
and provided by the CATDS (Centre Aval de Traitement des Données)
center in France (Kerr et al., 2013). The SMOSL3 products are delivered
for both orbits i.e. ascending and descending, projected on a global EASE
(Equal Area Scalable Earth) grid (V2) 25 km, by the CATDS, and are
available online via http://www.catds.fr/. The IFS (Integrated Forecast
System) soil temperature product from the European Centre for Medi-
um-Range Weather Forecasts (ECMWF) is used in the SMOSL3 algo-
rithm to retrieve the SMOSL3 soil moisture.

SMOSL3 TB product provides multi-angular TB data (in Kelvin) at
the top of the atmosphere, i.e. not at the surface level and without cor-
rection for select reflected extraterrestrial sky (e.g., cosmic and galactic)
and atmosphere contributions, but after projection onto the Earth refer-
ence frame (unlike the operational Level 2 product). The multi-angular
TB are binned and averaged in 5°-width incidence angle bins with the
center ranging from 2.5° to 62.5°. CATDS has recently provided
SMOSL3 TB at 40°, and for this purpose themulti-angular TB are binned
and averaged in 2°-width incidence angle bins. SMOSL3 soil moisture
products (provided inm3/m3) are derived from themultiangular inver-
sion of the L-MEBmodel (L-MEB algorithm) (Wigneron et al., 2007), i.e.
the same method used for Level 2 soil moisture retrieval (Kerr et al.,
2012), but are improved by using several revisits simultaneously (Kerr
et al., 2016). SMOS TBs for ascending passes only and their associated
soil moisture retrievals were used in this study (Al-Yaari et al., 2014a;
Al-Yaari et al., 2014b) for a better consistency with SMAP soil moisture
retrieval datasets, which are only provided at 6:00 AM.

Radio Frequency Interferences (RFI) originating from man-made
emissions have been shown to affect the quality of the SMOS TB obser-
vations (Oliva et al., 2012). RFI probability is used to filter the SMOS
datasets. This probability is the total number of deleted TBs due to
suspected RFI on a certain period divided by the total number of TB
measurements acquired during the same period available in the SMOS
L1C datasets. In this study, SMOSTB and soilmoisture datawere exclud-
ed when the RFI probability is higher than 20% following Kerr et al.
(2016). The reader is referred to the Algorithm Theoretical Based Docu-
ment (Kerr et al., 2013) for more details on the SMOSL3 products.

2.1.2. SMAP level 3 TB and soil moisture products
SMAP is a NASA satellite that was launched on January 31, 2015. The

SMAP satellite at launch carried two instruments: a Synthetic Aperture
Radar and a radiometer operating at L-band, with a fixed incidence
angle of 40°, a spatial resolution of 40 km, a revisit of 2–3 days and as-
cending and descending overpass at 6:00 PM (local time) and
6:00 AM, respectively (Entekhabi et al., 2010; Piepmeier et al., 2016).
Soil moisture (top 0–5 cm surface layer) and freeze/thaw were sup-
posed to be providedwith three spatial resolutions ~3 km (high-resolu-
tion from radar), ~9 km (intermediate-resolution from radar and
radiometer), and ~36 km (low-resolution from radiometer), projected
on the EASE V2 grid. However, the radar instrument onboard SMAP sat-
ellite stopped transmitting data on Jul 7, 2015 due to a problem in the
radar's high-power amplifier (Chan et al., 2016). Currently, soil mois-
ture products are retrieved from SMAP TB radiometer data using the
baseline Single Channel Algorithm (SCA) V-pol (Chan et al., 2016;
Jackson, 1993). The global daily SMAP Level 3 V3 gridded descending
TB (at both H and V polarizations) and soil moisture (which is a compi-
lation of 24 h of L2 soil moisture orbits) products, henceforth referred to
here as SMAP_SCA, on EASE 2 grid (36 km)were used in this study. Un-
like the SMOSL3 TBs product, the TBs provided within the SMAP L3
product are calibrated at the surface level, i.e. corrected for Sky radiation
and atmosphere contributions using auxiliary near surface information
(De Lannoy et al., 2015). The SMAP L2 half-orbit soil moisture product
(and also the SMAP L3 soil moisture product) uses ancillary data (in-
cluding soil temperature information) from theNASA's GlobalModeling
and Assimilation Office (GMAO/GEOS-5) Forward Processing product,
which is provided with SMAP datasets. They are freely available from
the National Snow and Ice Data Center (NSIDC). For more details on
the SMAP mission and SMAP passive products, the reader is referred
to (Chan et al., 2016; Piepmeier et al., 2016) and the SMAP Level 2 & 3
Soil Moisture (Passive) Algorithm Theoretical Basis Document
(SMAP_ATBD) available here: https://nsidc.org/data/docs/daac/smap/
sp_l2_smp/pdfs/L2_SM_P_ATBD_v7_Sep2015-po-en.pdf.

Furthermore, it should be noted that both the SMOS and SMAP TB
and soil moisture datasets were filtered prior to the regression analysis
and the evaluations. A pixel was masked out when:

(i) it is not considered as “Land” in the United States Geological Sur-
vey (USGS) Land-Sea mask (water fraction above 10%);

(ii) it is classified as “Urban and Built-Up”, “Snow and Ice”, “Water”,
“Permanent Wetlands”, “Evergreen Needleleaf Forest”, or “Ever-
green Broadleaf Forest” according to the International Geosphere
Biosphere Programme (IGBP) land cover map;

(iii) the number of retrievals b 15 over the whole retrieval period;
(iv) it corresponds to a datewhere theMERRA-Land soil temperature

is b274 K (to avoid frost and frozen conditions);
(v) SMOS TB is estimated to be not sensitive to the surface effects ac-

cording to the mask developed by Parrens et al. (2016); and
(vi) it corresponds to a date that is not recommended for retrieval

based on the SMAP quality flag.

