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Abstract—Sea ice concentrations obtained with two algo-
rithms from Special Sensor Microwave/Imager (SSM/I) data are
compared to spaceborne visible/infrared and active microwave
imagery for the Greenland Sea in Spring. Both algorithms, the
ARTIST Sea Ice algorithm (ASI) and the SEA LION algorithm
(SLA), utilize 85-GHz SSM/I brightness temperatures with a spa-
tial resolution of 15 km 13 km. Ice concentrations obtained from
Advanced Very High Resolution Radiometer (AVHRR) infrared
data in cloud-free areas are underestimated by SLA and ASI ice
concentrations by 3.6% and 8.3% (correlation coefficients of 0.90
and 0.91). Ice concentrations estimated from texture classified
ERS-2 synthetic aperture radar (SAR) images by assigning experi-
ence-based ice concentrations to ice-type classes are overestimated
by SLA and ASI ice concentrations by 4.4% and 1.5% (corre-
lation coefficients of 0.84 and 0.77). However, omitting low/high
ice concentrations forming up to 80% (AVHRR) and 60% (SAR)
of the entire dataset reveals a significantly different statistic. For
instance, the correlation between AVHRR and SLA and ASI ice
concentrations drops to 0.77 and 0.70, respectively. All presented
techniques to obtain ice concentrations need improvement and
future developments should involve larger datasets. However,
with care, both algorithms can be used to obtain reasonable ice
concentration maps with a 12.5 km 12.5 km grid-cell size.

Index Terms—Arctic regions, algorithms, microwave radiom-
etry, neural network application, sea ice, synthetic aperture radar
(SAR).

I. INTRODUCTION

SEA ICE SIGNIFICANTLY affects heat fluxes between the
ocean and the atmosphere [1]. Sea ice representation in nu-

merical climate models is still an active research topic [2] re-
quiring long-term large-scale sea ice observations. These can be
provided by remote sensing satellite sensors such as the Special
Sensor Microwave/Imager (SSM/I) onboard the Defense Mete-
orological Satellite Program (DMSP) spacecraft, which has ac-
quired data since 1987. It is equipped with dual-polarized (ver-
tical and horizontal) channels at 19, 37, and 85 GHz and one
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vertically polarized channel at 22 GHz. SSM/I orbit and scan
geometry allow monitoring polar regions poleward of 60N or
60 S almost entirely during one day [3]. Data coverage im-
proves when using all three current DMSP satellites.

Ice concentration maps can be generated from SSM/I data
using well known algorithms such as the NASA TEAM algo-
rithm (NTA, [4]) or the Comiso Bootstrap algorithm (CBA) [5].
Spatial resolution of such maps is determined by sampling dis-
tance and field-of-view (FOV) associated with the lowest SSM/I
frequency used. This is usually the 19-GHz channel (sampling
distance: 25 km, FOV: 69 km 43 km). Using the 85-GHz
channels (sampling distance: 12.5 km, FOV: 15 km13 km)
would allow resolution improvement by at least a factor of four.
Several authors have suggested or already used 85-GHz SSM/I
data for sea ice concentration retrieval [6]–[9], or have used
85-GHz data for algorithm enhancement [10].

Sea ice analysis using 85-GHz SSM/I data is hampered by
a considerably larger weather influence compared to 19- and
37-GHz SSM/I data. The surface wind changes sea surface
roughness and thus alters the surface emissivity. Atmospheric
water causes a change in atmospheric opacity. Both effects yield
a net decrease of the polarization ratio at 85 GHz causing an ice
concentration overestimation. The two algorithms compared
here for determining ice concentrations using 85-GHz SSM/I
data are the ARTIST Sea Ice algorithm [8] (simply referred to
as ASI) and the SEA LION algorithm (SLA) [9], [11]. Both of
these methods address the weather influence in different ways.

