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Abstract—Determining the date of snowmelt clearance is an
important issue for hydrological and climate research. Spaceborne
radiometers are ideally suited for global snowmelt monitoring.
In this paper, four different algorithms are used to determine
the snowmelt date from Scanning Multichannel Microwave Ra-
diometer and Special Sensor Microwave/Imager data for a nearly
30-year period. Algorithms are based on thresholding channel
differences, on applying neural networks, and on time series analy-
sis. The results are compared with ground-based observations of
snow depth and snowmelt status available through the Russian
INTAS-SSCONE observation database. Analysis based on Mod-
erate Resolution Imaging Spectroradiometer data indicates that
these pointwise observations are applicable as reference data. The
obtained error estimates indicate that the algorithm based on time
series analysis has the highest performance. Using this algorithm,
a time series of the snowmelt from 1979 to 2007 is calculated for
the whole Eurasia showing a trend of an earlier snow clearance.
The trend is statistically significant. The results agree with earlier
research. The novelty here is the demonstration and validation
of estimates for a large continental scale (for areas dominated by
boreal forests) using extensive reference data sets.

Index Terms—Eurasia, radiometer, Scanning Multichannel
Microwave Radiometer (SMMR), snowmelt, Special Sensor
Microwave/Imager (SSM/I), time series.

I. INTRODUCTION

NOW cover and its evolution strongly affect hydrological

and climate processes. Snow-covered terrain has an albedo
that is considerably higher than that of bare terrain, fundamen-
tally affecting the processes of the atmosphere. Consequently,
snow is an important parameter in weather forecasting and
climate models (global circulation models and Earth system
modeling [1]). Concerning hydrological processes, informa-
tion on snow depth (SD) or snow water equivalence helps in
predicting the water discharge during the melting period [2].
Estimating the timing of snowmelt, either the melting onset
or snow clearance, indicates when this takes place, although
human activities such as dams and topography also have sig-
nificant effects to water systems. Satellite data can be used
for detecting the snowmelt [3]-[10]. This has also various
operational applications. Hydropower plants can better adjust
water flow, and authorities can be prepared for possible flood
hazards. Melting takes place rapidly, and this is a special chal-
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lenge for spaceborne snowmelt monitoring. For hydrological
applications, snowmelt must be determined in a time scale of
one week or even on a daily basis [11]. The timing of the
snowmelt is also an important factor for the length of the annual
growing season at northern latitudes [12]. As snow melts, the
carbon uptake from the atmosphere magnifies [13]. The amount
of carbon dioxide in the atmosphere is one of the key factors
in global climate change, and thus, the onset and progress of
snowmelt provide information that is relevant to annual carbon
balance.

A certain amount of heat is needed to initiate the snowmelt.
The long-term evolution of the dates of the onset of snowmelt
and of snow clearance gives insight whether the snow melts
earlier presently than 30 years ago, and thus, information
related to global warming is obtained. When the time series of
global/large scale maps on the snowmelt are compared (in a
statistical manner) with simulations made with existing climate
models, the reliability of model predictions can be analyzed.

The time series of global observations on snow cover have
been available for three decades from various types of satellite
instruments. Passive microwave radiometers have one substan-
tial advantage over optical instruments. Optical instruments
observing the Earth’s surface, such as spectrometers and scan-
ners, are dependent on the Sun illumination and on cloud-free
conditions. Clouds can hinder the use of optical instruments
for weeks, which is a critical handicap concerning the mapping
of the snowmelt. Microwave instruments, such as multichannel
microwave radiometers, do not have this drawback. Addition-
ally, at microwave frequencies, the dielectric constant of water
is much larger than that of ice and snow (and majority of natural
substances). Thus, the presence of liquid water in a snowpack
has a strong effect on microwave emission signatures.

Microwave radiometers have a coarse resolution (on the
order of 5-50 km, depending on instrument and frequency)
but a wide swath width. For example, the Special Sensor
Microwave/Imager (SSM/I) [14] has a swath of 1440 km.
Hence, it can measure most of the globe within 24 h. In climate
research applications, the coarse spatial resolution is quite ac-
ceptable since the resolution of climate models is typically even
coarser. For example, the Hadley Centre uses high-resolution
regional climate models with a resolution of 50 km x 50 km
and global atmosphere—ocean general circulation models with
a resolution of over 100 km [1]. As the resolution of climate
models is coarser than that of radiometer data, radiometer-
derived products can be used as input and validation data for
climate models.

The continuous time series of radiometer data are available
starting from 1978. The Scanning Multichannel Microwave
Radiometer (SMMR) [15] was launched in 1978 onboard the
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Nimbus-7 satellite. It operated until 1987. In 1987, the Defense
Meteorological Satellite Program launched its first satellite with
the SSM/I onboard. A series of satellites with SSM/I instru-
ments have operated since then, producing nearly continuous
stream of data. In 2002, NASA launched the Aqua satellite with
the Advanced Scanning Microwave Radiometer onboard.

Algorithms to detect snowmelt from spaceborne microwave
radiometer data have been investigated by several authors, typi-
cally applying brightness temperatures observed at frequencies
of 19 and 37 GHz. The onset of snowmelt in Greenland was
investigated by Abdalati and Steffen [3] using a so-called cross-
polarized gradient ratio, i.e., XGPR =T19y, — T37v/T19n + 137y,
where v and h denote vertical and horizontal polarizations,
respectively. Additionally, Hall et al. [16] used the cross-
polarized gradient ratio for snowmelt detection. A slightly dif-
ferent algorithm was proposed by Drobot and Anderson [4], as
they applied the brightness temperature difference 19, — T37h.
Accordingly, Smith [17] employed the brightness temperature
difference 1T%9, — T37,. Takala et al. [8] used two channel
differences 137 — Thg9y and T57, — 119y in a corresponding al-
gorithm for the detection of the onset of snowmelt. Takala et al.
[8] tested and validated the algorithm for boreal forests (taiga
belt) of Finland, whereas Drobot and Anderson [4] and Smith
[17] applied their algorithms over the Arctic sea ice.