2.1.3. MERRA-Land soil temperature
The soil temperature product was extracted from the NASAMERRA-

Land product, which is a land-surface model forced with atmospheric
reanalysis fields (precipitation corrected using gauges) (Reichle et al.,
2011). MERRA_Land is a supplemental land surface data product of
the Modern-Era Retrospective analysis for Research and Applications
(MERRA) datasets, produced by the Goddard Earth Observing System
model and assimilation system. MERRA-Land uses an updated catch-
ment land surface model (version Fortuna-2.5) and includes a gauge-
based precipitation data from the NOAA Climate Prediction Centre.
The accuracy and precision of MERRA-Land soil temperature were
assessed and analyzed by Parinussa et al. (2011) and Holmes et al.
(2012). These studies found the performance ofMERRA-Land to be sim-
ilar to the ECMWF soil temperature products. TheMERRA-Land product
is available for the 1980 - February 2016 period, provided with high
temporal resolution (hourly) and a horizontal resolution of 2/3° longi-
tude by 1/2° latitude (http://gmao.gsfc.nasa.gov/research/merra/
merra-land.php). The follow-up re-analysis product is MERRA2. It has
improved soil temperature estimates, and uses gage information to cor-
rect the precipitation (Reichle et al., 2016), similarly to (but not exactly
the same as) MERRA-Land. At the time of writing, the MERRA2 product
was not yet available. Consequently, this study uses MERRA-Land auxil-
iary information.

2.1.4. ECMWF soil temperature
The global atmospheric reanalysis ERA-Interim soil temperature

datasets obtained from ECMWF were used in this study. The Hydrolo-
gy-Tiled ECMWF Scheme for Surface Exchange over Land (H-TESSEL)
is used by the ECMWF forecasts to solve for several parameters includ-
ing a four-layer soil temperature profile (Balsamo et al., 2009). In this
study, the soil temperature from the first layer (0–0.07 m) provided at
00:00, 06:00, 12:00, 18:00 UTC over a grid with a space sampling of
0.25 × 0.25° was used. The ECMWF product is available from 1979 to
present. The ECMWF datasets can be freely accessed at: http://apps.
ecmwf.int/datasets/ and more information can be found in Berrisford
et al. (2011).

http://www.catds.fr/
https://nsidc.org/data/docs/daac/smap/sp_l2_smp/pdfs/L2_SM_P_ATBD_v7_Sep2015-po-en.pdf
https://nsidc.org/data/docs/daac/smap/sp_l2_smp/pdfs/L2_SM_P_ATBD_v7_Sep2015-po-en.pdf
http://gmao.gsfc.nasa.gov/research/merra/merra-land.php
http://gmao.gsfc.nasa.gov/research/merra/merra-land.php
http://apps.ecmwf.int/datasets/
http://apps.ecmwf.int/datasets/
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2.1.5. Ground-based measurements
Validation of remotely sensed soil moisture products against

ground-basedmeasurements is a necessary step before any use. Nowa-
days several soil moisture networks share ground-based soil moisture
measurements via the website of the International Soil Moisture Net-
work (ISMN; Dorigo et al., 2011; Dorigo et al., 2015). ISMN is an ESA
funded project initiated through the SMOS CAL/VAL. Data can be freely
obtained from ISMN at https://ismn.geo.tuwien.ac.at/. All sites from
ISMN that provide soil moisture within the period of Apr 2015–Jul
2016were used in this study to evaluate the remotely sensed soil mois-
ture products. Most of the sites are located in different regions with dif-
ferent vegetation, climate, and soil conditions.

Eleven networks in North America, Australia, Africa, and Europe
were used namely: the PBO_H2O (http://xenon.colorado.edu/portal)
network (Larson et al., 2008), the SCAN (Soil Climate Analysis Network)
network (http://www.wcc.nrcs.usda.gov/scan/) (Schaefer et al., 2007),
the SNOTEL (Snow Telemetry) network (http://www.wcc.nrcs.usda.
gov/snow/), the USCRN (U.S. climate reference) network (Bell et al.,
2013), the newly built RSMN (Romanian Soil Moisture & Temperature
Observation Network) network (http://assimo.meteoromania.ro/) in
Romania, the FMI (Finnish Meteorological Institute) network
(Rautiainen et al., 2012) in Finland, the Oznet (Australian Moisture
Monitoring Network) network (Smith et al., 2012) in Australia, the
SMOSMANIA (Soil Moisture Observing System–Meteorological Auto-
matic Network Integrated Application) network (Albergel et al., 2008;
Calvet et al., 2007) in France, the DAHRA network (Tagesson et al.,
2015) in Senegal, the iRON (Integrated Roaring Fork Observation Net-
work) network http://ironagci.blogspot.co.at/, and the REMEDHUS
Fig. 1. IGBP (International Geosphere Biosphere Programme) land cover classification (Friedl et
the USA (c), and Africa and Europe (d).
(Soil Moisture Measurement Stations network of the University of Sala-
manca) network (Sanchez et al., 2012) in Spain. To ensure the high
quality of the in situmeasurements and to minimize the systematic dif-
ferences between them and the remotely-sensed soil moisture prod-
ucts, we restricted the validation step to sites with a top soil layer of
~0–5 cm and with a number of daily observations N 15. ISMN quality
flags associated with the soil moisture data were applied (Dorigo et
al., 2013). Consequently, ~400 (out of ~1000) sites from 11 networks
were used for the evaluation. Moreover, if multiple sensors fall within
one pixel, each sensor is treated independently: in this paper, unlike
(De Lannoy&Reichle, 2015)wewill not seek to construct reliable statis-
tical confidence intervals. Fig. 1 shows the locations of the different in
situ soil moisture sites.

2.2. Methodology

The methodology used in this study to retrieve soil moisture from
SMAP TB based on regression coefficients, obtained from SMOS TB and
soil moisture, is schematized in Fig. 2.

It consists of two steps: the calibration and the data production.

