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The key variable describing global seasonal snow cover is snow water equivalent (SWE). However, reliable
information on the hemispheric scale variability of SWE is lacking because traditional methods such as inter-
polation of ground-based measurements and stand-alone algorithms applied to space-borne observations are
highly uncertain with respect to the spatial distribution of snow mass and its evolution. In this paper, an al-
gorithm assimilating synoptic weather station data on snow depth with satellite passive microwave radiom-
eter data is applied to produce a 30-year-long time-series of seasonal SWE for the northern hemisphere. This
data set is validated using independent SWE reference data from Russia, the former Soviet Union, Finland and
Canada. The validation of SWE time-series indicates overall strong retrieval performance with root mean
square errors below 40 mm for cases when SWE b150 mm. Retrieval uncertainty increases when SWE is
above this threshold. The SWE estimates are also compared with results obtained by a typical stand-alone
satellite passive microwave algorithm. This comparison demonstrates the benefits of the newly developed
assimilation approach. Additionally, the trends and inter-annual variability of northern hemisphere snow
mass during the era of satellite passive microwave measurements are shown.
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1. Introduction

The seasonal snow cover of the northern hemisphere has a major
effect on climate, the water cycle, and biogeochemical cycling. The
winter season surface albedo in northern land areas is controlled by
snow extent, as the difference in the reflectance of snow and snow-
free ground is high. Terrestrial run-off is dominated by snow and gla-
cier mel at mid- and high latitudes and high elevation areas across
Eurasia and North America regions (Barnett et al., 2005). The carbon
balance at northern latitudes is influenced by the length of the
snow season, particularly the timing of snow melt. The respiration
of soil, as well as the thickness of the seasonally thawing active
layer in permafrost areas is related to the timing of snow melt as
well as the seasonal evolution of snow mass (Grogan and Jonasson,
2006). Improved information on snow cover, therefore, provides a
tool to further investigate climatological, hydrological, and green-
house gas processes (such as CO2 and CH4) at middle and high
latitudes.
Snow water equivalent (SWE) is the product of snow depth (SD)
and snow density (ρ) and represents the resulting water column
should a snowpack melt in place. For the purposes of climate re-
search, SWE or SD can be estimated using the interpolation of
ground-based observations (for example, Dyer and Mote, 2006;
Kitaev et al., 2002) although these interpolation methods can lack
temporal resolution and are negatively impacted by the sparse spatial
coverage of observations particularly in northern regions. Improve-
ments to interpolation techniques by applying various kriging ap-
proaches have been suggested e.g. by Hudson and Wackernagel
(1994), Erxleben et al. (2002) and Brown and Tapsoba, (2007). Infor-
mation on snow cover extent (SE) and SWE/SD can be also obtained
from atmospheric reanalysis datasets (for example, as described in
Brown et al., 2010) or by assimilating data from different sources.
For example, the Canadian Meteorological Centre (CMC) produces a
daily gridded global snow depth analysis by combining all available
snow observations with a simple snow model (Brasnett, 1999)
while the National Weather Service produces daily snow information
for the continental United States and parts of southern Canada
through a snow analysis system that also combines observations
with a snow model (Carroll et al., 2006; Rutter et al., 2008). The
point-wise nature of in situ measurements, however, remains in
these products. For instance, the CMC analysis has a tendency
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towards early loss of snow cover in the spring due to the shallow bias
of snow depths reported from observing sites that tend to be located
in clearings (Brown et al., 2010).

For climate applications, long time series are needed in order to pro-
ducemeaningful statistics on trends and variability. Satellite passivemi-
crowave data are commonly used for the retrieval of snow information
because of a wide swath (which produces frequent repeat coverage),
insensitivity to illumination and decreased influence of clouds, multi-
frequency response to the presence of snow on land, and of the avail-
ability of a continuous time series that extends back to 1978 (Table 1).
The limiting factor for the climatological use of passive microwave de-
rived SWE information is the high uncertainty in SWE and SD retrievals
at the hemispheric scale both in terms of systematic and random error
(i.e. Kelly et al., 2003). Most passive microwave SWE retrieval algo-
rithms exploit the negative spectral gradient between a measurement
frequency sensitive to snow grain volume scattering (~37 GHz) and a
measurement frequency considered largely insensitive to snow
(~19 GHz; Chang et al., 1987, 1990; Goodison and Walker, 1995; Kelly
et al., 2003; Mognard and Josberger, 2002; Pulliainen, 2006). The larger
the difference between brightness temperature (TB) measurements at
these two frequencies, the higher the estimate of SWE.

The algorithm originally proposed by Chang et al. (1987) estimat-
ed snow depth from horizontally polarized Scanning Multichannel
Microwave Radiometer (SMMR) measurements. The algorithm has a
physical basis — the parameterization was based on forward simula-
tions with a radiative transfer model. This algorithm has been widely
adopted for estimating SWE from different space-borne microwave
radiometers (Armstrong and Brodzik, 2001) including modifications
to account for variable surface and snowpack characteristics (Foster
et al., 1997, 1991; Tait, 1998). Armstrong and Brodzik (2002) com-
pared the performance of several traditional algorithms (Chang et
al., 1987, Goodison, 1989; Nagler and Rott, 1992; Rott et al., 1991)
and found large errors at the hemispheric scale when compared to
available in situ data. The general tendency was for the algorithms
to underestimate SWE, especially under deep snow conditions,
while algorithm performance broke down completely under wet
snow conditions. Large errors (approaching 100%) were reported in
the hemispheric application of TB difference algorithms by Kelly et
al. (2003) with lake-rich tundra areas proving especially problematic
for this approach (Derksen et al., 2010; Koenig and Forster, 2004).
When applied regionally, land cover specific TB difference algorithms
have reported lower uncertainties (Derksen, 2008; Derksen et al.,
2010, 2005), although consistent underestimation of SWE occurs in
heavily forested areas and the accuracy characteristics are subject to
inter-seasonal variability due to changes in snowpack physical prop-
erties (e.g. when ice lenses are present).
Table 1
Summary of satellite passive microwave sensors.