A time series analysis for snowmelt detection from ra-
diometer data was introduced by Mognard et al. [7]. They
used channel differences 779y, — 1571, in order to obtain global
estimates of the snowmelt for a 20-year period. The results
obtained are interesting but lack validation against ground truth.
Joshi et al. [6] also successfully applied a time series analysis
for radiometer observations over Greenland. In this paper, a
time-series-based algorithm is introduced for the taiga belt
utilizing the channel difference T57, — T1gy.

Artificial neural networks have been used to some extent to
map the properties of snow. Tedesco ef al. [18] applied neural
network methods to estimate snow water equivalence and SD.
Simpson and Mclntire [19] used a feedforward neural network
with Advanced Very High Resolution Radiometer data to es-
timate the properties of snow cover. Takala et al. used a self-
organizing map (SOM) to estimate the onset of snowmelt with
SSM/I data. In this paper, the SOM-based algorithm is modified
in such a way that the dependence on knowing snow water
equivalence and physical temperature has been eliminated. For
comparison, a feedforward neural network is also tested here.

A general problem in earlier work has been the lack of proper
ground-truth reference data. In particular, the lack of reference
data has been hampering the validation of algorithms for a
continent-scale mapping [7] and for periods of several decades
[3]1, [5], [16]. Foster et al. [20] have used weather observation
and in situ radiometer data to validate satellite estimates in tun-
dra, but their work does not cover recent times. Moreover, the
work carried out for forested regions has been limited, although
the data in [13] and. [7] include forests. The earlier work of
the authors of this paper [8], [10] has been focused to boreal
forests. In the earlier work, data from the Watershed Simulation
and Forecasting System of the Finnish Environment Institute
(SYKE) were used as a reference for testing and validating the
detection of the onset of snowmelt for the region of Finland.
However, the accuracy of model simulations poses a problem.
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In [9], reference data from the Meteorological Archival and
Retrieval System of the European Centre for Medium-Range
Weather Forecasts was applied. However, due to the gaps in SD
data, referencing had to be performed using surface temperature
data. In this paper, extensive Russian INTAS-SSCONE [21]
in situ SD data covering most of Eurasia are used. This made
possible the testing and validation of algorithms covering north-
ern Eurasia for a long time span.

Snow cover and climate changes in Eurasia have been studied
extensively using ground-based data, satellite instruments other
than microwave radiometers, and physical parameters apply-
ing reference information from other than the snowmelt date.
Brown [22] has constructed snow cover extent (SCE) and snow
water equivalent data from 1915 to 1997 using station data
from China, Canada, the U.S., and the former Soviet Union.
The results show a reduction of SCE in Eurasia. Serreze et al.
[23] discuss many physical parameters, which include the snow
cover area (SCA) that has been derived using optical satellite
data. Their values show below-normal SCA values in the 1990s.
Dye [24] has used the last-observed snow cover in spring [week
of last snow (WLS)] and other parameters and constructed time
series from 1972-2000 using optical satellite observations. His
results show three to five days/decade shift in WLS. Bamzai
[25] used satellite-derived snow cover data, including snowmelt
date, and compared the results to the values of arctic oscilla-
tion. His work shows an increase of snow-free days per year.
Smith et al. [13] have analyzed trends in soil freeze and thaw
cycles from 1988 to 2002 using radiometer data. Their results
show that soil thaws three to five days/decade earlier, depending
on land cover. The results of Foster et al. [26] indicate that snow
melts four to seven days earlier on Arctic areas since the late
1980s compared to the previous 20 years.

Brown [22] utilizes observations from the station network.
This has the advantage of spanning the time series to the
beginning of the twentieth century. On the other hand, the
spatial and, to some degree, also temporal resolutions are poor.
Serreze et al. [23], Dye [24], Bamzai [25], and Foster et al.
[26] use optical data that have excellent resolution but are
limited by weather and illumination conditions. Smith ez al.
[13] use microwave radiometer data. They detect the soil freeze
and thaw; the latter is a related phenomenon compared to the
snowmelt. The time series of Smith er al. [13] ended in 2002.
This work includes estimates for 2003—2007.

II. MATERIALS AND METHODS

In this paper, a time series of brightness temperatures cover-
ing Eurasia from 1979 to 2007 was used together with INTAS-
SSCONE SD and status data. The data are described in detail
in Sections II-A and B. Four different algorithms were used to
estimate the day of snowmelt. The algorithms are as follows:
1) a channel difference algorithm; 2) a self-organizing neural-
network-based algorithm; 3) a feedforward neural-network-
based algorithm; and 4) a time series thresholding algorithm.
These algorithms are explained in Sections II-C-E.