2.2.1. Calibration
A regression equation was analytically derived from the general

(tau-omega) model equations (Mo et al., 1982) by Wigneron et al.
(2004):

ln SMð Þ ¼ a2 ln ΓPVð Þ þ a1 ln ΓPHð Þ þ a0 ð1Þ
al., 2010)with the locations of the different in situ soil moisture sites (a) over Australia (b),

https://ismn.geo.tuwien.ac.at
http://xenon.colorado.edu/portal
http://www.wcc.nrcs.usda.gov/scan/
http://www.wcc.nrcs.usda.gov/snow/
http://www.wcc.nrcs.usda.gov/snow/
http://assimo.meteoromania.ro/
http://ironagci.blogspot.co.at/


Fig. 2. The LRM (local regression method) algorithm: inputs (in orange), calibration step (in blue), and soil moisture production step (in yellow).
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where a0, a1, and a2 are regression coefficients, and the first (second)
term on the right hand side of Eq. (1) represents the surface reflectivity
at vertical (horizontal) polarization (ΓP), described as:

ΓP ¼ 1−
TBP

TG
ð2Þ

where:

TBP is the brightness temperature at polarization p (H or V) at 40° in-
cidence angle and TG is the surface soil temperature.
We used a multiple linear regression i.e., a statistical technique that
predicts the outcome of a response (dependent) variable using two
or more independent (explanatory) variables. The coefficients of
Eq. (1) were estimated using ordinary least squares techniques
that minimize the sum of the squared errors. Eq. (1) was used in
this study to retrieve soil moisture from the SMAP L-band TB obser-
vations. The coefficients a0, a1, and a2 of Eq. (1) were calibrated per
land cover category (obtained from the IGBP land cover map (see
Fig. 1)) using themost recent available re-processed SMOS datasets:
the SMOS TB in both V and H polarizations at incidence angle of 40°
and soil moisture, andMERRA-Land TG datasets. The calibration was
done during the 2013–2014 period. Note that this calibration was
made here per land cover category, and not on a pixel to pixel
basis as it was made previously in most LRM studies based on
space-borne observations (Al-Yaari et al., 2016; Parrens et al.,
2012; Saleh et al., 2006). This choice was made here to increase
the spatial coverage. SMOS TBs observations are highly affected by
RFI and therefore most of the regions in Europe and Asia would be
masked out. To overcome this issue, we removed pixels with high
RFIs and then we calibrated the regression equation with the rest
of pixels within each land cover category. The regression coefficients
are mainly sensitive to the vegetation structure and for a given IGBP
vegetation class, the general vegetation structure is similar,
whatever the climate or geographic area. So, we think it is not useful
to distinguish further the vegetation classification depending on the
latitude/climate. Lastly, we applied the obtained coefficients to the
SMAP TB data (which are less impacted by RFI) for all the pixels
for each land cover category.

2.2.2. Soil moisture production
Soil moisture was computed from the SMAP TB data for the Apr

2015 - Jul 2016 period using the regression coefficients computed
in the calibration step using Eq. (1). This was done given the fact
that we have all inputs for Eq. (1) to compute the soil moisture: TB
observations at both polarizations from SMAP, TG datasets based on
the GMAO GEOS-5 (here in after referred to as GEOS-5) model pro-
vided with the SMAP datasets (or any other source like ECMWF),
and the coefficients (a0, a1, and a2) from the calibration step.

2.3. Metrics used for evaluating the soil moisture dataset

The SMAP_Reg soil moisture product, obtained using the LRM algo-
rithm, was compared with the SMAP and SMOS official Level 3 soil
moisture products, and all three remotely sensed soil moisture products
were evaluated against in situ observations. This was achieved
using classical metrics: Root Mean Square Error (RMSE; m3/m3), Bias
(m3/m3), UnbRMSE (m3/m3) (Entekhabi et al., 2010), and the (Pearson)
correlation coefficient (R), which can be computed as follows:

Bias ¼ 1
N
∑N

i¼1Si−Oi ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N

i¼1 Si−Oið Þ2
r

ð4Þ

UnbRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2−Bias2

q
ð5Þ
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R ¼ 1
N−1ð Þ∑

N

i¼1

Si−S
σ S

 !
Oi−O
σO

 !
ð6Þ

where the overbar indicates the mean;

• Si is the ith remotely sensed soil moisture value;
• Oi is the ith in situ observed or the remotely sensed soil moisture
value;

• N is the total number of observations; and
• σo and σs are the standard deviations of the in situ observed or re-
motely sensed soil moisture values, respectively.

Moreover, Taylor diagrams (Taylor, 2001) were used in this study to
compare in a comprehensiveway the remotely sensed soilmoisture and
the in situ soil moisturemeasurements. Three statistics are summarized
in a Taylor diagram: the normalized standard deviation (SDV) displayed
as a radial distance, the correlation coefficient (R) displayed as an angle
in the polar plot, and the centered RMSE (displayed as the distance to
Fig. 3.Global inter-comparison between SMOSand SMAPTBs during theApr 2015-Jul 2016 at bo
f) RMSE, (c & g) Bias, and (d & h) UnbRMSE. Pixels with a number of observations lower than
the point (observed) where R and SDV are equal to one) (Albergel
et al., 2012). The performance of the remotely sensed soil moisture
products is considered closest to ground measurements with the
shortest distance to R = 1 and SDV = 1 (Albergel et al., 2012).

3. Results

3.1. SMAP and SMOS inter-comparison

Before presenting the regression analyses and evaluating the
SMAP_Reg soil moisture product, it is necessary to evaluate and com-
pare the measured (retrieved) TB's (soil moisture) from SMOS and
SMAP, which is the key to understand the different results, as it is the
only input that changes between the SMOS and SMAP-based SM re-
trieval algorithms. For instance, this could help explain the differences
in Bias, RMSE and correlation obtained between the different soil mois-
ture products evaluated in this study over the different networks. For
this purpose, global maps of R, RMSE, Bias, and UnbRMSE between
SMAP and SMOS TBs and soil moisture were produced. Fig. 3 shows
th polarizations vertical (V-pol; left) and horizontal (H-pol; right): (a& e) correlation, (b&
15 are indicated as blank areas.



Table 1
Regression coefficients of Eq. (1) calibrated using SMOS Level 3 TB and soil moisture in

Fig. 4.Global inter-comparison between SMOSand SMAP soilmoisture retrievals during theApr 2015–Jul 2016: (a) correlation, (b) RMSE, (c) Bias, and (d)UnbRMSE. Pixelswith a number
of observations lower than 15 are indicated as blank areas.
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the global maps between SMOS and SMAP TBs during the Apr 2015 Jul
2016 period at both polarizations vertical (V-pol; left) and horizontal
(H-pol; right): (a& e) correlation, (b & f) RMSE, (c & g) Bias, and (d
&h) UnbRMSE. In general, there is a good agreement between SMOS
and SMAP TBs at both V-pol and H-pol particularly in terms of temporal
dynamics (R mostly N0.8). The RMSE and UnbRMSE values are lower
between SMAP and SMOS at V-pol than between SMAP and SMOS at
H-pol over some regions (e.g., region of western North Africa). The
RMSE (UnbRMSE) values range mostly between 2 and 8 (4) K over
most of the globe except over some regions (e.g., Western Europe).
SMAP presents cold (warm) Bias with respect to SMOS over most of
the globe (high latitude regions).