Platform Sensor Frequency
(GHz)

Swatch
width (km)

Incidence angle
(degrees)

Field of
view (km)

Nimbus-7
(1987)

SMMR 6.6 800 50.3 95×148
10.69 70×109
18.0 43×68
21.0 36×56
37.0 18×27

DMSP F8 to
F-15 (1987)

SSM/I 19.4 1400 53 45×70
22.2 40×60
37.0 30×38
85.5 14×16

Aqua (2002) AMSR-E 6.9 1445 54.8 43×75
10.7 29×51
18.7 16×27
23.8 18×32
36.5 8×14
89.0 4×6
A different approach is the use of theoretical or semi-empirical ra-
diative transfer models for snow cover, coupled with atmospheric
and vegetation models, to simulate microwave emission and inverse-
ly calculate snow characteristics from satellite measurements (e.g.
Pulliainen et al., 1999, Wiesmann and Matzler, 1999). The more com-
plicated models are computationally expensive and require precise
ancillary data in order to give accurate predictions (i.e. Durand and
Margulis, 2006). These factors restrict their operational applicability
on a global scale.

Improving the performance of passive microwave retrieval algo-
rithms by means of data assimilation has also been investigated.
Pulliainen (2006) presents an assimilation technique which weighs
passive microwave data combined with a semi-empirical radiative
transfer model, and prior snow information from ground measure-
ments, with their respective statistical uncertainties. This technique
successfully reduced systematic errors related to the saturation of TB
difference algorithms when SWE exceeds approximately 120 mm. In
regional studies by Pulliainen and Hallikainen (2001) and Pulliainen
(2006) unbiased RMSE values of 15 to 40 mm were achieved when
compared to in situ data.

In this study, we implement the methodology of Pulliainen (2006)
across the northern hemisphere to exploit the benefits of both con-
ventional measurements and passive microwave data to produce a
Climate Data Record (CDR) for SWE. The approach of Pulliainen
(2006) is enhanced by integrating the methodologies of Hall et al.
(2002) and Takala et al. (2009) to discriminate the region of dry sea-
sonal snow cover and estimate the date the land surface becomes
snow free. As it is based on the assimilation of ground-based synoptic
observations of SD and space-borne radiometer data, benefits of the
approach are that SWE (and SD) estimates are produced for wet
snow cover, and statistical error variance estimates are provided for
every individual SWE estimate (produced on a grid with a resolution
of 25 km).

Because this study is concerned with the production of snow cover
information for climate trend analyses and for the evaluation of cli-
mate models, an essential aspect is the validation of the 30 year
SWE time series. Typically, snow course observations representative
for coarse grid cell evaluation are lacking at a continental scale over
long time periods. In this study, however, we utilize the Russian
INTAS-SCCONE (International Association for the promotion of co-op-
eration with scientists from the New Independent States of the for-
mer Soviet Union — Snow Cover Changes Over Northern Eurasia)
snow surveys as independent reference data for validation. These
data are available throughout the former Soviet Union between
1980 and 2000, with observations from a total of 1292 snow courses.
The Russian sites are complemented by Finnish snow surveys includ-
ing SWE observations from years 2005–2008, and Canadian research
data sets on SWE for tundra, boreal forest, and prairie environments
also for 2005–2008.

The specific objectives of this study are to:

1. provide an overview of the SWE retrieval technique (based on
Pulliainen, 2006) now applied across the northern Hemisphere
within the European Space Agency (ESA) GlobSnow project (Luojus
et al. 2010).

2. assess these SWE retrievals against reference SWE measurements
and compare the retrieval accuracy to other available algorithms.

3. develop a climatological time series (1979 to 2010) of northern
hemisphere SWE (and total/continental snow mass).

2. Methods and data

2.1. Algorithm overview

The methodology for SWE retrieval employed in this study utilizes
a Bayesian non-linear iterative assimilation approach first described
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in Pulliainen (2006). A flowchart of the algorithm is presented in
Fig. 1; there are four primary steps to the retrieval scheme:

Step 1 Snow Depth (SD) observations from synoptic weather stations
are obtained for the northern hemisphere from the European
Centre for Medium-Range Weather Forecasts (ECMWF; this
dataset is described further below). The uncertainty of synop-
tic SD observations is estimated by assigning a variance of
150 cm2 (a value based on a comparison of point-wise synop-
tic SD data with available coincident snow survey data sets).
The stations located in mountainous areas are filtered out, as
are the deepest 1.5% of reported snow depth values in order
to avoid spurious or erroneous deep snow observations. The
mountain mask criterion is to remove all observations that
fall within Equal Area Scaleable Earth Grid (EASE-Grid) cells
with a height standard deviation above 200 m within the
grid cell. Once this filtering is performed, an ‘observed SD’
field is produced from the synoptic weather station observa-
tions by ordinary kriging interpolation to the 25 km EASE-
Grid. An estimate of the interpolation variance is also
obtained. The exponential autocorrelation function of the spa-
tial variability of snow depth is calculated for each day by sep-
arately analyzing the observations for North America and
Eurasia.