A. Radiometer Data

A complete time series of radiometer data from 1978 to 2007
has been acquired from the National Snow and Ice Data Center
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in Boulder, CO. For the years 1978-1987, the SMMR [15] data
from Nimbus 7 are used, whereas for 1987-2007, the SSM/I
data from Defense Meteorological Satellite Programs (DMSPs)
D-11 and D-13 are used. All data are EASE gridded [14],
which means that the projection used is north azimuthal equal
area with a nominal resolution of 25 km x 25 km. Geolocation
files and exact overpass time (UTC) are provided with the data.
For each channel per day, there is a different file for ascending
and descending nodes. Since the orbits of DMSP series and
Nimbus 7 are Sun synchronous, the local time in every ascend-
ing or descending image is the same for all pixels, regardless of
the overpass UTC time. The local overpass time varies in time,
but the difference between randomly chosen dates is not larger
than 2 h. The descending-node image corresponds to early
morning (5:00-7:00 A.M. local), while the ascending-node one
corresponds to late afternoon (3:00-5:00 P.M. local). In the case
of SSM/I, the local time also depends on which DSMP satellite
the instrument has been onboard. In this paper, descending and
ascending data have been applied separately for each other.

The SMMR has frequencies of 6.6, 10.7, 18.0, 21.0, and
37.0 GHz. At each frequency, vertical and horizontal polariza-
tions are measured, resulting to ten channels. The swath width
of the SMMR is about 600 km. The SSM/I has frequencies of
19.3,22.2,37.0, and 85.5 GHz. Both horizontal and vertical po-
larizations are measured, except for 22.2 GHz where vertical po-
larization is only measured. The swath width is about 1400 km.

The most important frequencies for snow detection are bands
around 18 and 37 GHz (available for all instruments). With
SSMV/I, the footprint sizes are 70 km x 45 km and 38 km X
30 km at 19.3 and 37 GHz, respectively. The SSM/I provides
data on a daily basis, and due to the wide swath (1400 km), most
of Eurasia can be mapped in 24 h. There are still some data gaps
in both time and space. The SMMR had a much more narrow
swath (600 km), and thus, averaging over time is a necessity
to obtain the necessary areal coverage. The SMMR data are
available on every other day only. There are also some long
periods when the instrument was switched off.

Locations of SD-measuring stations in INTAS-SSCONE data set.

B. In Situ on Snow Status and Optical Satellite Reference Data

The used reference data are the INTAS-SSCONE SD data
set [21] from years 1978-2001. The snowmelt date is estimated
from a specific snow status flag included in the data set.
Measurements have been made at 223 different locations, as
shown in Fig. 1. Depending on the date, some of the data are
missing. The worst case is when the data are not available
for half of the stations, and the best case is when only ten
stations lack observations. There are 1704 and 2205 snow
clearance date estimates for the SMMR and SSM/I data with
proper validation data, respectively. For each measurement site,
there is a WMO station index, date of the measurement, SD
in centimeters, a qualitative estimate of the snow-covered area
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Fig. 2. SD (in centimeters) and snow status codes from FMI weather station
data and brightness temperature 737 — 179y from SSM/I data [14]. The snow
status code has a value of nine for dry snow with 100% coverage and a value
of seven for wet snow with 100% coverage. The value of six is wet snow with
coverage > 50%, and the value of five is snow with coverage < 50%. The
90% level of difference between the maximum and minimum of the brightness
temperature serves as the detection limit.

(SCA), and a status flag value. The flag describes whether
the melt is temporary or continuous (snow clearance) and
whether the value of SD is correct or to be rejected. The
INTAS-SSCONE data set also has a short description of station
characteristics, for example, information on whether the station
is protected from strong wind or not. As to snowmelt, it is
considered to take place if the flag changes from value “SD
is correct” to either “temporary melting” or to “continuous
melting.” If there is more than one such change (typically two
to three), only the last one in the 180-day period is taken into
account. There are no error estimates in the INTAS-SSCONE
data, but in general, the SD measurement can be considered
accurate. SD is customarily manually measured with a rod,
ensuring reliable data. The automated measurements have also,
in general, a proper accuracy. On the other hand, the snowmelt
flag is subjective to the observer. Fig. 2 compares the pointwise
measurements with satellite-observed brightness temperatures.
This demonstrates the correspondence of spatially distributed
satellite observations to snow status observations at a single
location representing the Eurasian boreal forest belt.

Since the INTAS-SSCONE data embody pointwise obser-
vations while the nominal resolution of radiometer data is
25 km x 25 km, it should be investigated whether the INTAS-
SSCONE snow flags are suited for validation work considering
this discrepancy. We approached this task by investigating
the spatial variation of snow cover characteristics within the
radiometer resolution cell. Should there be homogenous snow
conditions (at least at the time of melting onset or snow
clearance when we are most interested at) within the pixel, the
upscaling of pointwise measurements to the 25 km x 25 km
area is well justified. In the investigation, the optical data
provided by the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) was used in order to generate maps describing
the fraction of SCA for 0.005° x 0.005° resolution cells (re-
sembling a MODIS nominal resolution of 500 m x 500 m).
This was carried out using the SCAmod algorithm by
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Fig. 3. Example on the MODIS-based SCA map of a large area in Eurasia, also indicating smaller test sites applied for analysis here.

Metsdméki et al. [27], which was particularly developed for
the boreal zone. As a result, the SCA time series (17 SCA
maps) for the snow-melting period of 2001 was obtained for an
approximately 1500 km x 1600 km area in northwestern Russia
(see Fig. 3). From these maps, 49 subareas corresponding to the
size of a radiometer resolution cell were selected for analyzing
the spatial variance of SCA at different stages of snow melting.
In Fig. 4(a), the evolution of SCAs inside a 25 km x 25 km
subarea is presented. The time series include the mean and
standard deviation of SCA estimates inside the 25 km x 25 km
resolution cell, complemented with individual SCA estimates
for 500 m x 500 m sized grid cells.