Fig. 4 displays global inter-comparison between the operational
SMOS (L3) and SMAP (SCA) Level 3 soil moisture retrievals during the
Apr 2015- Jul 2016 period: (a) correlation, (b) RMSE, (c) Bias, and (d)
UnbRMSE. The correlations between SMOS and SMAP soil moisture re-
trievals (Fig. 4a) are very high (between 0.8 and 1) over Australia, cen-
tral Asia and USA, and the Sahel, while moderate correlations are found
over the other regions. SMAP is slightlywetter than SMOS under regions
where the vegetation density is high as well as on coastlines and over
desert areas (Sahara), whereas SMOS is slightly wetter over India and
Central America, and far north (see Fig. 4c). It can be seen in Fig. 4b &
d that higher values of RMSE and UnbRMSE are found in regions
where the vegetation density is moderate or high than over arid and
semi-arid regions. The retrieved soil moisture data from both SMOS
and SMAP seem to agree generally well in terms of UnbRMSE (mostly
b0.05 m3/m3).
2013–2014: a0 represents the intercept, a1 and a2 represent the slope of regression line
corresponding to H-pol and V-pol, respectively.

Land cover class a0 a1 a2

Deciduous needleleaf forest 2.671 1.322 0.937
Deciduous broadleaf forest 5.184 2.713 0.889
Mixed forest 3.848 2.485 0.492
Closed shrublands 0.789 1.068 0.242
Open shrublands 0.952 0.864 0.478
Woody savannas 3.212 1.903 0.643
Savannas 1.821 1.534 0.336
Grasslands 0.937 1.032 0.391
Croplands 0.815 0.867 0.421
Cropland/natural vegetation mosaic 0.874 0.626 0.558
Barren or sparsely vegetated 1.049 1.830 0.384
3.2. Regression calibration

The regression coefficients a0 (intercept coefficient), a1 (coefficient
for the H polarized TB), and a2 (coefficient for the V polarized TB) in
Eq. (1), obtained using SMOSL3 TB (V & H) and soil moisture in the cal-
ibration step, are presented in Table 1 and Fig. 5. A unique coefficient
value for each land cover category was obtained. It can be seen that
the values of the coefficient for the different land cover categories can
be clearly distinguished. For instance, lowest coefficients values for a0
and a2were obtained over “Closed shrublands” andhighest over “Decid-
uous needleleaf forest” for a2 and “Deciduous broadleaf forest” for a0
while lowest values for a1 were obtained over “Cropland/Natural vege-
tation mosaic” and highest over “Deciduous broadleaf forest”.

In order to make a first evaluation of the quality of the calibration
step, and before applying the LRM algorithm to the SMAP TB data, we
applied the LRM equations to the SMOS TB data. The soil moisture prod-
uct (SMOS_Reg)was retrieved fromSMOSL3 TBusing the regression co-
efficients computed from Eq. (1) over the calibration period. Then,
SMOS_Reg was compared with the reference SMOSL3 soil moisture for
the same period in terms of RMSE and correlation coefficient (p-
value b 0.05).

Looking at the correlation map in Fig. 6a, a remarkable agreement
(R N 0.8) can be seen between SMOS_Reg and SMOSL3 over most of
the globe except over some forests areas (e.g., boreal regions) where
the correlation values drop below 0.4. Looking at the RMSE map in
Fig. 6b, the spatial patterns of the RMSE values are also found to be in
correspondence with the vegetation distribution: low RMSE values
(~0.05 m3/m3) are found over areas with low vegetation while high
RMSE values are found over moderately vegetated regions.

In addition, the regression parameters were applied to the SMOS TB
and ECMWF TG dataset as a validation exercise, for a period out of the
calibration period i.e. Apr 2015–Jul 2016. Correlation and RMSE were
computed between the retrieved SM (using LRM) and SMOSL3



Fig. 5. Regression coefficients of Eq. (1) calibrated using SMOS Level 3 TB and soil moisture in 2013–2014 (a): intercept (a0), (b) slope of regression line corresponding to the horizontal
polarization (a1), and (c) slope of regression line corresponding to the vertical polarization (a2).
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(Fig. 7). The performance of LRMover the validation period is as good as
what was obtained for the calibration period in terms of both correla-
tion and RMSE over most of the globe.

We also added a vegetation index to account for vegetation changes
aswas done in Santamaría-Artigas et al. (2016) andMattar et al. (2012).
TheNDVI product, obtained fromMODIS (Moderate Resolution Imaging
Spectroradiometer), was included in Eq. (1) as follows:

ln SMð Þ ¼ a3NDVIþ a2 ln ΓPVð Þ þ a1 ln ΓPHð Þ þ a0 ð7Þ

The performance of calibration was slightly improved in terms of R
and RMSE particularly over Australia (Fig. 8). However, in this study,
we preferred to keep the regression algorithm as independent as possi-
ble of ancillary data (namely the MODIS NDVI dataset) and therefore
this was not taken into account in the subsequent analyses.
3.3. SMAP_Reg soil moisture evaluation

This section presents an evaluation of the SMAP_Reg soil moisture
product, which was based on applying the LRM algorithm to the
SMAP Level 3 TB observations (see Section 2.2) and using two soil tem-
perature products: GEOS-5 and ECMWF. Note that the LRM algorithm
was calibrated with MERRA-Land soil temperature; here, we only
change the input, not the linear regression coefficients, as it will become