The ice concentration measurements produced by SLA and
ASI will be compared to concentrations produced using satel-
lite-based synthetic aperture radar (SAR) and visible/infrared
(IR) imagery. The SAR data is generated by the second Euro-
pean Remote Sensing satellite (ERS-2, 5.3 GHz, vertical polar-
ization on transmit and receive), which produces high-resolu-
tion imagery (25 m 25 m spatial resolution over an 100 km

100 km area). However, temporal coverage is sparse com-
pared to SSM/I. Therefore, despite the much better spatial res-
olution of SAR data, large-scale ice analysis still has to rely on
passive microwave data. Images from the Advanced Very High
Resolution Radiometer (AVHRR) are also used to generate ice
concentration estimates for comparison to ASI and SLA. Vis-
ible, near-IR, and IR bands at 1.1-km resolution are used. For
sea ice analysis, however, only AVHRR data of cloud-free areas
can be used. Accepted methods for generating ice concentra-
tions using SAR and AVHRR imagery are employed.

The paper proceeds in the following fashion. Section II gives
specific details about the image data. Section III describes the al-
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TABLE I
SSM/I CHARACTERISTICS[3], f : FREQUENCY, p: POLARIZATION, FOV:

FIELD-OF-VIEW, SI: SAMPLING INTERVAL

gorithms that were used, namely, the SLA and ASI as well as the
methods used to derive ice concentration maps using SAR and
AVHRR images. Section IV describes and Section V discusses
the ice concentration results of the SLA and ASI (using SSM/I
data) compared to the thematic maps produced using SAR and
AVHRR. Section VI summarizes the results and suggests future
applications.

II. DATA

Both ASI and SLA are applied to 85-GHz SSM/I data ac-
quired aboard DMSP platform F14 in April 1999 in the Green-
land Sea. See Table I for SSM/I channels and associated spatial
resolutions and sampling intervals [3]. Data are interpolated into
a polar-stereographic grid with 12.5 km12.5 km grid cell size.

The SLA requires atmospheric data as provided by the Nu-
merical Weather Prediction (NWP) modelHigh Resolution Lim-
ited Area Model(HIRLAM) of the Danish Meteorological In-
stitute (DMI). In the Greenland Sea, this model has a spatial
resolution of 0.15 0.15 , which is similar to 85-GHz SSM/I
data. Model data are also interpolated into the above-mentioned
grid.

For the comparison, 16 ERS-2 SAR images acquired in April
1999 in the Greenland Sea have been selected (orbits 20 762,
20 805, and 20 848). SAR images are classified as described
in Section III. Also, data of channels 1, 2, and 4 of the Ad-
vanced Very High Resolution Radiometer (AVHRR) aboard the
NOAA-15 spacecraft are used for comparison.

III. M ETHODS

A. ASI Algorithm

ASI [8] combines a model for retrieving total ice concentra-
tion from SSM/I 85-GHz data proposed by [6] (Svendsen al-
gorithm, SVA) with an ocean mask derived from 19-, 22-, and
37-GHz SSM/I data using the NT algorithm [4] and the weather
filter of [12]. The algorithm of [6] is based on a simplified form
of the microwave radiative transfer equation

and (1)

where is the total ice concentration; is the brightness tem-
perature polarization difference at 85 GHz; is the surface
emissivity polarization difference of ice or open water; andis
the total atmospheric optical depth. Effective surface tempera-
tures of ice and open water areand , respectively.

The brightness temperature polarization difference at 85 GHz
(where and are brightness temperatures at

vertical and horizontal polarization) is small over ice and large

over open water. Assuming that the atmospheric influence can
be represented by a smooth function ofbetween ice and open
water the polynomial

(2)

can be used to calculate. The coefficients of (2) as well as
tie points of open water and ice are estimated from data of the
Arctic Radiation and Turbulence Interaction STudy (ARTIST),
conducted in the environment of the Svalbard archipelago in
March/April 1998. This has been done by using reference ice
concentration data and least square statistics for tie point op-
timization. This approach is more accurate than the one pro-
posed by [6] relying on minimum and maximum values of some
samples.