Fig. 4(a) clearly shows how snow coverage is very evenly
distributed at the time of melting onset and snow clearance,
while this is not the case during snow melting, e.g., around
the average SCA of 40%. The behavior of SCA in the other
48 subareas is very similar to the one shown in Fig. 4(a).
This is also shown in Fig. 4(b), where the average standard
deviation of SCA as a function of SCA is presented. Clearly,
close to the time of snow clearance, the SCA shows very
little variation (0.13%). This is evidently due the escalating
melting process caused by the gradually increasing proportion
of absorptive snow-free ground, again powering the melting
of the neighboring snow patches. SD, land cover variability,
and other issues are also involved. The analyses show that the
difference between snow clearances in the scale of 500 m when
compared to the scale of 25 km is typically on the order of
+10 days. This indicates that a pointwise observation of snow
clearance can be applied (in a statistical manner) as reference
data to radiometer observations.

C. Channel Difference Algorithm

Takala et al. [8], [10] described a simple channel difference
algorithm to estimate the snowmelt. The algorithm was modi-
fied [9] in order to avoid the dependence on ground-based ob-
served physical temperature. In this paper, the modified version
[9] is used. The algorithm detects the snowmelt situation when

(T37y — Tigy) > — 21K (1)
(Tym — Tigy) < — 10K. )

Latitude 55.5191 Longitude 54.7276 Transmissivity 0.77542
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Fig. 4. Spatial variability of snow cover in 25 km X 25 km EASE-Grid
cells during the snowmelt period. (a) Example for a single grid cell showing
the variability of SCA within the area (all samples, and their mean and
standard deviation observed for the 500 m x 500 m MODIS pixels within the
EASE-Grid pixel. (b) Overall standard deviation as a function of SCA for all
investigated 25 km X 25 km EASE-Grid pixels.

T denotes the brightness temperature and subindices the fre-
quency and polarization of the radiometer. Frequencies of 19
and 37 GHz are available only on the SSM/I. With SMMR, the
19-GHz frequency is replaced with 18 GHz. According to a
brightness temperature modeling by Pulliainen et al. [28], this
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can induce an error of 1-2 K to the frequency difference, which
affects the generation of time series based on various instru-
ments. However, one should note that time series algorithms
are much more insensitive to such an error since they operate
with relative values (see Section V in the following).

Additionally, if, in a period of seven days before the given
date, there are no dry snow estimations, the snowmelt onset
estimate is discarded. The dry snow estimate is calculated using
the algorithm developed by Hall et al. [5].

Chang et al. [29] determine SD by

SD = 1.59(T1on — T37n). (3)
If conditions
SD >80 Tyre < 250K Thr < 240 K )

are met, data are classified as dry snow according to the method
by Hall et al. [5].

D. Neural Network Algorithms

Supervised and unsupervised neural network structures were
also tested to estimate the day of snowmelt.

Takala et al. [10] described a snowmelt detection algorithm
based on SOM [30]. As with other snowmelt detection algo-
rithms, the dependence on knowing the snow water equiva-
lence or physical temperature as prior information is typically
undesirable. Thus, in this paper, the SOM-based algorithm is
simplified to be used only with brightness temperature data.

SOM consists of a layer of neurons, which usually form a
2-D grid. For each neuron, there is a weight vector w, and all the
neurons share the input vector T. In this paper, the input vector
is T = [Tigv Toov T37v T19n T37n]- The 22-GHz channel has no
significant effect to the results and could be left out. The trained
network normally operates as follows [31]. The input vector T
is presented to every neuron in the network. All the neurons
have a different weight vector w, and the Euclidean distance of
the weight and input vector for every neuron is calculated. The
neuron whose weights are closest to the input is activated. This
can be interpreted so that the input vector T presented to the
network is classified to belong to the vector class of neuron k.
SOM learns unsupervised, which means that it is unknown that
a particular neuron responds to a certain class of input vectors.

The trained network is used by feeding the input vector
and checking out which neuron is activated. After training,
only such input vectors are selected, for which SD is less than
1 cm. The neuron winning in most cases is then selected to rep-
resent the case when snowmelt takes place. Typical for a SOM
is that the classes presented by adjacent neurons in the fully
trained network have more similar classification properties than
that by distant neurons. This means that a group of neighboring
neurons, instead of a single neuron, can represent the correct
classification of snowmelt. In this paper, 3 X 3 neurons have
been used.

The other tested method is the use of a feedforward neural
network [31], a network whose neurons do not have any feed-
back from their output back to the input. Each neuron consists
of a weight vector w and an input vector x. There can be
an additional bias term that always has a constant value of
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one and its own weight. The dot product between the input
vector and the weight vector is calculated, and an activation
function is applied to this value. An activation function can be
linear or nonlinear. If the backpropagation algorithm is used,
the activation must be differentiable. Commonly, a linear or
sigmoidal function is used. The trained network is used as
follows. First, all the outputs of the neurons in the hidden layer
are calculated. Next, the outputs of the neuron(s) of the output
layer are calculated. The signal propagates from the input layer
to the hidden layer and then to the output layer. The output
vector y corresponding to the input vector x is thus obtained.

Unlike SOM, a feedforward neural network learns super-
vised. Initially, the weights of every neuron are randomly
assigned. The input vector x is presented to the network, and the
output y’ is calculated. For a supervised network, the desired
output y is known. The error y’ — y is then calculated. The
functional form of the activation function is known, as well as
the current values of the weights. The relative amount of the
error of each hidden-layer neuron can thus be propagated back
from the output layer. The error is calculated backward until the
input layer is reached. Since the error for each neuron is known,
the weights are then adjusted such that the error gets smaller.
The amount of adjusted weight is controlled with a learning
parameter that gradually decays in time. Thus, it is ensured
that the network reaches some state of equilibrium. This back-
propagation of error and adjustment of weights are calculated
for each pair of training input vector x and output vector y.
When the adjustments of the weights or the error of the output
is reasonably small, the training is considered to be finished.