Step 2 The available synoptic weather station measurements of snow
depth are used as input to forward model simulations of
brightness temperature (TB) using the single layer HUT snow
emission model (Pulliainen et al., 1999). The applied version
of the model describes the scene brightness temperature as a
Fig. 1. Processing chain
function of the characteristics of a single-layer snow pack
(depth, bulk density and grain size) and forest canopy (stem
volume/biomass). Additionally, the approach takes into ac-
count atmospheric effects on space-borne TB measurements.
The model is fit to satellite observed TB values at the locations
of weather stations by optimizing the value of effective snow
grain size. The satellite radiometer measurements are taken
from the sensors summarized in Table 1, depending on the
year. The fitting procedure is:

mind0

(
TB;19V ;mod d0;Dref

� �
−TB;37V ;mod d0;Dref

� �� �

− TB;19V ;obs−TB;37V ;obs
� �)2

ð1Þ

where the known snow depth is Dref, TB,19V and TB,37V denote
the vertically polarized brightness temperature at approxi-
mately 19 and 37 GHz with sub-indices mod and obs referring
to modeled and observed values, respectively. Vertical polari-
zation is used because it correlates best with SWE in the bore-
al forest zone (Hallikainen and Jolma 1992, Pulliainen et al.,
1999, Pulliainen and Hallikainen 2001) The HUT model de-
scribes TB as a function of SWE, snow density and snow grain
size, d0 in Eq. (1). Here, snow density is treated with a con-
stant value of 0.24 g/cm3, a reasonable ‘global’ value given by
the analysis of Sturm et al., 2010. The observed snow depth
at a weather station is used as input to Eq. (1). At each
for SWE retrievals.
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synoptic station location, the final estimate of the grain size
(and its standard deviation λ) is obtained by averaging values
obtained for the ensemble of the nearest stations:

d̂0;ref

D E
¼ 1

M
∑
M

j¼1
d̂0;ref ;j ð2:aÞ

λd0;ref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M−1∑
M

j¼1
d̂0;ref ; j− d̂0;ref

D E� �2
s

ð2:bÞ

whereM is the number of stations (neighborhood of 6 stations
used in this paper). The lower bound for the grain size is set to
0.2 mm with smaller values rounded up.

Step 3 A spatially continuous background field of the effective snow
grain size (including a variance field) is interpolated using a
kriging technique from the snow grain size estimates pro-
duced for the weather station locations in Step 2.

Step 4 A map of spatially continuous ‘assimilated SWE’ is produced
through forward Tb simulations with the HUT model using
the interpolated effective grain size produced through Steps
2 and 3 and land cover information (dataset described
below). The simulations are compared with spaceborne radi-
ometer measurements via a cost function at each grid cell
with spaceborne radiometer measurements. The cost function
also considers the “observed SD” background field. Model esti-
mates are matched to observations numerically by fluctuating
the SWE value. The cost function constrains the grain size
value according to the predicted background grain size and
the estimated variance produced in Step 3. Thus, the assimila-
tion adaptively weighs the space-borne brightness tempera-
ture observations and the ‘observed SD’ field (produced in
Step 1) to estimate a final SWE and a measure of statistical
uncertainty (in the form of a variance estimate) on a grid
cell by grid cell basis:

minDt

(
TB;19V ;mod Dtð Þ−TB;37V ;mod Dtð Þ

� �
− TB;19V ;obs−TB;37V ;obs
� �

σt

0
@

1
A

2

þ Dt−D̂ref ;t

λD;ref ;t

0
@

1
A2
)

ð3Þ

where D̂ref ;t is the snow depth estimate from the kriging in-
terpolation for the day under consideration, t in Eq. (3). λD,ref

the estimate of standard deviation from the kriging interpola-
tion, and Dt is the snow depth for which Eq. (3) is minimized
(note that Dt=SWE/(0.24 g/cm3)). The variance of the TB is
σt. It can be estimated by approximating TB (a function of
snow depth and grain size) by a Taylor series:

TB Dt ;d0ð Þ≈TB Dt ; d̂0;ref ;t

D E� �
þ
∂TB Dt ; d̂0;ref ;t

D E� �
∂d0

d0− d̂0;ref ;t

D E� �
ð4:aÞ

σ2
t ¼ var TB Dt ; d̂0;ref ;t

D E� �� �
¼

∂TB Dt ; d̂0;ref ;t

D E� �
∂d0

0
@

1
A

2

λ2
d0;ref ;t

ð4:bÞ

The variance σt
2 in Eqs. (3) and (4.b) is a parameter that adjusts

the weight of brightness temperature data with respect to the weight
of the ‘observed SD’ field (parameter λD,ref). A basic feature of the al-
gorithm is that if the sensitivity of space-borne radiometer observa-
tions to SWE is assessed to be close to zero by formulas (4.a) and
(4.b), the weight of the radiometer measurements on producing the
‘assimilated SWE’ approaches zero (this is the case e.g. if the magnitude
of SWE is very high). The higher the estimated sensitivity of TB to SWE,
the higher the weight given to the radiometer data. Thus, the weight of
the radiometer data varies both temporally and spatially in order to
provide a maximum likelihood estimate of SWE.

A comparison of point-wise ECMWF SD-observations with really
distributed snow surveys (INTAS-SCONE data set covering Russian
and Finnish snow courses, see Section 2.2 below) indicated a random
difference with a variance level of about 100–150 cm2. Thus, a vari-
ance of 150 cm2 was attributed to SD measurements at the location
of weather stations (this is also considered by λD,ref in Eq. (3)).
While it is possible to use previous SWE estimates in the assimilation
algorithm (Pulliainen, 2006), in this work the SWE is estimated on a
per day basis with no consideration of previous retrievals.

In order to provide a hemispheric SWEmap for the region of season-
al snow cover, it is also necessary to produce a cumulative dry snow
mask for each snow cover season (beginning September 1). For this
purpose, the dry snow detection algorithm of Hall et al. (2002) is ap-
plied to satellite radiometer data. From satellite passive microwave
measurements, the date of snow clearance can also be estimated
using the algorithm of Takala et al. (2009). If the cumulative dry snow
mask shows that a grid cell in question for a particular date has never
been marked as dry snow it is labeled as snow free through the winter.
If the cumulative dry snow mask suggests that the pixel has had dry
snow conditions, but is already snow free according to the snow clear-
ance algorithm, the pixel is marked as snow free. An estimate of the
SWE and SWE variance is given for grid cells for which dry snow
cover has been detected and for which snow melt has not yet been in-
dicated (note that for wet snow cover the algorithm inherently assesses
the weight of radiometer data to approach zero). If a grid cell is in a
mountainous area it is flagged as such and no SWE is retrieved due to
the uncertainty ofmicrowavemeasurements in complex, snow covered
Alpine terrain (for example, Tong et al., 2010).

