

Sea Ice Climate Change Initiative: Phase 2

D3.4 Product User Guide (PUG)

This PUG covers the Sea Ice Thickness Dataset

Doc Ref: SICCI-SIT-PUG-P2-17-027 Version: 1.1 Date: 10 February 20178

Change Record

Issue	Date	Reason for Change	Author
1.0	10 February 2017	First issue for SIT product for phase 2	Stefan Hendricks
1.1	25 July 2018	Updated with data access information after release	Stefan Hendricks

Authorship

Role	Name Signature	
Written by:	Stefan Hendricks (AWI)	
Checked by:	Gary Timms (CGI)	
Approved by:	Stein Sandven (NERSC)	
Authorised by:	Pascal Lecomte (ESA)	

Distribution

Organisation	Names	Contact Details
ESA	Pascal Lecomte, Anna Maria	Pascal.Lecomte@esa.int; Anna.Maria.Trofaier@esa.int
NERSC	Stein Sandven, Kirill Khvorostovsky	Stein.Sandven@nersc.no; kirill.khvorostovsky@nersc.no
CGI	Gary Timms, Sabrina Mbajon, Clive Farquhar	<u>gary.timms@cgi.com;</u> <u>sabrina.mbajon.njiche@cgi.com;</u> <u>clive.farquhar@cgi.com</u>
MET Norway	Thomas Lavergne, Atle Sørensen	t.lavergne@met.no; atlems@met.no
DMI	Rasmus Tonboe	<u>rtt@dmi.dk</u>
DTU	Roberto Saldo, Henriette Skourup, Leif Toudal Pedersen	<pre>rs@space.dtu.dk; hsk@space.dtu.dk; ltp@space.dtu.dk</pre>
FMI	Marko Mäkynen, Eero Rinne	marko.makynen@fmi.fi; eero.rinne@fmi.fi;
University of Hamburg	Stefan Kern, Lars Kaleschke, Xiangshan Tian-Kunze	stefan.kern@zmaw.de; lars.kaleschke@uni- hamburg.de; xiangshan.tian-kunze@uni- hamburg.de
University of Bremen	Georg Heygster	<u>heygster@uni-bremen.de</u>
MPI-M	Dirk Notz, Louisa Bell	dirk.notz@mpimet.mpg.de; louisa.bell@mpimet.mpg.de
Ifremer	Fanny Ardhuin	Fanny.Ardhuin@ifremer.fr
AWI	Marcel Nicolaus, Stefan Hendricks, Thomas Hollands	<u>marcel.nicolaus@awi.de;</u> <u>stefan.hendricks@awi.de;</u> <u>thomas.hollands@awi.de</u>

Table of Contents

1	Introduction	
1.1	Purpose and Scope	
1.2	Document Structure	
1.3	Document Status	-
1.4	Applicable Documents	
1.5	Reference Documents	
1.1	Acronyms and Abbreviations	7
2	Preface	
2.1	Scientific Description of the Product	9
2.2	Technical Description of the Product	12

List of Figures

- Figure 2-1: Level-2 orbit data (top row) and Level-3 gridded data (bottom row) for Northern (left) and Southern Hemisphere (right) based on example CryoSat-2 data (NH: April 2018, SH: September 2016, L2P: 15th of respective month)......12

List of Tables

Table 1-1: Applicable Documents	6
Table 1-2: Reference Documents	7
Table 1-3: Acronyms	7
Table 2-1: Description of status_flag values	15
Table 2-2: Grid definition	16
Table 2-3: SIT data product DOI's	17

1 Introduction

1.1 Purpose and Scope

This document describes in detail the Sea Ice Thickness datasets (v2.0) for the Sea Ice ECV project produced in Phase 2 of ESA's Climate Change Initiative.

1.2 Document Structure

After this introduction and the list of references, the document provides a technical description of the Sea Ice Thickness product.

1.3 Document Status

This is the second issue of the PUG released to ESA as part of the project's second phase.

1.4 Applicable Documents

The following table lists the Applicable Documents that have a direct impact on the contents of this document.