In this paper, the input vector T = [Thigy Tooy T37v Tion
T571) is the same as for the case of SOM (again, the 22-GHz
channel can be left out). The feedforward network has an input
layer, a hidden layer, and an output layer. The network consists
of five neurons in the hidden layer and one neuron in the output
layer. The activation function is sigmoid for all neurons. Other
functional forms like tangent sigmoid and linear activation
[31] were tested but discarded. The training output vector is
determined as follows. If SD is less than 1 cm, the output is
one; otherwise, the output is zero.

E. Time Series Thresholding Algorithm

The three previously presented algorithms attempt to de-
termine the snowmelt on a daily basis. For the purpose of
climatic analysis, the time series approach may be better suited.
The channel difference T57, — Thgy is commonly used [4],
[17] in passive microwave remote sensing of snow. A typical
example of the time series of SD and the channel difference
is shown in Fig. 2. As the snow melts and SD decreases,
the channel difference increases. This observation leads to the
following algorithm. Determine the maximum and minimum
of the channel difference 137, — 119, and when a certain level
above the minimum is achieved, the snowmelt is considered to
take place. This is shown as a detection limit in Fig. 2.

Sometimes, depending on location, the pointwise-observed
snow status flag and the melt indices based on brightness
temperature channel difference fluctuate considerably. Since
the measurements of a radiometer are sensitive to the presence
of liquid water, possibly, the observed fluctuation is related
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to cyclic melting and freezing of the surface of the snow-
pack. However, in most cases, the difference between the final
snowmelt and these temporary melt—refreeze cycles is distin-
guishable. Thus, the snowmelt is more accurately estimated
from the maximum and minimum of the time average of the
channel difference.

Thus, we obtain

D(t) =Ts7,(t) — Tro4(t) (5)
Diax tavg = max (D(tg), D(t1),...,D(tn)) (6)
Dmin,tavg = min <D (tO) 7D (tl) PR D(tN)> (7)

<D(t)> zp . [Dmax,tavg - Dmimtavg] + Dmimtavg (8)

where D is the channel difference, ¢ is the time (in days), and
p is the level of detection (often 90%; p = 0.9). For each time
t, condition (8) is evaluated. If it holds, the estimate for time ¢
has a value of one; otherwise, it is zero.

The averaging period of seven to eight days gave the best re-
sults when many different averaging periods were tested. Since
averaging determines only the detection limit, and detection
is made from the original channel difference data, the spikes
produced by temporary melt events are quite often detected. For
some purposes, this is desirable. Typically, the most important
melting incident is the actual snow clearance date. To determine
that time, one must eliminate the temporary melts from the data.
This can be satisfactorily achieved by averaging the estimate
vector and thresholding at some level between zero and one
(value of 0.9 found here). The threshold value of 0.9 was
empirically determined to obtain a good fit.

III. METHOD VALIDATION AND RESULTS

The validation is based on qualitative pointwise observa-
tions (INTAS-SSCONE snow flags), as described earlier. In
Section II, we concluded that the pointwise nature of snow
clearance data is not a problem when validating the radiometer-
based estimates. In this investigation, snow status coding with
more quantification levels than the INTAS-SSCONE data can
offer is appreciated. In practice, this was only possible for the
region of Finland, for which FMI weather station observations
with detailed snow status information were available. There-
fore, we compared the brightness temperature data with SD and
snow status codes from FMI observations. The snow status code
has values of nine for dry snow with 100% coverage, seven for
wet snow with 100% coverage, six for wet snow with coverage
> 50%, and five for snow with coverage < 50%. The temporary
(value of two) and continuous melting (value of one) flags in
the INTAS-SSCONE database correspond to the values that are
greater than seven in the FMI weather observation data flag.

Fig. 2 shows an example of the FMI snow status code
and SD in comparison to the brightness temperature channel
difference. The detection limit of the algorithm described in
Section II-E is also plotted. Fig. 2 shows that the qualitative
estimate agrees relatively well with the observed changes in
brightness temperature difference for this case. The observed
difference between the regional satellite-databased estimate and
observations at a single station is about five days. The SD mea-
surements and flag estimates are made at a single location only.
Uncertainties arise as the measurements in a single location
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Fig. 5. Feedforward network was trained with input brightness temperature
data and desired output data. The network was trained with ascending-node data
and even years from 1990 to 2000. After the training, the input data set used in
training was fed to the network, and an estimate of the output was calculated
and compared to the desired output. If the training was successful, almost all
the cases would have an error that was very close to zero.

are considered to represent to the area surrounding the station
location and the area corresponding a whole EASE-Grid pixel.
However, as Fig. 4 shows, point observations can be considered
as good representatives of the SD and melt in the whole region.
However, it should be kept in mind that the qualitative nature
of the snow status flag is a potential source of error in accuracy
assessments.

To test and compare the performance of the four algorithms,
data from all 223 SD measurement sites were extracted for a
period of 180 days beginning January 1 every year. Bright-
ness temperature data from corresponding pixels of EASE-
Grid were extracted as well. The SSM/I data were selected
for testing. The years from 1990 to 2000 were used in the
validation process. The purpose of validation is to compare the
performance of different algorithms and not to address cali-
bration issues between different instruments. Neural-network-
based algorithms use part of the data for the training of the
network. The SOM and feedforward network were trained with
data from even years and validated with odd years or vice versa.
Channel difference and time series thresholding algorithms do
not need actual training data. However, the triggering value
p = 0.9 was empirically selected for the time series algorithm
(8), as that value gave the highest performance in algorithm
testing.