2.2. Input data for dataset development

2.2.1. ECMWF snow depth data
Daily SD background fields were generated from observations at

synoptic weather stations acquired from ECMWF for the years
1978–2010 (supplemented by INTAS SCCONE data described below).
For eachmeasurement, aWMO station identifier, date of measurement,
and snow depth (SD) are given. There are no error estimates for the
snow depth measurements provided with the ECMWF dataset. The
snow depth is traditionally manually measured with a rod or ruler, al-
though in the 1990s there was a transition to automated snow depth
sensors in many countries. As noted in Section 2.1, we account for un-
certainty in the point snow depth measurements by assigning a vari-
ance of 150 cm2 to the observations (based on comparison of point-
wise data with coincident snow course measurements from Finland).
An unpublished evaluation of point versus transect snow survey mea-
surements from the Environment Canada archive produced a similar
variance value.

2.2.2. INTAS SCCONE snow depth data
The ECMWF SD data were enhanced with the inclusion of the

INTAS-SCCONE snow depth dataset (Kitaev et al., 2002). This im-
proves the density of surface observations across the former Soviet
Union. Manual SD measurements are available for 223 different loca-
tions. In addition to information on WMO station identifier, date of
measurement and SD, a qualitative estimate of the snow covered
area and a status flag value are given. The flag describes whether
the observed snow melt was temporary or continuous, and whether
the value of SD is correct or should be rejected. The dataset also con-
tains a short description of station characteristics, for example infor-
mation on whether the station is protected from strong winds or not.



Fig. 3. Overview of reference datasets for Canada.
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2.2.3. Satellite radiometer data
A complete time series of radiometer data from 1978 to 2010 was

acquired from the National Snow and Ice Data Center (NSIDC) in
Boulder, Colorado USA. For the years 1978–1987, the Scanning Multi-
channel Microwave Radiometer (SMMR; Knowles et al., 2002) data
from Nimbus 7 were used, whereas for 1987–2010, the Special Sensor
Microwave/Imager (SSM/I; Armstrong et al., 1994) data from Defense
Meteorological Satellite Program (DMSP) D-11 and D-13 are used. For
the years 2002–2010 data from Advanced Microwave Scanning Radi-
ometer (AMSR-E; Knowles et al., 2006) onboard the Aqua satellite
were acquired. We made no adjustments for any possible inter-sen-
sor bias in the satellite time series. The unadjusted data sets from dif-
ferent passive microwave sensors are not directly comparable in
absolute levels, but may include some biases from one instrument
to another, however, a benefit of the SWE mapping methodology ap-
plied here is that it reduces the effects of these biases.

The space-borne TB measurements are in the EASE-Grid north az-
imuthal equal-area projection with a nominal resolution of
25 km×25 km (Armstrong et al., 1994). The local overpass time var-
ies but the difference between randomly chosen dates is not larger
than 2 h. The descending orbit measurements correspond to the
early morning (0500 to 0700 local time) and ascending orbit mea-
surements correspond late afternoon (1500–1700 local time), al-
though in the case of SSM/I the local overpass time (ascending vs.
descending) depends on which DSMP satellite the instrument was
onboard. Data used in this paper are a combination of ascending
and descending orbits, utilized in such a way that day-time passes
are applied only to the areas where no nighttime passes are available.
This enhances the spatial coverage without deteriorating the overall
accuracy.

The most important frequencies for snow detection and SWE re-
trieval are 19 and 37 GHz. As shown in Table 1, channels close to
these frequencies are available from all instruments, although with
different native footprint dimensions. These differences in swath
level resolution are removed through TB re-sampling to the EASE-
Grid as described in Armstrong et al. (1994). Some data gaps exist
both in time and space within the satellite passive microwave data re-
cord. SMMR had a narrow swath width (600 km) and was de-activat-
ed every other day due to power constraints.

2.2.3. Land use and topographic data
The Global Land Cover 2000 was used as land use information for

the assimilation algorithm (http://bioval.jrc.ec.europa.eu/products/
glc2000/glc2000.php). The dataset covers the whole globe at a resolu-
tion of 1 km with 23 land cover classes. Areal fractions of two basic
land cover categories were calculated for each EASE-Grid cell and in-
putted to the forward Tb model in the assimilation scheme. The two
applied land cover classes were (a) forest and (b) all other land
cover classes. Grid cells with major lakes were masked out if the
areal fraction of open water exceeded 50%. The approximate forest
biomass (stem volume) was assigned to the forest fraction of each
grid cell. For North America, a mean forest stem volume value of
80 m3/ha was used to characterize the effect of forest cover based
on FAO statistics (http://www.fao.org/forestry/32042/en/). While this
is a very generalized approach, estimation of effective grain size
Fig. 2. Location of INTAS-SCCO
greatly reduces the sensitivity of the algorithm to forest biomass
allowing a constant value to be adopted. For northern Eurasia, a spa-
tially varying stem volume value was assigned to the forest fraction of
each grid cell based on a digital forest map described in Bartalev et al.
(2004).

Topographic information for the masking of complex terrain was
derived from ETOPO5 (National Geophysical Data, 1988) data. This
dataset contains global elevation information at a resolution of 5 arc
minutes, an appropriate resolution given the scale of the 25 km
EASE-Grid.