Fig. 6. Comparison between the soil moisture values computed from the SMOS TB data using LRM (SMOS_Reg) and the SMOS official Level 3 soil moisture products in 2013–2014: (a)
correlation, R and (b) RMSE (m3/m3). Pixels with a number of observations lower than 15 are indicated as blank areas.
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clear that the temperatures estimated inGEOS-5 and ECMWFdonot dif-
fer much in the first order. Both these SMAP_Reg soil moisture products
were first compared with the SMAP operational Level 3 soil moisture
product (SMAP_SCA) to investigate the similarity/dissimilarity between
the various SMAP soil moisture products. This was done by computing
the R and RMSE statistical criteria between the SMAP_Reg and
SMAP_SCA soil moisture products at the global scale. The temporal cor-
relation between SMAP_Reg and SMAP_SCA soil moisture retrievals is
shown in Fig. 9a using GEOS-5 and in Fig. 9c using ECMWF. Fig. 9a & c
show that the temporal dynamics of both SMAP_Reg and SMAP_SCA
soil moisture products are generally very similar with R values larger
than 0.8 over most of the globe. However, weaker correlations between
SMAP_Reg (ECMWF) and SMAP_SCA (GEOS-5) than between
SMAP_Reg (GEOS-5) and SMAP_SCA (GEOS-5) can be seen over a few
regions particularly over high latitude areas and Sahara. Fig. 9b shows
that the distribution of the RMSE values between SMAP_Reg and
SMAP_SCA soil moisture products present clear spatial patterns: low
RMSE values over deserts and savannahs (e.g., the Sahara, Australia,
Southern Africa, etc.), whereas high values of RMSE values were gener-
ally found over vegetated areas. Looking at both Fig. 9a & c (correla-
tions) and Fig. 9b & d (RMSE), there is a general good agreement
between SMAP_Reg and SMAP_SCA over regions with low to moderate
amounts of vegetation cover.

The SMAP_Reg soil moisture product with GEOS-5 soil temperature
as auxiliary input was additionally evaluated against

i) in situ soil moisture observations using N400 sites from eleven net-
works spread over the globe (see Section 2.1.5); and

ii) the operational SMAP and SMOS Level 3 soil moisture products at
these individual site locations. The SMAP_SCA and the SMOSL3 soil
moisture products were considered in the evaluation in order to in-
vestigate the consistency in time variations between the new soil
moisture product (SMAP_Reg) and the original ones at different
sites.

Taylor diagrams (see Section 2.3) given in Fig. 10 show the statistics
for the sites individually. Fig. 10 shows values of SDV, R, and the cen-
tered RMSE between the remotely sensed soil moisture products and
measured soil moisture values over all sites used in this study. In Fig.
10, the performance of SMAP_SCA (blue symbols), SMAP_Reg (red sym-
bols), and SMOSL3 (green symbols) varies from one site to another and
from one network to another as demonstrated by the uneven distribu-
tion of the sites (shown as circles) in the plots. Looking at the Taylor di-
agram over the SCAN and SNOTEL sites, the correlations values range
between0 and 0.9 and both SMAP_Reg and SMOSL3 tend to have higher
SDV values than SMAP_SCA. Over the REMEDHUS sites, the three algo-
rithms have a comparable performance but with a large variability (as
defined byhigh SDV index)with the in situ observations; the correlation
values range between 0.4 and 0.8. Over the PBO-H2O sites, SMAP_SCA
patterns are closer to the in situ patterns than SMOSL3 and SMAP_Reg,
which have larger SDV values than the in situ observations and most
of the correlation values range between 0.5 and 0.9. Over the USCRN
sites, the retrieved soil moisture values from all algorithms have a sim-
ilar variability to that of the in situ observations, although SMAP_Reg
and SMOSL3 soil moisture products have a larger variability for some
sites. Over the RSMN sites, the three products present the same level
of performance with respect to the in situ observations but all had
higher SDV than the in situ observations. However, the correlations
drop below 0.4 for a few sites for the three products. Over the DAHRA



Fig. 7. Comparison between SMOS-Reg (retrieved based on regression equation) and SMOSL3 (retrieved based on the L-MEB model) in terms of (a) correlation and (b) RMSE (m3/m3)
during the Apr 2015–Jul 2016 period. Pixels with a number of observations lower than 15 are indicated as blank areas.
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network, the SMOSL3 (best correlation) and SMAP_SCAproduct lie clos-
est to the observed point followed by SMAP_Reg with higher SDV than
the in situ observations for all products. Over the iRON sites, the correla-
tions range from 0.4 to 0.8 for the SMOSL3 and SMAP_Reg. SMAP_SCA
and SMAP_Reg are comparable in terms of variability and they are clos-
er to the in situ patterns than SMOSL3. Over the Oznet network, the
three products are comparable in terms of correlations (ranging from
0.6 to 0.9) and, similarly to the RSMN network, overestimate the in
situ observations. Over the FMI sites, the correlations range from 0.4 to
0.8 and 0.9 for SMAP_SCA and SMAP_Reg, respectively. Similarly, to
what was obtained over the Oznet sites, the SMAP_SCA and SMAP_Reg
products overestimate the in situ observations overmost of the sites. Fi-
nally, over SMOSMANIA, SMAP_Reg has better correlations, with in situ
data ranging from 0.4 to 0.95, than the other two products. For SMOSL3,
the correlationsdrop below0.4 for a few sites. Overall, all three products
have approximately the same level of performance in terms of variabil-
ity but SMAP_SCA is slightly better in terms of temporal dynamics.

In order to have a general idea on the overall performance of
SMAP_SCA, SMAP_Reg, and SMOSL3, the average of the Bias, RMSE,
and UnbRMSE values and the median of the correlation values for all
sites were computed per each network. Given the different sizes of the
networks, the varying sample sizes, and varying temporal and spatial
autocorrelations, the values are only indicative and no statistical confi-
dence levels are provided. It should be noted that the average and me-
dian values were only computed when the site has a number of
observations N 15 and p-value b 0.05. This is presented in Table 2 and
Fig. 11, which show the comparison statistics for the three algorithms
i.e. SMAP_Reg, SMAP_SCA, and SMOSL3 against the in situ observations.
It can be seen in Table 2 and Fig. 11 that the best R scores (R N 0.80) for
the three algorithmswere obtained over the Oznet siteswhile theworst
ones were observed (R ~ 0.58) over the SNOTEL sites for SMAP_SCA and
over the DAHRA and SMOSMANIA sites (R = 0.51 and R = 0.45 for
SMAP_Reg and SMOSL3 respectively). SMOSL3 had highest R values
over the DAHRA site while SMAP_Reg had highest R values over
SMOSMANIA. Other than those two networks, SMAP_SCA had highest
R values. However, both SMAP products i.e. SMAP_SCA and SMAP_Reg
have comparable performance particularly in terms of correlation coef-
ficients. In terms of UnbRMSE, SMAP_SCA had lower values for all sites
except in Oznet where the lowest values were obtained by SMOSL3.
Even though it is difficult to compare absolute values at in situ locations,
a comparison based on a large sample can give some indication of
biases: the Bias values showed that all products are generally dry, ex-
cept over RSMN, DAHRA, and Oznet (and FMI for SMAP_SCA). Unlike
SMAP_Reg, a notable overall positive Bias is obtained over FMI for
SMAP_SCA (overestimation). The overestimation of in situ soil moisture
observations over RSMN and FMI networks by SMAP_SCA is in linewith
the recent findings of Zeng et al. (2016).