Algorithms were validated with the data of odd or even years
in order to enable comparison with other algorithms.

Tests were conducted for both ascending (afternoon) and
descending (early morning) data. In the case of neural-network-
based algorithms, a good weight set was selected from a set
of ten different training runs. The quality of the training was
determined visually by inspecting the error histogram. In the
case of feedforward network, it is possible to compare how well
the network learned to estimate the output data from the input
data. This is shown in Fig. 5.

With time series thresholding, it became apparent that miss-
ing data, together with postfiltering, cause some detections
to vanish, and this is problematic when maps of snowmelt
are calculated. If the SMMR data are used, there are lots of
data gaps due to the narrow swath width. Thus, interpolation
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TABLE 1
STATISTICAL ERROR CHARACTERISTICS OF DIFFERENT ALGORITHMS
WITH DIFFERENT PARAMETERS VARIED DURING THE
1990-2000 TEST PERIOD

Algorithm Mean Median Standard ~ Node Even or
(days) (days) Deviation Odd

(days) Years
Channel 203 13 351 A E
Difference 12.1 4 34.6 D E
Algorithm 195 13 36.1 A O
14.8 6 36 D O
SOM Neural 6.1 6 31.1 A I
Network 23.9 20 39 D E
Algorithm -6.1 -8 32.1 A (6]
16.9 14 39.8 D O
Feedforward 22.4 21 37.5 A E
Neural 22.6 20 38.7 D E
Network -5.5 -8 354 A (6]
Algorithm -14.2 14 332 D (6]
Time Series -3.2 -2.5 16.9 A E
Thresholding -5.4 -5 15.3 D E
Algorithm -2.6 -3 18.3 A (0]
-7.7 -9 16.8 D O
Time Series 1.6 1 21.5 A E
Thresholding -3.9 -4 21.2 D E
with 2.1 0 22.3 A (6]
Interpolation -4.25 -4 21.3 D O

A = ascending (afternoon data) D=descending (early morning data)

of channel difference data with time series thresholding was
included in order to obtain a full spatial coverage.

The estimation error for a particular year at a particular test
site is

€ = tobserved — testimated- (9)

The unit of melt detection moment ¢ is one day; tobserved refers
to the INTAS-SSCONE-data-derived snow clearance date (ac-
cording to the snow flag value), and festimated refers to the
estimated date of snowmelt using a particular algorithm. For
each algorithm, the mean, median, and standard deviation of all
the errors are calculated for a testing period of 1990-2000. If
either observation or estimate is missing, the value is not taken
into account. The results are presented in Table I. Four different
sets of values are presented, depending whether ascending or
descending data are used and whether the testing material has
been taken from even or odd years. Results clearly suggest that
time series thresholding is the most accurate algorithm in terms
of mean (from —4.25 to 2.1 days) and standard deviation of
estimation error (from 15.3 to 22.3 days), so this is the most
applicable one among the tested algorithms for the purpose of
climatic studies.

Since the comparison of different algorithms in Table I was
carried out only using the SSM/I data, it was crucial to test
the time series thresholding algorithm with the SMMR data in
order to verify their similar behavior. Therefore, snowmelt day
estimates using both SSM/I and SMMR data were calculated
for as long periods as possible (both reference and satellite data
available). Interpolation of missing brightness temperature val-
ues was used for both sensors. The results are shown in Fig. 6,
showing a very good performance of snowmelt estimations with
mean errors (biases) of only 0.6 and 1.1 days for the SMMR
and SSM/I, respectively. Both SMMR and SSM/I data gave
similar results with respect to the reference INTAS-SSCONE
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Fig. 6. Error distribution according to (9) of the time series thresholding
algorithm (5)—(8), together with interpolation of lacking brightness temperature
data. There are 1704 and 2205 applicable snow clearance estimates for the
SMMR and SSM/I, respectively.

data, indicating that the joint use of these two sensors in long-
term climate analyses is feasible.

The performance of radiometer-databased snowmelt map-
ping is shown in Fig. 8. The calculated maps of the snowmelt
in northern Eurasia for 1980, 1990, 2000, and 2007 clearly
indicate how the melt is distributed geographically. The results
also show interannual variations. For a few chosen test sites that
are circular in shape with radius of 250 km and the center in
Sodankylid, Verhoyansk, Tunguska, Novosibirsk, and Moscow,
the time series of snowmelt estimates are shown in Fig. 7. The
mean (averaged over time) snowmelt dates for these locations
are the days of year 139, 146, 132, 113, and 100, respec-
tively. The corresponding standard deviations in the timing of
snowmelt are 6.7, 5.6, 9.1, 6.7, and 11.7 days. The slopes of
the linear fits are —0.34, —0.24, —0.43, —0.07, and —0.69, re-
spectively. The statistical significance was tested by calculating
95% and 90% confidence levels for the slope. The results are
presented in Table II. Comparisons of the confidence intervals
with slope 0 indicate that the trends are, in general, significant.

Detailed analysis of the difference between INTAS-SSCONE
observations and radiometer-databased melt estimates, as a
function of time, was also carried out. The results indicate that
mean yearly bias can show values that are slightly different
for the early years (SMMR data) than for the later period
(SSM/I data). This would cause an effect of about —1.6 days
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Fig. 7. Snowmelt in five different test sites in Eurasia on 1979-2007. The
onset of snowmelt is averaged for a circular area having a radius of 250 km,
and the place in the title is in the center of the area. The confidence levels of the
slopes are presented in Table II.