Acronym	Title	Reference	Issue
AD-1	Sea Ice ECV Project Management Plan	ESA-CCI_SICCI_PMP_D6.1_v1.3	1.3

Table 1-1: Applicable Documents

1.5 Reference Documents

ID		Reference Details	
RD-1	Algo	Algorithm Theoretical Basis Document (ATBD), v2.2, Sep. 2017	
RD-2	Deta	iled Processing Model (DPM), v2, Issue 1.1, Feb 2014	
RD-3		Product Validation and Intercomparison Report (PVIR), v1.1, Jul 2018	
RD-3	Brodzik, M.J.; Billingsley, B.; Haran, T.; Raup, B.; Savoie, M.H. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS Int. J. Geo-Inf. 2012, 1, 32-45.		
RD-4	Product Validation and Algorithm Selection Report (PVASR), v1, Issue 1.0, June 2013		
RD-5	Comprehensive Error Characterisation Report (CECR), v1, Issue 1.1, August 2013		
RD-6	Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony (1999), Snow depth on Arctic sea ice, Journal of Climate, 12(6), 1814-1829.		

Product User Guide (PUG)

ID	Reference Details	
RD-7	Kurtz, N. T., and S. L. Farrell (2011), Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge, Geophys Res Lett, 38.	
RD-8	Guidelines for Data Producers - Climate Change Initiative Phase 1, Issue 4.2, May 2013	
RD-9	Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437-2460, https://doi.org/10.5194/tc-12-2437-2018, 2018.	
RD- 10	GCOS : Systematic observation requirements for satellite-based data products for climate, 2011 Update	

1.1 Acronyms and Abbreviations

Acronym	Meaning	
CEDA	Centre for Environmetal Data Analysis	
CRDP	Climate Research Data Package	
ECV	Essential Climate Variable	
Envisat	Environmental Satellite	
EOS	Earth Observing System	
ESA	European Space Agency	
DOI	Digital Object Identifier	
FB	Freeboard	
FTP	File Transfer Protocol	
GB	GigaByte	
MB	MegaByte	
n.a.	Not applicable	
NetCDF	Network Common Data Format	
NSIDC	National Snow and Ice Data Center	
OSI-SAF	Ocean and Sea Ice Satellite Application Facility	
PI	Principal Investigator	
RADAR	Radio Detection and Ranging	
RA	Radar Altimetriy	
RFB	Radar Freeboard	
SAR	Synthetic Aperture Radar	
SIC	Sea Ice Concentration	
SIT	Sea Ice Thickness	
ТВ	TeraByte	
t.b.d.	To be determined	
URL	Uniform Resource Locator	

Table 1-3: Acronyms

2 Preface

This Product User Guide (PUG) provides an entry point to the European Space Agency Climate Change Initiative (ESA CCI) Sea Ice Thickness (SIT) dataset, both from a scientific and a technical point of view. The data set comprises the prototype version of a consistent climate data record of seaice thickness from the Envisat and CryoSat-2 radar altimeter missions in both hemispheres. Details of the scientific description of the processing chain and algorithms are however deliberately kept out of this PUG, and the interested readers are rather directed to the Algorithm Theoretical Basis Document [RD-1], Detailed Processing Model [RD-2] and peer-reviewed scientific literature [RD-9]. Validation and evaluation results are not contained in this PUG either, but in a Product Validation and Intercomparison Report [RD-3].

In short, the SICCI SIT dataset is:

- Monthly gridded (Level-3) sea ice thickness (SIT), radar freeboard (RFB) and freeboard (FB) fields with 25 km grid spacing for the Arctic and 50km grid spacing in the Antarctic. Gridded geophysical parameters based on radar altimeter measurements are available for the freezing season (October-April) for the Arctic and year-around in the Antarctic.
- Daily summary files (Level-2) that contain the geophysical parameters (SIT, RFB, FB) at full resolution of the altimeter missions.

2.1 Scientific Description of the Product

This section gives a summary of the science features of the SIT dataset, and describes first the known limitations and caveats the potential users should be aware of before analysing the dataset. Note that this version of PUG is refers to the CRDP prototype with known issues (see below) and is written before any extensive validation exercise of the dataset. Instead, the results described below stem from the Comprehensive Error Characterisation Report (CECR) [RD-5] which in turn is based predominantly on past research and experience.