4. Discussion

We investigated the potential utility of a physically based multi-lin-
ear regression approach to retrieve soil moisture from two microwave
remote sensing satellites that operate at L-band: SMOS and SMAP. The
approach consists of two steps:

(i) a calibration step to compute regression coefficients using SMOS
TB and soil moisture over 2013–2014 (calibration period); and

(ii) a production step to retrieve soil moisture from SMAP TB using



Fig. 8. Comparison between SMOS_Reg soil moisture values (retrieved based on regression equation with including NDVI datasets) and SMOSL3 (retrieved based on the L-MEB model)
during the 2013–2014 period in terms of: (a) correlation and (b) RMSE (m3/m3). Pixels with a number of observations lower than 15 are indicated as blank areas.
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the computed regression coefficients, for Apr 2015 to Jul 2016
(production period).
4.1. SMAP and SMOS inter-comparison

Before applying the regressions, an inter-comparison was made be-
tween SMOS and SMAP TBs and soilmoisture. From the results (Figs. 3 &
Fig. 9. Comparison between the SMAP-derived soil moisture applying LRM (SMAP_Reg) using
Level 3 soil moisture product (SMAP_SCA) from Apr 2015 to Jul 2016: (top) correlation, R (−)
4), it was shown that there is a very good agreement between the two
datasets. However, small discrepancies (2 to 4 K of Bias) between the
SMOS and SMAP TBs were found over most of the globe and high dis-
crepancies were found particularly over regions affected by RFI (West-
ern Europe, North Africa, etc.). This is not unexpected due to the fact
that, as indicated in Sections 2.1.1 and 2.1.2, the SMOSL3 TB product
provides TBs on top of the atmosphere and there is no correction for
sky and atmosphere contributions whereas SMAP TB is provided at
the surface. According to De Lannoy et al. (2015), a difference of b2 K
two different soil temperature products: GEOS-5 (left) and ECMWF (right) and the SMAP
and (bottom) RMSE (m3/m3).



Fig. 10. Taylor's diagrams for SMAP_Reg (in red), SMAP_SCA (in blue), and SMOSL3 (in green) over the FMI, DAHRA, iRON, andOznet (upper panel), over SCAN, PBO-H2O, REMEDHUS, and
RSMN sites (middle panel), and over SNOTEL, USCRN, and SMOSMANIA sites (lower panel).
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for H-Pol TB and 1 K for V-Pol TB at 40° incidence angle between SMOS
TB and SMAP TB can be attributed to the contributions of the atmo-
spheric and reflected sky (e.g., cosmic and galactic) radiations. This
lowdifference can be explained by the fact that the effects of (i) the con-
tribution of the atmosphere to TB (direct and reflected) and (ii) the at-
tenuation effects due to the atmosphere, partially offset each other.
Nevertheless, local and short-term values regularly exceed 5 K (De
Lannoy et al., 2015). In addition, SMAP TBs are water-body corrected
while SMOS TBs are not. Thus, the SMOS and SMAP TBs do not corre-
spond exactly to the same pixel coverage: the SMOS TBs correspond
to the whole pixel, while the SMAP TBs correspond to the whole pixel,
but excluding open water areas. As the emission of open water surfaces
(~60–150 k) is small in comparison to the emission of soil and vegeta-
tion-covered surfaces, applying this correction leads systematically to
an increase in the TBs values. Note that for pixels with a fraction of
water bodies higher than 10%, data were filtered out. But even after
this filtering, the water TB correction may have an impact on the TB
values. This water TB correction may explain the warm “Bias” (~10 K)
of the SMAP TBswith respect to the SMOSTBs over high latitude and bo-
real regions (where many pixels may contain lakes, rivers, wetlands,
etc.). Excluding these regions, a small cold Bias of SMAP TBswith respect
to SMOS TBs can be noted (~3–6 K). The Bias between the SMOS and
SMAP TB values might have an impact in our approach, as the calibra-
tion step was based on the SMOS TB data, while the regression coeffi-
cients were applied to the SMAP TB data. However, no correction was
applied in the framework of this study, as this Bias is not uniform glob-
ally. Overall, a very good agreement was found globally between the
SMAP and SMOS TBs data.

4.2. Regression calibration and soil moisture production

The regression model was run for each land cover category (defined
here using the IGBP land cover map) separately and thus we obtained
coefficients of each land cover category. These values vary from one
land cover category to another, reflecting the different characteristics
for each land cover category. These three parameters as indicated by
Saleh et al. (2006) are a function of the soil type and roughness. The re-
gression approach quality was evaluated in two ways:

(i) first, we estimated soil moisture from SMOS TB and compared
the predicted soil moisture (SMOS_Reg) to the reference
(SMOSL3) using correlation and RMSE, over the calibration peri-
od (2013–2014). High correlations (R N 0.8) and low RMSE
values were obtained between SMOS_Reg and the reference



Table 2
Statistics of the evaluation of the SMAP_Reg, SMAP_SCA, and SMOSL3 against ground basedmeasurements. The average (median for R instead of “average” as correlation is not additive)
values were only computed for sites that have p_value b 0.05 and number of observations was higher than 15.