TABLE 1I
SLOPES AND 90% AND 95% CONFIDENCE LEVELS
CALCULATED FOR THE SLOPES IN FIG. 7

Centre of the circular ~ Slope 95% 95% 90% 90%
test area with 250 lower upper lower upper
km radius bound bound bound bound
Sodankyla -0.35 0.64 -0.06 -0.59 -0.11
Verhoyansk 0.24 -0.49 0.00 -0.45 -0.04
Tunguska -0.43 -0.83 -0.04 -0.76 -0.10
Novosibirsk -0.07 -0.39 0.24 -0.33 0.19
Moscow -0.64 -1.13 -0.15 -1.05 -0.23

per decade for the estimated trend of snowmelt. In practice,
the analysis suggests that a value of 2.6 days should be added
to the snowmelt dates representing years 1979—1987, resulting
to slightly delayed snow clearance dates. Moreover, a value of
1.0 day should be subtracted starting from the year 1992 indi-
cating earlier snowmelt dates than those shown in Fig. 7. Thus,
if this correction is made, the negative trends shown in Table II
and Fig. 7 would magnify (a decrease of 0.16 to slope factors
in Table II). For 1988—1991, the analysis of temporal bias in-
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dicates a mismatch between INTAS-SSCONE snowmelt dates
and radiometer retrievals higher than that obtained for other
19 years. This may indicate problems in either reference or
satellite data (first SSM/I instrument onboard the FOS8 satellite).

The slope of the linear fit was calculated for every pixel in
Eurasia [Fig. 9, (top)] to demonstrate the evolution of snow
clearance date in the period of 29 years. Red tones with negative
values indicate earlier melt, whereas blue tones with positive
values indicate later melt. The corresponding slopes were also
calculated using the station-wise data from INTAS-SSCONE
stations [Fig. 9, (bottom)]. Fig. 9 (top) is determined by in-
cluding the bias correction between the SMMR and SSM/I data
retrievals discussed earlier. However, this has only a marginal
effect to the results (it decreases the shown trend with a constant
—1.6 days/decade). Years 1988—1991 were excluded from the
trend analysis of Fig. 9 (top).

IV. DISCUSSION

The comparison of different algorithms in Table I reveals
immediately one important aspect. When channel difference
and neural-network-based algorithms are used, the standard
deviation between the estimated snow clearance date and the
reference data is as high as over 30 days, but when time-series-
analysis-based algorithms are used, the standard deviation re-
duces to slightly above 20 or even less. This is explained by the
fact that the first three mentioned algorithms examine the data
on a daily basis with only current and historical observations
available, whereas the time series algorithm takes the whole
time series of radiometer observations into account. This justi-
fies the offline use of time-series-based algorithms when accu-
racy is the main concern, such as in historical climate studies.
However, in operational (near real time) use, data can only be
analyzed using current day or past observations. An important
factor contributing to the error distribution is the accuracy of
estimation of the snowmelt date from the snow status flag. The
flag is a qualitative estimate and can thus be inaccurate.

The channel difference algorithm (1)-(4) has a standard
deviation that is close to 35 days, regardless if even or odd years
are used or whether the data used are either from ascending
or descending node. It is evident that the selection of orbital
node affects the mean and median. This can be explained by
the local time that is either early morning or late afternoon.
The diurnal melting cycle during the day causes the signatures
to be different and, hence, the difference in mean. The clear
difference between median and mean indicates an asymmetric
deviation of error. Since the algorithm was originally developed
using snow wetness data from hydrological model predictions
only, it is possible that the asymmetry is due to the different
kinds of data applied for algorithm development.

The self-organizing network-based algorithm seems to work
better when trained and tested with ascending-node data. Both
mean and median errors are closer to zero when using ascend-
ing node instead of observations from descending node.

Switching between even and odd years does not seem to
affect the quality of the algorithm. The error distribution is more
symmetric than in the case of the channel difference algorithm.
Although the SOM-based algorithm seems to work, it does not
offer any significant advantage over the much simpler channel
difference algorithm.
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Fig. 8. Maps of the onset of snowmelt for 1980, 1990, 2000, and 2007. The results are calculated using the time series thresholding algorithm. The color code is

the number of days since January 1 corresponding year.

The standard deviation using the feedforward neural-
network-based algorithm seems to be slightly lower when
tested with data from odd years. Mean and median errors tend
to be closer to zero also when data are from odd years. The
distribution of error is quite symmetric. Again, no significant
advantage over the simpler algorithm is seen. Since the feedfor-
ward algorithm is trained supervised, it is possible to check how
well the neural network can be trained (Fig. 5). If a supervised
neural network is perfectly trained, the output error is very close
to zero when the network is fed with an input vector used in the
training.

After a particular training feeding, the network with input
vectors used in training ends up with about 50% of the cases

that are close to zero and about 50% that are not. This suggests
that the differentiation between snow-covered area and bare
ground is sometimes possible and sometimes not. This is logical
since very wet snow and bare wet ground contain liquid water,
and the microwave emissivity can be close to one in both
cases. Although different training sessions and varying training
parameters have been applied, the result can be a consequence
of improper training. To overcome this problem, additional
data, such as temperature data derived from synoptic stations
or infrared satellite observations, could be used.

The time series thresholding algorithm (5)—(8) without chan-
nel data interpolation performs better when descending-node
(early morning) data are used. However, the mean and median
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are closer to zero when ascending data are used. The use of
even or odd years does not affect the results. By plotting the
maps, it became evident that some cases in error analysis were
discarded due to the missing data. When channel difference
data are interpolated for the missing dates, the results become
somewhat different. The standard deviation is larger than in the
case of noninterpolated channel data, but this could be easily
explained as the error contribution from missing data cases is
discarded in postprocessing. The error then does not depend on
the node or the years used. Using ascending data, the mean and
median are very near to zero.