2.1.1 Known limitations and caveats

Subsections below describe the main limitations and caveats of SIT estimation from radar altimetry. These should be taken into account by all users of the product. Users wanting more detailed information on limitations and uncertainties of or products should refer to the CECR and PVASR documents [RD-5 and RD-4].

2.1.1.1 Speckle

All radar echoes exhibit a form of signal distortion known as 'speckle'. As the speckle de-correlates between consecutive echoes, summing over n echoes reduces the noise due to speckle. Therefore, for gridded ice thickness products, the errors depend on the number of observations in a particular grid cell. The effect of speckle in a single measurement is considerable when compared to expected freeboard, which should be kept in mind when using individual measurements from the Level-2 orbit data.

2.1.1.2 Snow radar backscatter

For the Arctic, we assume that during cold winter months the dominating scattering surface for the radar is the snow/ice interface. However, one of the outcomes of the Round Robin Exercise in phase 1, as well as results from scientific literature indicate that this is not always the case. Thus the user is reminded that the freeboard given in the SICCI-2 Arctic SIT product files is the freeboard which we assume to be the elevation of upper surface of ice measured from local sea level due to the lack of a robust parametrization of the regional and temporal variability of a snow backscatter bias. If the dominating scattering surface lies somewhere within the snowpack, e.g. due to multiple backscattering horizons or volume scattering, sea ice thickness retrieval using the radar freeboard with the incorrect assumption will result into too large thickness values.

This bias will especially be prominent in the Southern Hemisphere data, with its complex snow layers.

2.1.1.3 Inter-mission consistency

The SICCI-2 SIT data records consist of primary input data from two missions with different radar altimeter concepts. The RA-2 sensor on Envisat is a pulse-limited altimeter, while CryoSat's SIRAL employs SAR beam sharpening. This has an impact on the radar footprint size and consequently the waveform based surface type classification and freeboard retrieval as different surface types do not equally contribute the radar return. Specifically, the larger Envisat footprint well be more susceptible to specular

lead returns, as these may dominate even if the total area coverage is low. The SIT algorithms are designed to minimize any inter-mission bias in the surface type classification and freeboard retrieval, however the user should be aware that a residual bias needs to be expected in regions with significant surface type mixing.

2.1.1.4 Errors associated with the conversation of freeboard to thickness

The freeboard is converted into thickness by assuming the ice to be in hydrostatic equilibrium. This requires estimates of snow thickness as well as snow, ice and water densities. Uncertainty in all of these will contribute to the uncertainty of the thickness estimate.

Arctic snow depth and density is estimated using the monthly snow depth climatology by Warren et al. [RD-6] in the northern hemisphere, which is based on measurements performed between 1954 and 1991 over multiyear ice. The snow depth values are modified depending on ice type (50% Warren for first-year sea ice) [RD-7], though the use of a climatology means that interannual and local spatial variability are underrepresented – as is also shown in the PVASR [RD-4]. In addition, the geographical area from which snow depth measurements are used in the Warren et al. climatology limits the region of validity to the Central Arctic Basin. Results from Warren are used also outside this region, however the underlying quadratic fit of the climatology does result in unrealistic (> 0.6m) or physically impossible (< 0m) values. No FB or SIT is computed in these cases.

Potential changes in the seasonal cycle of the snow density as provided by the Warren et al. climatology in comparison to conditions today might exist but have not yet been investigated. We recommend to keep using the seasonally varying snow density as provided by the Warren et al. climatology.

The sea ice density is estimated as a linear interpolation between the density of first-year and multi-year sea ice based in the multi-year ice fraction over the whole Arctic regardless of the ice type.

In the Antarctic, less information does exist on spatial and temporal variability on snow depth as well as snow and sea ice density. There are sea ice type (first and multi-year) sea ice products available by OSI-SAF for the recent years, however their coverage is incomplete for the Envisat observation period.