Matric Bias (m3/m3)
(mean)

RMSE (m3/m3)
(mean)

R (median) UnbRMSE (m3/m3)
(mean)

Algorithm

Network
(No of sites)

SMAP_SCA SMAP_Reg SMOS
L3

SMAP_SCA SMAP_Reg
SMOS

L3
SMAP_SCA SMAP_Reg

SMOS
L3

SMAP_SCA SMAP_Reg
SMOS

L3

REMEDHUS 
(19)

–0.021 0.007 –0.047 0.087 0.094 0.093 0.65 0.63 0.61 0.051 0.060 0.052

PBO_H2O
(76)

–0.024 –0.008 –0.022 0.055 0.056 0.067 0.75 0.76 0.68 0.044 0.049 0.056

RSMN
(16)

0.054 0.044 0.026 0.082 0.081 0.086 0.67 0.64 0.54 0.051 0.059 0.069

SCAN
(104)

–0.022 –0.013 –0.026 0.075 0.085 0.090 0.73 0.70 0.60 0.050 0.058 0.063

SNOTEL
(125)

–0.053 –0.052 –0.047 0.096 0.099 0.103 0.58 0.54 0.55 0.063 0.066 0.071

USCRN
(51)

–0.027 –0.017 –0.034 0.075 0.081 0.091 0.70 0.71 0.61 0.046 0.054 0.059

FMI
(14)

0.076 –0.032 – 0.109 0.085 – 0.61 0.59 – 0.029 0.035 –

iRON
(3)

–0.094 –0.147 –0.182 0.104 0.153 0.190 0.64 0.54 0.50 0.036 0.039 0.051

DAHRA
(1)

0.017 0.066 0.007 0.054 0.108 0.050 0.64 0.51 0.82 0.051 0.085 0.050

SMOSMANIA
(7)

–0.070 –0.095 –0.097 0.110 0.123 0.127 0.63 0.69 0.45 0.045 0.042 0.062

Oznet
(34)

0.016 0.040 0.005 0.091 0.112 0.080 0.85 0.84 0.86 0.074 0.089 0.064
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over the continental surfaces, indicating that the spatio-temporal
dynamics of SMOSL3 were well captured by SMOS_Reg. Howev-
er, some differences can be noted in terms of magnitude over
high to moderate vegetation areas and high latitude regions.
This is not unexpected due to uncertainties in the SMOS datasets
caused by the high vegetation attenuation effects in these re-
gions, which is a major problem for most of the remotely sensed
soil moisture retrievals (Vittucci et al., 2016; Wigneron et al.,
2003); and

(ii) Second, we estimated soil moisture from SMAP TB for the Apr
2015 to Jul 2016 period (SMAP-Reg) and compared it to the op-
erational SMAP_SCA and the SMOSL3 soil moisture products
against N400 sites over the world.

Soil temperature is an important input in the radiative transfer equa-
tion and has a significant impact on the final estimate of the soil mois-
ture retrievals (Holmes et al., 2012; Lv et al., 2016; Parinussa et al.,
2011). In order to study how sensitive is the retrieved soil moisture to
the soil temperature effects, we used soil temperature from two differ-
ent sources: ECMWF and GEOS-5. We applied the regression coeffi-
cients to SMAP TB using these two products and then we compared
with SMAP_SCA. It was found that in general the spatial patterns are
similar for both products in terms of R and RMSE values; however, the
correlations between SMAP_Reg (ECMWF) and SMAP_SCA (GEOS-5)
are lower than the correlations between SMAP_Reg (GEOS-5) and
SMAP_SCA (GEOS-5) over some regions (e.g., Sahara, Far Eastern Feder-
al District, East-Central Canada, etc.). The better agreement between
SMAP_Reg (GEOS-5) and SMAP_SCA (GEOS-5) does not necessarily
mean that the quality of GEOS-5 is better than ECMWF. This could sim-
ply results from the fact that the same soil temperature product was
used in both the regression approach and the SMAP_SCA algorithm.
However, it does seem that soil temperature has an important impact
on the soil moisture retrievals (e.g., Lv et al., 2016), i.e. using the same
soil temperature leads to similar soil moisture retrievals from SMAP
nomatter if different retrieval approaches are used. This could partially
explain the strong agreement found between SMAP_SCA and
SMAP_Reg.

Results from the comparison between SMAP_Reg both (ECMWF &
GEOS-5) and SMAP_SCA showed that SMAP_Reg is in agreement with
SMAP_SCA, particularly in terms of temporal dynamic which is of high
relevance (Crow et al., 2010; Liu et al., 2012). Moreover, it is noticed
here that the performance of the “production” step i.e. comparison be-
tween SMAP_Reg and SMAP_SCA is much better than the “calibration”
step i.e. comparison between SMOS_Reg and SMOSL3. This can be partly
explained by three reasons:

1- in the calibration step, the TBs used are not exactly the samewhile in
the production step they are. More specifically, the SMOSL3 soil
moisture product is not directly retrieved from SMOSL3 TB but
from TB products in the Fourier domain (L1B); thus the TB used in
the regression does not necessarily match the actual TB used to re-
trieve SMOSL3 soilmoisture. However, it is expected that the tempo-
ral dynamics of the two soil moisture products will be more similar
because they will be driven by the common input TB dynamics.
This uncertainty, among others, may affect the quality of the
calibration;

2- the quality of SMAP TB seems to be very good and therefore whatev-
er the used algorithm, the resultant soil moisture is the same partic-
ularly in terms of temporal dynamics. This, again, may partially
explain the strong similarity between the two products i.e.
SMAP_Reg and SMAP_SCA; and

3- the regression (LRM coefficients) is based onMERRA-Land TG, which
is similar to the GEOS-5 product used in SMAP_SCA and not in
SMOSL3 (for which the ECMWF product is used); explicitly indicat-
ing that soil temperature may play a crucial role in the quality of the
SM retrievals.



Fig. 11. Bar charts showing Bias (m3/m3), R, RMSE (m3/m3), and UnbRMSE (m3/m3) between SMAP_SCA (in blue), SMAP_Reg (in red), and SMOSL3 (in green) and the observed soil
moisture over the 11 networks used in this study.

270 A. Al-Yaari et al. / Remote Sensing of Environment 193 (2017) 257–273
4.3. SMAP_Reg soil moisture evaluation

Results from evaluating both SMAP products and SMOSL3 against in
situ observations showed that SMAP_SCA (slightly better) and
SMAP_Reg soil moisture products have comparable performance with
similar R values over the REMEDHUS, PBO_H2O, SNOTEL, SCAN, Oznet,
and USCRN sites. Nevertheless, all three remotely sensed soil moisture
products had poor performance over the SNOTEL sites. The poor perfor-
mance of the three algorithms over the SNOTEL network can be attrib-
uted to several reasons: among them it should be considered that
most of the SNOTEL sites are located in mountain regions with forests
and freezing and thawing processes, more details on these aspects can
be found in Al Bitar et al. (2012). It should be kept in mind that when
using only the recommended retrievals for SMAP, there was no data
left from the iRON sites. So the statistics for this particular network
were based on data without considering if the retrieval was recom-
mended or not but other filters were, however, applied.