Since gaps are typical with SMMR observations, the error
analysis was extended to the SMMR data using channel data
interpolation for years 1979-1987. The same procedure was
conducted for the SSM/I data for every year from 1988 to 2001.
Fig. 6 shows that the mean, median, and standard deviation
are almost the same for both instruments. As presented in
Section II-B, the pointwise measurement of SD represents the
25 km x 25 km EASE-Grid pixels when the snow cover is full
or almost melted.

In Fig. 8, the snowmelt for the whole Eurasia is shown
for 1980, 1990, 2000, and 2007. Although there is variation
between years, the maps feature a different development of
snowmelt in Europe when compared with Asia. Very early
snowmelt dates obtained for the southwest part of the map
region indicate that the actual seasonal (permanent) snow cover
does not typically exist for this part of Europe. This overall
behavior is most probably due to the effect of Arctic oscil-
lation [23], [25] and North Atlantic oscillation [23]. Some
geographical features, such as Scandinavian mountains and
Ural, are visible since the snow begins to melt later on the high
mountains. The effects of topography and land use affect the
microwave brightness temperature. Recently, many global land
use maps have become available, but their usefulness in analysis
is limited [32], [33]. This is somewhat true for local land cover
data too [34]. The authors will address this problem in a more
detailed manner in future work.

In Fig. 6, the temporal behavior of the snowmelt for some lo-
cations in Eurasia is presented. The negative slopes indicate that
the snow now melts 1-7 days earlier than it did ten years ago.

The 95% and 90% confidence intervals for the slopes are
presented in Table II. The negative trend is a statistically
significant trend in most cases. The geographic location of the
test site is significant. The more to the south and the more to
the west the location is, the earlier the snowmelt is. The largest
negative slope value around Moscow indicates that the change
in snowmelt in the European side of Eurasia has been more
rapid than in the Asian side. The results are, in general, in line
with the analyses performed by Dye [24] and Smith et al. [13].

In Fig. 9 (top), the decadal trend map of snow clearance date
derived from satellite data demonstrates that the snow melts
earlier today than it did 29 years ago in most parts of Eurasia,
particularly in the European side of Eurasia. On mountains such
as Ural and Scandinavia, on some wetlands, and on large areas
of Arctic tundra, the melt appears to take place later in recent
years. This can either be a real phenomenon caused, for ex-
ample, by increased snow fall or an anomaly due to land cover
and/or topography, which needs to be researched further. For
applicable INTAS-SSCONE stations, the trend map has been
derived [Fig. 9, (bottom)]. These results do not show such clear
spatial trends as the satellite-data-derived map do [Fig. 9, (top)].
A possible reason is that the available pointwise observations
may exhibit a higher variance with respect to the real timing
of snowmelt than the satellite data retrievals (as areal melting
characteristics for grid cells of 25 km x 25 km are considered
here). Additionally, the spatial distribution of INTAS-SSCONE
monitoring stations is sparse. Thus, ground-based observations
cannot be interpolated to yield the trend map derived from satel-
lite data, even though they can be used to calibrate and validate
satellite-databased snow clearance date estimates. An important
finding is that the mean annual difference between pointwise
INTAS-SSCONE reference data and satellite data retrievals
only shows a slight difference between SMMR and SSM/I data
retrievals but not otherwise. The difference between the sensors
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can be accounted for in trend analysis, which is performed in
Fig. 9. The magnitude of this correction for the decadal trend is
—1.6 (days per decade). The results of Fig. 9 (top) only slightly
change if this correction factor is excluded. It can be con-
cluded that the satellite-data-derived snowmelt trend shown
in Fig. 9 (top) is a realistic estimate; the level of error cannot,
in general, exceed the value of about 1.6 days per decade.

In the case of real-time operational use, the time series
algorithm cannot be used as such since it requires the brightness
temperatures to be available for the period when the snowmelt
had already taken place. The performance of channel difference
and neural network algorithms are not at the same level with
that of the time series algorithm. However, the error estimates
are based on comparisons with point observations, and the
accuracy characteristics over larger areas may be higher than
the quantitative values reported here.

The accuracy of snow clearance date estimates could be
possibly improved by applying in future work in siru data
as supplementary data to radiometer observations. The effect
of land use must also be addressed. Land use classification
GLC2000 [35] suggests that the land use of the Tunguska site
is “water bodies.” This partly explains the largest value of
standard deviation of snowmelt in Fig. 6. Although the time
series approach is much better in terms of accuracy, the effect
of land use may be present.

V. CONCLUSION

This paper has shown that it is possible to estimate snowmelt
dates accurately in Eurasia from spaceborne microwave bright-
ness temperature data. The results showed a standard deviation
of ~20 days when compared with pointwise reference in situ
data. MODIS-databased analysis showed that the pointwise
observation was a valid representation for the 25 km x 25 km
pixels at the time of snow clearance, and thus, the INTAS-
SSCONE data can be used as reference data for satellite ob-
servations. Altogether, four algorithms to map snowmelt were
proposed and tested. The best agreement with reference data
was obtained using the time series thresholding algorithm.

Snowmelt maps were derived and analyzed for 29 sepa-
rate years from 1979 to 2007. The melting trend had been
mapped for the whole Eurasia, and the results showed that
snow melted earlier in the European part of Eurasia than in
the Asian part. Examples for a few chosen locations around
the area show statistically significant negative trends indicating
that snow melted even a month earlier than it did 29 years
ago. The results also suggested that interpolating the trend
from pointwise observation was not feasible, whereas satellite
observations provided such information.
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