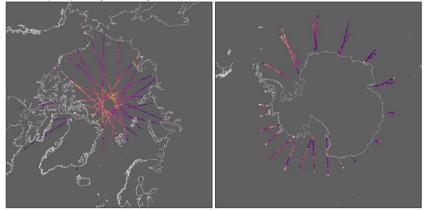
If users have access to alternative sources of snow information and/or ice density, they are encouraged to calculate their own thicknesses from SICCI radar freeboard or freeboard estimates.

2.1.1.5 Fitness-for-purpose of the Southern Hemisphere data

The numerous issues of the retrieval of freeboard and the freeboard-tothickness conversion in the southern hemisphere has led to the decision by the data producers to label all southern hemisphere data set as an experimental climate data record.

All users should of the southern hemisphere RFB, FB & SIT data should be aware that the geophysical variables are very likely biased high to a significant degree. 2.1.2 Description of the processing chain and algorithm

For detailed description of algorithm, user should refer the ATBD [RD-1]. The algorithm is based on distinguishing altimeter echoes from leads and ice floes, retracking elevations for both surface types, interpolating local sea level height from lead elevations and subtracting it from floe elevations. This results into radar freeboard. Freeboard is then obtained by applying a geometric correction based on the slower wave propagation speed through the snow layer. The thickness is then calculated from the freeboard with independent estimates of snow loading and ice density, which are parametrized based on the multiyear ice fraction


2.2 Technical Description of the Product

2.2.1 Examples

To ease and support the reading of the technical specifications, we start this section by providing some visualization of maps extracted from the product files.

Sea Ice CCI SIT CDR v2.0

Level 2 (L2P): Daily orbit trajectories

Level 3 (L3C): Monthly gridded fields (Arctic: 25 km, Antarctic: 50 km)

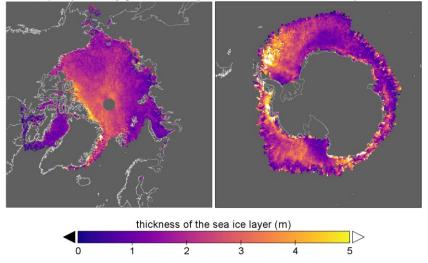
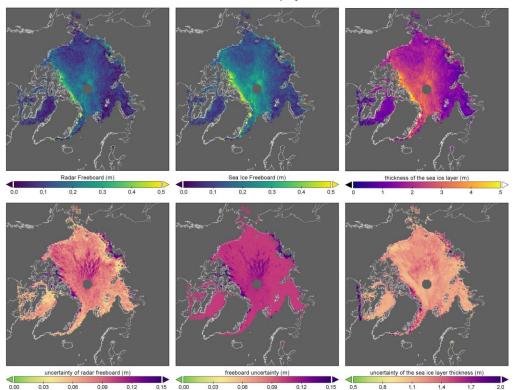



Figure 2-1: Level-2 orbit data (top row) and Level-3 gridded data (bottom row) for Northern (left) and Southern Hemisphere (right) based on example CryoSat-2 data (NH: April 2018, SH: September 2016, L2P: 15th of respective month)

Sea Ice CCI SIT CDR - Geophysical Parameters

Figure 2-2: Visualization of the geophysical variables (from left to right: RFB, FB, SIT) and their associated uncertainties. The content of the Level-2 product files are identical.

2.2.2 Content of product files

Product files are distributed for each combination of satellite platform, hemisphere and the two product levels. Product level 2 (L2P: Level-2 pre-processed) contains the daily orbit data at full sensor resolution, while product level 3 (L3C: Level-3 collated) contains the gridded geophysical parameters, auxiliary data and the status flag.

2.2.2.1 The sea ice thickness and freeboard variables

There are variables for sea ice thickness, radar freeboard and freeboard (sea_ice_thickness, radar_freeboard and freeboard, respectively).

Note that the given values are mean values of successful altimeter measurements inside the grid cell. They do not consider the fraction of open water – if only one 3 m floe is measured in one grid cell, it will result into the sea_ice_thickness of 3 m.

2.2.2.2 The uncertainty variables

Uncertainty values are given for all geophysical parameters (RFB, FB, SIT) in both product levels (L2P, L3C). The uncertainty is derived from error propagation for each data record in the Level-2 files.