3. Reference measurements for dataset evaluation

3.1. INTAS-SCCONE snow course data

The INTAS-SCCONE data set includes snow course observations
from an extensive network across the former Soviet Union and Russia
(Kitaev et al., 2002). These data are independent from the INTAS-
SCCONE point snow depth data used as part of the SWE algorithm
input. The snow surveys occurred bi-monthly at 1264 sites (total of
424,600 samples), and extend from 1978 to 2000 (Fig. 2). The snow
NE reference snow paths.

http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php
http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php
http://www.fao.org/forestry/32042/en/
image of Fig.�2
image of Fig.�3
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course data were collected using three procedures depending on the
landscape (Karpechko, personal communication). In closed forests
the length of the snow survey was 500 m with snow depth measured
at 10 m intervals, and snow density every 100 m. In open canopy for-
ested regions the length of the snow survey was 1000 m, while in
steppes the length of snow survey was 2000 m. For both of these
land cover types, snow depth was measured every 20 m, and snow
density sampling was conducted at 200 m intervals (although mea-
surements were sometimes made every 100 m). Measured snow
depth and snow density were averaged along the path, and water
equivalent calculated as SWE=10dh (mm), where d = density (g/
cm3) and h = depth (cm).

3.2. Snow course data from Finland

Finland has a comprehensive network of 165 snow survey sites
operated by the Finnish Environment Institute (SYKE) (Kuusisto
1984; Perala and Reuna, 1990). The measurements are made once
or twice in a month, and include both SWE and fractional snow cov-
erage (FSC). Each snow course is 2 to 4 km long, and covers the various
terrain types found around each site. The measurement procedure is
similar to that of INTAS-SCCONE snow surveys, so these measurements
are similarly well suited for validating coarse resolution SWE retrievals.
Fig. 4. Example SWE maps from the winter of 2003. The snow line indicat
3.3. Canadian reference datasets
In order to evaluate coarse resolution satellite retrievals and cli-

mate model simulations, Environment Canada has augmented the
sparse Canadian national snow survey network with field measure-
ment campaigns designed to provide regionally representative snow
measurements (see Fig. 3). Measurements of snow physical proper-
ties were made at a network of sites across northern Manitoba during
late winter 2004 through 2007, and the Northwest Territories from
2005 to 2008 Snow cores were taken for direct measurement of
SWE and bulk density, snow depth measurements were made to
characterize local-scale variability, and snow pits were excavated
for snowpack stratigraphy measurements including density profiles
and grain size. These measurements are described further in Derksen
(2008).

Intensive tundra snow surveys (snow water equivalent, depth,
density, and stratigraphy) were performed in the Daring–Exeter–
Yamba watershed of the Upper Coppermine River Basin in the North-
west Territories Canada near the timing of peak SWE, April 2004
through 2010. A stratified sampling approach was utilized to deter-
mine slope, aspect, and land cover controls on snow properties. Dur-
ing April 2007, a coordinated series of snow measurements were
made across the Northwest Territories and Nunavut, Canada during
a snowmobile traverse from Fairbanks, Alaska to Baker Lake, Nunavut.
es the line of snow clearance as determined from the satellite Tb data.

image of Fig.�4


Fig. 5. Difference between assimilated SWE and background field of SWE interpolated
from synoptic weather station data. (a) Example of difference map for 15 March, 1993
(single day estimate). The locations of snow depth reporting weather stations are also
indicated by yellow dots. Mountains are masked by green color. (b) Histogram of the
difference for the complete data set from 1979 to 2010 (as determined from 7-day sliding
average estimates).
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Sample sites were located at least every 1° of longitude. At these sites,
snow depth, density, SWE, stratigraphy, and grain size were mea-
sured (see Derksen et al., 2009).

The Boreal Ecosystem Research and Monitoring Sites (BERMS)
program was a joint initiative of Canadian government agencies, uni-
versities and other research partners. The main objective was to study
the role that the Canadian boreal forest plays in the global carbon
budget in response to climate change. Snow depth was measured at
30 minute intervals with SR-50 sonic snow depth gages at sites repre-
sentative of old growth boreal forest (aspen, black spruce, jack pine),
a chrono-sequence of harvested sites (1975, 1994, 2002), fire dis-
turbed stands (1977, 1989, 1998), and a boreal fen.

Bi-weekly snow course measurements (direct measurements of
depth, density and SWE) are also available both at the BERMS sites,
and similar forest cover types in the same region. Bi-weekly snow
surveys at open prairie sites south of the boreal forest are also avail-
able from Environment Canada. These prairie measurements take
into account different agricultural land use (i.e. fallow vs. stubble
fields) through multiple sampling transects.

4. Results

4.1. Overview of results

Daily SWE estimates were produced for the years 1979–2009
using the retrieval procedure described in Section 2. Input satellite
measurements were from SMMR (1979–1987), SSM/I (1987–2002)
and AMSR-E (2002–2009). The daily estimates were averaged with
a sliding 7-day window in order to reduce the noise level in the
daily time series. The sliding average corresponds, in practice, to the
output of the filtering approach described in Pulliainen (2006).
Fig. 4 depicts an example of the hemispheric output of the algorithm
for four dates in the winter of 2003. The estimate for the total snow
covered region is conservative for early winter due to the dry snow
detection algorithm (Hall et al., 2002). In mid-winter and during
spring the snow line and its retreat north is better captured, as illus-
trated earlier for Eurasia using the same snow melt algorithm (Takala
et al., 2009).

Fig. 5 illustrates the difference between the final assimilation re-
sult and the ground data based interpolation. This represents the dif-
ference between the ‘observed SD’ field (multiplied with a constant
snow density of 0.24 g/cm3) and the ‘assimilated SWE’ field as de-
scribed in Section 2. This demonstrates the impact of incorporating
satellite passive microwave data compared to the use of ground
data interpolation only. Fig. 5a shows an example of a single hemi-
spheric difference map, whereas Fig. 5b depicts the histogram of the
difference for the 30-year-long daily time series. The maximum
values of the difference in SWE extend to about 100 mm. However,
the number of such cases is small, and therefore not evident in
Fig. 5b. As indicated by Fig. 5a the spatial variability of the weight of
the satellite input varies strongly depending on the coverage of
weather stations used as input to the assimilation algorithm. The
weight also varies temporally, being low if the sensitivity of SWE to
observed brightness temperature is estimated to be low. Previous in-
vestigation (Pulliainen, 2006) shows that the assimilation approach
improved the SWE estimation accuracy in about 60% of the investi-
gated cases across Eurasia (the improvement was also typically larger
than any reductions) compared with the interpolation of weather sta-
tion SD values only.