All remotely sensed soil moisture products underestimated general-
ly the in situ observations used in this study. The Bias values ranged
from −0.147 m3/m3 (iRON) to 0.066 m3/m3 (DAHRA) for SMAP_Reg,
from −0.094 m3/m3 (iRON) to 0.076 m3/m3 (FMI) for SMAP_SCA, and
from −0.182 m3/m3 (iRON) to 0.026 m3/m3 (RSMN) for SMOSL3. This
so-called “dry” Bias of SMOSL3 and SMAP_SCA is in line with previous
studies (Al-Yaari et al., 2014a; Al Bitar et al., 2012; Chan et al., 2016;
Dente et al., 2012). On the other hand, an overestimation was found
over FMI (for only SMAP_SCA) and RSMN, DAHRA, and Oznet sites
(for the three products). It should be kept inmind that FMI is a very spe-
cific network: the sites of FMI are located in high latitude regions with
cold climate in which remotely-send soil moisture retrievals are influ-
enced by the effects of soil freezing and thawing processes, organic
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matter in the soil substrate and the presence of numerous water bodies
and bogs (Rautiainen et al., 2012; Zeng et al., 2016). The reasoning be-
hind the underestimation/overestimation of the in situ soil moisture
values is a challenge. The dry Bias could be related to the different spa-
tial scales and sampling depths between the satellites and the in situ ob-
servations (e.g., Dorigo et al., 2015; Escorihuela et al., 2010; Rondinelli et
al., 2015). Moreover, although RFI was severely filtered from the SMOS
datasets, it could be that some sources of RFI are still not filtered/detect-
ed, which can explain the rather general underestimation which is
found in this study (Oliva et al., 2016). This was evident especially for
SMOS as seen in Fig. 3where SMOS still has higher TBs close to those re-
gions despite filtering RFI. The reader is referred to Al Bitar et al. (2012)
for a discussion on these questions.

In terms of UnbRMSE, a comparable performance between
SMAP_SCA and SMAP_Reg was found over the SMOSMANIA, iRON,
and SNOTEL sites but lower values were obtained with SMAP_SCA
over the other networks. SMOSL3had generally higher UnbRMSE values
than both SMAP_SCA and SMAP_Reg. However, SMOSL3 had lower
values over the Oznet and DAHRA sites.

It was noted from Table 2 and Fig. 11, that the SMAP TB-based soil
moisture products (SMAP_SCA and SMAP_Reg) have a slightly better
performance than SMOSL3 for most of the networks especially in
terms of temporal dynamics. Although the three algorithms use TB at
L-band and rely on the same radiative transfer equation (tau-omega
model), they vary inmany things (e.g., ancillary datasets, model param-
eterizations and assumptions). For instance, SMOS and SMAP use two
different land cover maps: ECOCLIMAP 2004 (containing 213 classes)
for SMOS andMODIS IGBP (containing 17 classes) for SMAP, so it is like-
ly there is a mismatch between the real land cover and the theoretical
land cover used in SMAP and SMOS soil moisture retrievals leading to
a different behavior of the soil moisture retrievals. Thismay also partial-
ly explain the similarity between SMAP_Reg and SMAP_SCA given the
use of the same land cover. These differences were already noted in
the direct inter-comparison between SMOSL3 and SMAP_SCA displayed
in Fig. 4. The SMOS team is currently investigating the impact of land
cover mapping and the possibility to replace the ECOCLIMAP map by
the IGBP map in the SMOS soil moisture retrieval algorithm. Further-
more, the better performance of SMAP soil moisture products could be
related to the enhanced quality of the SMAP TB observations due to an
improved RFI mitigation and detection system (Piepmeier et al.,
2016). Moreover, SMOS TB observations have a radiometric error of
~3 to 3.5 K while SMAP TB observations have a radiometric error of
~1 K (De Lannoy et al., 2015). Finally, SMOS and SMAP use different sur-
face soil temperature sources for their operational products.

Based on the presented results, it can be noted that applying regres-
sion analysis to TB (from SMAP and SMOS) observed at L-band
(1.4 GHz) gave better results compared to what was found by Al-Yaari
et al. (2016), who applied the LRM algorithm to TB observed at C-
band (from AMSR-E; 6.9 GHz). This is not unexpected, as the simplifica-
tions and assumptions (e.g., neglecting the scattering effects) of the LRM
method are more valid at L-band. Moreover, both SMAP and SMOS ob-
serve TB at the same frequency i.e. L-band, which is considered optimal
for soil moisture retrievals (Chan et al., 2016; Jackson, 1993). On the
other hand, a similar behavior with Al-Yaari et al. (2016) of the regres-
sion coefficients that correspond to the H polarization and V polariza-
tion was found: low (high) coefficient values at H polarization
correspond generally to high (low) values at V polarization over most
of the regions.

5. Conclusions

This study demonstrated the potential benefits of combining SMOS
and SMAPdatasets given the good performance of SMAP_Reg compared
to SMOSL3 and SMAP_SCA operational products over some regions. This
in return shows the close similarity between SMOS and SMAP TB obser-
vations andhighlights that an integration of SMAPand SMOSdatasets to
build a long term soilmoisture record (with higher temporal frequency)
will be successful. Finally, this first evaluation of preliminary SMAP
products, and the inter-comparison with SMOS datasets provided in-
sights and statistics that can be useful for SMAP/SMOS soil moisture
product validation and SMAP/SMOS algorithm refinements and conver-
gence on auxiliary datasets. A calibration of the soil and vegetation ef-
fects has been recently made in the SMOS soil moisture retrieval
algorithm (Fernández Morán et al., 2016). A new SMOS soil moisture
product integrating this new calibration and with a significantly im-
proved accuracy is being produced. Future research will consider the
calibration of SMAP-Regwith this new SMOS product and further fusion
studies will be continued by applying LRM to the SMOS and SMAP
datasets considering other important variables such as the vegetation
opacity.
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