The Level-3 uncertainties are based a gridded average of the Level-2 uncertainties, thus no uncertainty reduction by averaging is taken into account.

This approach has been chosen since the major uncertainty contribution (snow depth, sea ice density) are systematic errors with error correlation length far beyond the size of a grid cell. The Level-3 uncertainties therefore should be taken as a maximum uncertainty estimate, since the random error components (speckle) will be reduced by averaging. The maximum uncertainty estimate should also bring a potential selection bias in individual grid cells to the attention of the user.

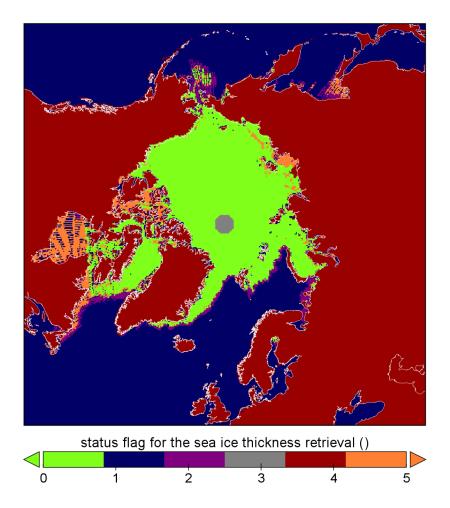
2.2.2.3 Computation of Snow Depth

Snow depth is not a variable in the output files, but the value used in the processing can be inferred from radar freeboard and freeboard. The two parameter differ by the application of geometric range correction caused by the slower EM wave propagation speed in the snow layer, which is directly related to snow depth. Thus:

Snow depth = (FB-RFB)/0.22

2.2.2.4 Auxiliary Data

The Level-3 data sets also contain a variable for sea ice concentration in order to allow the computation of mean ice thickness including the open water area by the user (see 2.2.2.1).


2.2.2.5 Status Flag

The status_flag is only applicable for the Level-3 data products. It can take 6 values, listed in Table 2-1 below and an example given in Figure 2-2:

Value	Meaning	Comment
0	nominal	SIT, RFB and FB values given
1	No input data	No input data in the grid cell, but within orbital coverage of the satellite platform. This happens especially at the lower latitude range where some grid cells are not covered by Level-1 input data in one particular month.
2	Outside sea ice concentration mask	A sea ice concentration mask is used for the surface type classification. Level-1 radar altimeter data in areas with less than 70% sea ice concentration will be discarded to minimize the impact from off-nadir contamination.
3	polehole	Latitude above the nominal coverage of the satellite platform. The _FillValue is used.
4	land	Pixel covers land, lakes or land ice. The _FillValue is used.

5	Retrieval failed	Level-1 data available, but no valid sea ice thickness data. This happens if surface type classification only yields ambiguous results, an auxiliary data set (e.g. snow depth) yields invalid results, or all data is filtered by the freeboard or thickness filter.
---	------------------	--

Table 2-1: Description of status_flag values

Figure 2-3: Example of status_flag variable (CryoSat-2 L3C in northern hemisphere, April 2017)

2.2.3 Temporal coverage

The dataset covers the Arctic winter months (October, November, December, January, February, March and April) and the full annual cycle in the Antarctic. Envisat data products are available from 2002 (Arctic: October, Antarctic: June) through March 2012. CryoSat-2 data products are available from November 2010 through April 2017.

2.2.4 Level-3 product grid and geographic projection

Both the SIT dataset is delivered on a polar EASE2 grid, with a grid spacing of 25 km (Arctic) respectively 50 km (Antarctic). The EASE2 projection is defined in [RD-10]. The grid is defined by:

Grid ID	PROJ4 string	X,Y boundaries and spacing [m]	Latitude-Longitude bounding box [deg]
NH25kmE ASE2	+proj=laea +lon_0=0 +datum=WGS84 +ellps=WGS84 +lat_0=+90.0 +lat_ts=+70	x_min: -5400000 x_max: 5400000 dx: 25000 y_min: -5400000 y_max: 5400000 dy: 25000	:geospatial_lat_min = 16.42 :geospatial_lat_max = 90.0 :geospatial_lon_min = -180.0, :geospatial_lon_max = 180.0 ;
SH50kmE ASE2	+proj=laea +lon_0=0 +datum=WGS84 +ellps=WGS84 +lat_0=-90.0 +lat_ts=-70	x_min: -5400000 x_max: 5400000 dx: 50000 y_min: -5400000 y_max: 5400000 dy: 50000	:geospatial_lat_min = -16.42 :geospatial_lat_max = -90.0 :geospatial_lon_min = -180.0, :geospatial_lon_max = 180.0 ;

Table 2-2: Grid definition

2.2.5 Convention for file names

The gridded Sea Ice Thickness dataset file naming follows the form:

ESACCI-SEAICE-<PRDLVL>-SITHICK-<INSTR>-<REGION>-<YYYYMM>-fv<File version>.nc

where the values for each <FIELD> can be:

- <PRDLVL> : Product Level (L2P or L3C)
- <INSTR> : RA2_ENVISAT, SIRAL_CRYOSAT
- <REGION> : L2P: NH, SH L3C: NH25kmEASE2, SH50kmEASE2
- <PERIOD> : date string of the data period L2P: YYYYMMD, L3C: YYYYMM
- VER> : product version (<X.Y>)
- 2.2.6 File format

Following [RD-8], the Sea Ice Thickness datasets are netCDF files that follow the Climate and Forecast (CF) convention (*http://cfconventions.org*).

2.2.7 Data Access

The SIT CDR data products can be accessed via the search function at the ESA CCI Open data portal (<u>http://cci.esa.int/data</u>) with the search text "sea ice thickness".

Direct anonymous ftp access is also possible with the following adress:

ftp://anon-ftp.ceda.ac.uk/neodc/esacci/sea ice/data/sea ice thickness/

The data is structured in a sub-folders:

1. Product level	"l2p" or "l3c"
2. Platform	"envisat" or "cryosat2"
3. Version	"v2.0"
4. Hemisphere	"NH" or "SH"
5.Year	ΥΥΥΥ
6. Month	MM (L2P only)

2.2.8 Digital Object Identifier

The SIT data v2.0 has been archived at the Centre for Environmental Data Analysis (CEDA) and linked to a doi. A product is defined as all netcdf files with common platform, product level and hemisphere.

Platform	Hemis.	Product Level	DOI	
Envisat	NH	L2P	10.5285/54e2ee0803764b4e84c906da3f16d81b	
		L3C	10.5285/f4c34f4f0f1d4d0da06d771f6972f180	
	SH	L2P	10.5285/550d938da3184d0ca44a06a4c0c14ffa	
		L3C	10.5285/b1f1ac03077b4aa784c5a413a2210bf5	
CryoSat-2	NH	L2P	10.5285/5b6033bfb7f241e89132a83fdc3d5364	
		L3C	10.5285/ff79d140824f42dd92b204b4f1e9e7c2	
	SH	L2P	10.5285/fbfae06e787b4fefb4b03cba2fd04bc3	
		L3C	10.5285/48fc3d1e8ada405c8486ada522dae9e8	

Table 2-3: SIT data product DOI's

2.2.9 Data Citation

Users should cite the data in their publication with the template

Hendricks, S.; Paul, S.; Rinne, E. (2018): ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): [*Northern*|*Southern*] hemisphere sea ice thickness from [*Envisat*|*CryoSat-2*] on [*the satellite swath (L2P)*|*a monthly grid (L3C)*], v2.0. Centre for Environmental Data Analysis, *date of citation. DOI, DOI_LINK*

Depending on the used data product. E.g., gridded data form Envisat in the southern hemisphere should be cited as:

Hendricks, S.; Paul, S.; Rinne, E. (2018): ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Southern hemisphere sea ice thickness from the Envisat satellite on a monthly grid (L3C), v2.0. Centre for Environmental Data Analysis, 25 July 2018. doi:10.5285/b1f1ac03077b4aa784c5a413a2210bf5. http://dx.doi.org/10.5285/b1f1ac03077b4aa784c5a413a2210bf5 < End of Document >