4.2. Algorithm assessment

The SWE estimates were evaluated using independent reference
datasets for three regions: Finland, Eurasia, and Canada. The SWE es-
timates were taken from daily hemispheric output of the retrieval
scheme averaged with a sliding 7-day window (For instance, the
SWE estimate for 7 January is an average of the assimilation scheme
output for 1 to 7 January). Thus, a consistent implementation of the
algorithm was evaluated for all three test regions.

4.2.1. Finland

Fig. 6 shows the relationship between SWE estimates and mea-
sured values from snow courses in Finland for November through
May, covering 2005 to 2008. The assimilation algorithm performs
very well when SWE is less than approximately 150 mm, with sys-
tematic SWE underestimation evident above this threshold. The
exact value of this limit varies according to snow grain size and the
stratification of snow pack, as illustrated in many previous studies
(De Sève et al., 1997, 2007; Lemmetyinen et al., 2010; Mätzler,
1994; Rosenfeld and Grody, 2000). The highest SWE values are con-
sistently found in the same geographic region in northern Finland.
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Fig. 7. SWE algorithm performance over Russia and former Soviet Union when compared
with independent INTAS-SCCONE snow course observations from the period of 1979–
2000 forMarch only. (a) Scatterplot of estimates. The number of estimates obtained for in-
tervals of 3 mm is coded by the intensity of white color. RMSE=54.6 mm and bias=
−11.1 mm. Number of samples is 37504 (b) Observed distribution of ground truth SWE
from snow courses.

Fig. 6. SWE algorithmperformance over Finland versus national snow course observations.
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Passive microwave SWE retrieval algorithms have a well documented
tendency to systematically underestimate SWE under deep snow
conditions due to a change in the microwave behavior of the snow-
pack (when SWE exceeds approximately 150 mm, the snowpack
transitions from a scattering medium to a source of emission). The in-
creasing proportion of areas with high SWE values as winter pro-
gresses increased the overall errors during the late winter and
spring, however the RMS errors remained below 40 mm for all
months except April 2007. In addition to SWE underestimation
under deep snow conditions driven by decreased sensitivity of the ra-
diometer measurements, the fixed snow density of 0.24 g/cm3 tends
to decrease SWE estimates for late winter when snowpacks, which
are often denser. The overall strong performance of the assimilation
algorithm was expected for this region because of the dense network
of weather station inputs available across Finland (approximately 40
WMO synoptic stations in the region of 330000 km2).

4.2.2. Eurasia

A comparison of SWE estimates produced from the assimilation algo-
rithm with INTAS-SCCONE snow course observations is shown in Figs. 7
and 8. The assessment was performed from 1980 to 2000. A summary of
seasonal performance statistics is provided in Table 2 considering the full
range of SWE reference observations. The seasonal performance was
assessed separately for fall, winter and spring; September–December,
September–March and April–May, respectively. Again, sensitivity to in-
creasing SWE decreases when SWE values exceed the level of about
150 mm.

SWE retrievals were also compared with the snow course mea-
surements in order to determine the interannual variability in the un-
certainty (considering whole winter period). As shown in Fig. 8, the
RMS error and bias fluctuate from season to season, but across a rela-
tively narrow range (RMSE of about 30 to 40 mm; and a bias ranging
from−3 to +9 mm when SWE b150 mm indicating that a small bias
is possible). When all snow course measurements are considered the
RMS error increases to 45 mm and a bias of −5 mm is observed. This
again indicates a tendency of SWE underestimation for deep snow
packs.

4.2.3. Canada

An overall assessment of algorithm performance was achieved by
comparing SWE retrievals with reference ground measurements for
various Canadian land cover regions. The overall RMS and coefficient
of determination (R2) values for the Canadian data were 40 mm and
0.28 respectively. Evaluation statistics were also calculated for each
land cover category given the unique characteristics of the reference
measurements available for each region. These results are summa-
rized in Table 3, and show that retrieval uncertainty is high for deep
boreal forest snow, consistent with the evaluation for Finland and
Eurasia. This is the only Canadian region under investigation for
which SWE regularly exceeds the 150 mm threshold. When the sta-
tistics were re-computed using a 150 mm threshold, algorithm per-
formance improved appreciably with the RMSE value decreasing to
21 mm.

In the southern boreal forest, the retrieval challenge is not deep
snow, but the presence of relatively dense forest vegetation. Time series
plots for four BERMS sites located within a single EASE-Grid are shown
in Fig. 9. The average daily snow depth (from hourly automated snow
depthmeasurements)was converted to SWE using themeanmeasured
density from bi-weekly snow surveys conducted at each site. The
BERMSmeasurements illustrate the range in SWE that is typical within
the coarse footprint SWE retrieval due to snow interactions withmixed
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Fig. 8. RMS error and bias of SWE estimates for Eurasia from the comparison against independent INTAS-SCCONE snow course observations, 1979–2000: (a) results for the complete
data set and (b) results for cases with reference SWE lower than 150 mm (88.5% of all cases). RMSE and bias for the whole data set is shown by red lines. Bias is the (mean) difference
estimated value minus the reference value.
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forest vegetation. In spite of this heterogeneity, the SWE estimates
agreed well with the BERMS measurements through each season.
There is a tendency for early season shallow snow to be missed by the
assimilation scheme, and the retrievals to drop too rapidly in the spring.
The relative availability of climate station observations in the southern
boreal forest (compared to the northern boreal forest) and the typically
shallow snow cover (SWEb100 mm)helps to reduce uncertainty in this
region.

The relatively high uncertainty over tundra regions (Table 3) is
likely driven by three issues: the extremely sparse network of surface
climate stations across the Canadian sub-Arctic, the complex micro-
wave emission from lake rich snow covered tundra (see Derksen et
al., 2009), and the extremely heterogeneous tundra snow cover
which complicates the determination of ‘ground-truth’ SWE at coarse
spatial resolutions. In open tundra regions, topographic controls on
the wind redistribution of snow can be significant. Intensive ground
measurement campaigns in a tundra environment near Daring Lake,
NT have allowed investigation of relationships between coarse reso-
lution satellite SWE retrievals and sub-grid statistical distributions
of groundmeasured SWE (Rees et al., 2006). Fig. 10 shows histograms
of ground measured sub-grid SWE relative to the single retrieval
available for this 25 km grid cell. The assimilation approach reason-
ably captures a SWE value near the center of the distribution, but
the spread in ground measured SWE (for which no information can
be estimated using satellite data) is clearly evident.
Table 2
Seasonal summary of SWE assimilation algorithm performance over Eurasia, 1980–
2000 (fall: September–December; winter: September–March; spring: April–May). In
parenthesis are the values for cases with reference SWEb150 mm. R is significant at
99% level in all cases.

Season RMSE (mm) bias(mm) Corr. coeff Samples

Fall 23.0 (21.7) 5.8 (6.5) 0.69 (0.70) 35197 (34943)
Winter 37.7 (28.9) 1.7 (7.7) 0.72 (0.72) 165784 (150405)
Spring 72.5 (47.3) −37.6 (−19.3) 0.53 (0.47) 42843 (33189)
4.3. Algorithm inter-comparison

The performance of the SWE assimilation technique was also com-
pared with the accuracy characteristics of a typical stand-alone pas-
sive microwave algorithm. This was carried out in order to
demonstrate the magnitude of improvement that can be obtained
by using the assimilation approach. The reference data set used here
was the NSIDC global monthly SWE climatology (Armstrong et al.,
2007). The algorithm is based on a channel difference of 18 or
19 GHz and 37 GHz horizontally polarized measurements following
Chang et al. (1987) and Armstrong and Brodzik (2001). The algorithm
includes a correction for surface forest cover (Chang et al. 1996). SWE
values lower than 7.5 mm are set to zero and additional processing
steps to compensate for glacier and desert effects have been per-
formed (see Armstrong et al., 2007 for details). Fig. 11 shows the
obtained performance characteristics for the NSIDC data for the re-
gion of Eurasia Russia when assessed using the INTAS-SCCONE snow
path measurement data set described in Section 2. The INTAS-
SCCONE data were averaged on a monthly basis for comparison. The
assimilation algorithm (see Fig. 7 a) provides a clear improvement
in the accuracy characteristics (RMSE and bias error) when compared
with those obtained by a typical stand-alone algorithm utilizing a
spectral TB difference for SWE retrieval.

4.4. Snow cover trends from SWE time-series

Fig. 12 shows an example of mean snow mass seasonal evolution
for 1982–2010. The snow mass is calculated by summing the SWE
values for all snow covered grid cells, and by multiplying these values
with the grid cell area. According to Fig. 12, the hemispherical snow
mass has its maximum value during February–March. Fig. 13 shows
the monthly snowmass estimates for March covering the time period
from 1982 to 2009 as determined from maps of monthly averaged
SWE. The trend line fitted to snowmass estimates suggests a decrease
of 7% for a period of 30 years for the region of permanent seasonal
snow cover (excluding mountain regions with high topographic
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Table 3
Summary of SWE assimilation algorithm performance over Canada, 2005/06–2007/08.

Land cover Reference dataset Year n Mean SWE
(mm)

RMSE
(mm)

R R significant at
95% level

R significant at
99% level

Mean
bias

Tundra Intensive sites; SnowSTAR 2007 2005–2007 28 120 47 0.05 No No −36
Northern Boreal EC Snow Surveys 2006–2007 SWE 105 134 70 0.00 No No −32

b150 mm 73 101 21 0.52 Yes Yes 3
Southern Boreal EC Snow Surveys 2005–2007 57 75 28 0.43 Yes Yes −8
Southern Boreal BERMS All 468 70 25 0.87 Yes Yes −3
Prairie EC Snow Surveys All 41 47 21 0.51 Yes Yes 6
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variations within a grid cell). Note that this trend is opposite to the
possible small bias that may be associated with the SWE retrievals,
as illustrated in Fig. 8.
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Fig. 9. Time series of BERMS measurements compared to SWE retrievals, 2005/06 (top)
through 2007/08 (bottom).
5. Discussion

An essential issue concerning the combined use of satellite and in
situ data, is the magnitude of the impact of satellite observations to
generated hemispheric maps of SWE. Fig. 5 indicates that a reason-
able baseline level of SWE is obtained from the interpolation of
ground-based snow depth measurements alone. However, satellite
observations can change these values significantly with the impact
of these measurements varying both spatially and temporally. A key
characteristic of the algorithm is that it optimizes the weight of differ-
ent data sources through a dynamic calculation of pixel-wise satellite
data modeling error variances. This is combined with the dynamic
calculation of model derivatives that define the sensitivity of satellite
data to SWE and snow grain size (as well for each pixel), see Eq. (4.a)
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Fig. 10. Sub-grid SWE distributions from intensive tundra field campaigns near Daring
Lake, NT, 2006 (top) through 2008 (bottom). Shaded columns indicate the single SWE
estimate produced for this grid cell.
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Fig. 11. NSIDC global monthly SWE climatology performance over Russia and former
Soviet Union when compared with independent INTAS-SCCONE snow course observa-
tions from the period of 1979–2000 for March only. The number of estimates obtained
for intervals of 3 mm is coded by the intensity of white color. RMSE=92.5 mm and
bias=12.0 mm. Number of samples is 11730. The reference data is averaged over
the March of each year (same data without monthly averaging is also used in Fig. 7).

Fig. 13. Trendof snowmass evolution in 1982–2009 (northern hemisphere) as determined
from the mean SWE values for March.
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and Eq. (4.b). Hence the derived SWEmaps give a maximum likelihood
estimate of SWE for every grid cell. Additionally, the statistical error
level of SWE estimate is calculated separately for every pixel. Another
important novelty of this new methodology is the combined mapping
of the snow area and snow melt based on satellite radiometer data.

Snow grain size is a very important parameter within the forward
TB simulation component of the retrieval, as the sensitivity of TB to
snow grain size is high. The problem of varying grain size is tackled
by the assimilation algorithm through the estimation of effective
snow grain size at the locations of weather stations. Grain size and
variance estimates for a station under investigation are obtained by
averaging estimates from near-by stations. This is needed to reduce
noise in the estimation of the spatial behavior of snow grain size.
The reference field of grain size is obtained through kriging interpola-
tion of grain size estimated for different weather stations, and repre-
sents another useful level of information produced from the retrieval
scheme.

The grain size estimated by the algorithm is actually an effective
value that incorporates the effect of modeling errors and inaccuracies
in the algorithm input data. In the second step of the algorithm, the
background field of snow grain size is estimated by fitting the
Fig. 12. Mean snowmass evolution, 1982–2010, for the northern hemisphere (excluding
mountain regions). Dashed lines correspond to the standard deviation.
modeled brightness temperature gradient into observations. Thus,
the outcome of this fitting procedure, the effective grain size, includes
the effects of inaccuracies in forest stem volume information and
snow density (treated as a constant parameter in the algorithm
with a value of 0.24 g/cm3). Nevertheless, the final outcome (step 4
of the algorithm) includes the estimated effective snow grain size
value, in addition to the estimated SWE. The effective grain sizes are
realistic despite the limitations of the scene brightness temperature
model and the uncertainties in the input data. For example, in the
case of observations from March (all years and all snow areas) the al-
gorithm showed a mean (effective) grain size of 1.24 mmwith a stan-
dard deviation of 0.34 mm.

The density of snow was treated as a constant parameter in this
study in order to avoid parameters that are spatially or temporally vary-
ing (only land cover characteristics were spatially varying). Thus, only
the actual algorithm input data from satellite observations and synoptic
weather stations was changing, (brightness temperatures and snow
depth observations). In future development of the algorithm snow den-
sity can be treated with spatially and temporally changing a priori
values. As well, the statistical error assigned to the point-wise synoptic
weather station observations on snow depth can vary at least spatially
(the available Canadian observations indicate that this error can be
higher for tundra regions than for boreal forests). In this study this sta-
tistical error was set to 150 cm2 for all regions based on analyses of dis-
tributed Finnish and Canadian coincident snow surveys as reference.
However, the distributed snow survey information has its inherent
(largely unknown) error characteristics, which sets limitations to all
performance considerations.

Figs. 7a and 11 present a comparison of the performance of the as-
similation approach with the accuracy characteristics of a typical
stand-alone passive microwave algorithm, and indicate a significant
improvement produced by the assimilation algorithm. Similar results
were obtained for northern Eurasia when the proposed technique
was compared with other stand-alone SWE mapping products and
methods, such as the Environment Canada land cover sensitive set
of algorithms (Derksen et al., 2005). This algorithm suite, designed
for Canada, was tested here for the Eurasia, even though it is designed
only for use in Canada (the algorithms were empirically derived from
regional Canadian datasets). In the case of Canada, the Environment
Canada algorithms provided slightly better results for some regions
than the assimilation algorithm, which is expected when comparing
regional algorithms with a global approach. A more detailed compar-
ison with alternative techniques including reanalysis products (i.e.
Simmons et al., 2007) is an issue for further investigation.

Across northern Eurasia, the independent distributed SWE refer-
ence data enabled performance analysis of the assimilation algorithm
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over 20 seasons (Fig. 8). Only March was selected for this analysis
since the snowpack is thickest this month (as suggested by Fig. 12).
Yearly RMSE and bias for was relatively small with little interannual
variability. The low level of annual systematic error suggests that
the trends and total hemispherical snow masses given in Figs. 12
and 13 are realistic and reliable. The uncertainty of the trend can be
evaluated by comparing Fig. 13 with Fig. 8. The estimated hemispher-
ic total snow mass trend shown in Fig. 13 is −7.3 Gtons/year.

Grid cells with a high variation of elevation were masked out be-
cause of a priori known poor algorithm performance in complex ter-
rain. The primary sources of this uncertainty are the coarse resolution
of the satellite TB data, and the inability of discrete climate station ob-
servations to capture the strong elevational gradients in SWE within
25 km resolution grid cells. The authors have tested the algorithm
sensitivity to stem volume by reprocessing SWE estimates for year
2004 where stem volume was assigned value of 100 m3/ha. The re-
sults of this test were evaluated on those pixels whose forest cover
fraction is larger than 80% in Canada. The maximum difference was
less than 0.12% which indicates a low sensitivity to stem volume.
For non-mountainous areas, the overall performance was strong, al-
though retrieval sensitivity to land cover and forest properties remain
an issue for further investigation (see also Pardé et al., 2007; Roy et
al., 2004; Vachon et al., 2010). Additionally, the consideration or com-
pensation for the effect of (frozen) lakes requires further study and
algorithm development work.

6. Summary

In this study an algorithm assimilating space-borne passive micro-
wave radiometer data with synoptic weather station observations of
snow depth to estimate SWE was assessed and applied at the hemi-
spheric scale. As an outcome, a Climate Data Record (CDR) extending
through a time span of 30 years was produced and evaluated (1980–
2010). The validation was carried out using independent reference
data from primarily the Russian portion of northern Eurasia, Finland
and Canada. The referencedata includes an extensive set of snow course
observations of SWE. Thus, a comprehensive view on algorithm perfor-
mance was obtained. The employed assimilation approach shows an
improved accuracy levelwhen comparedwith uncertainty statistics cal-
culated for a typical stand-alone brightness temperature channel differ-
ence algorithm. The algorithm applied here provides good overall
performance for the hemispheric scale estimation of SWE (including a
per-grid cell uncertainty estimate) and is well suited for climatological
analysis and climate model evaluation.
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