Weather induced errors of ice concentration estimated with
(2) are large for open ocean and relatively small for sea ice
due to the higher emissivity of sea ice. Therefore, each pixel

is set to zero if where is the
NTA ice concentration (including the weather filter of [12]). The
threshold 5 masks ice-free areas. A threshold

30 , as given in [8], can be used for removing
strong weather influence without the above-mentioned weather
filter.

B. Sea Lion Algorithm

The SEA LION algorithm (SLA) [11] was developed during
the project SEA LION (SEa ice in the Antarctic—LInked with
OceaN-atmosphere forcing) and uses the normalized brightness
temperature polarization difference (also called polarization
ratio, PR85) at 85 GHz

(3)

Using instead of minimizes the temperature depen-
dence. Brightness temperatures are given by

and (4)

with and being fractions of a unit area covered by open
water and ice and , and , being tie points of open
water and sea ice. At 85 GHz, takes values around 0.20 over
open water and 0.02 over 100% ice, almost independently of the
ice type [6]. Inserting (4) into (3) and solving for yields

(5)

The quantities and are tie points of open water and
ice. They have been estimated from data of all SSM/I overpasses
of the Greenland Sea during April 7 to 18, 1999, and therefore
reflect average conditions of this period. Ice tie points are esti-
mated using a mask including all pixels where average as well as
temporal variability of PR85 are below a certain threshold. The
average ensures that only pixels are used where PR85 yields a
minimum ice concentration of at least 95%. The temporal vari-
ability allows identification of those pixels where the low av-
erage PR85 is indeed caused by high ice concentration and not
by a frequent weather influence.
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The major difference between ASI and SLA is the correction
of 85-GHz SSM/I brightness temperature changes due to the
weather influence, quantified by surface wind speed, atmo-
spheric water vapor content , and atmospheric liquid water
content . ASI tie points include this weather influence empiri-
cally and, therefore, requires no explicit correction of brightness
temperatures. For the SLA,, , and are either taken from a
NWP model (HIRLAM) and/or are taken, over open water only,
from low-frequency SSM/I data (19, 22, and 37 GHz) [13]–[15].
The MicroWave MODel (MWMOD) [16] is used to quantify
the weather influence and to correct brightness temperatures of
a known surface (open water or ice) for this influence given by

, , and .
Calculating with the SLA requires iterations starting with

a first-guess of obtained from uncorrected values. In each
iteration, an improved weather-influence-correctedvalue is
used to calculate an improvedvalue, which in turn is used to
obtain a new modeled value of . The iterations are stopped
after 60 steps or if (the difference between and the
modeled value of ) falls below a threshold of 0.001 ensuring
a theoretical retrieval accuracy of . SLA ice concentra-
tions shown in Section IV are a combination of two SLA runs
using either HIRLAM or SSM/I data for the weather influence
correction over open water. This has become necessary because

, , and values derived from SSM/I data are more realistic
over open water than NWP model data and thus improve the
SLA sea ice analysis. More information about the SLA is given
in [11] and [17].

C. SAR Image Classification

Compared to SSM/I, ERS-2 SAR data is restricted since it
uses only one frequency and one polarization for sending and
receiving. In addition, the signal is degraded by the multiplica-
tive speckle noise. The ambiguities in the normalized radar
cross section general do not allow unique assignments to
sea ice types with simple threshold techniques. Moreover, the
backscatter of ice-free ocean depends on the wind-speed which
can vary considerable in one SAR frame especially in the
marginal ice zone (MIZ) [18]. No general automatic algorithm
exists for the estimation of sea ice concentration from SAR
data.

A supervised classification of ERS-2 SAR sea ice imagery is
performed by using texture feature extraction and a neural net-
work. First, the ERS-2 SAR data was calibrated [19]. Then, the
linear incidence angle dependence of sea ice backscatter was
removed. An average incidence angle dependence (slope) of

dB/ was used which was estimated within
the overlap of the ascending and descending branch of the orbit
[20]. The technique for the slope estimation is similar to that
used by [21]. The slope depends on ice type and surface rough-
ness (deformation). The value of0.3 dB/ represents an av-
erage of predominantly first-year and young ice in the MIZ. The
next step is to select appropriate textures features.

Texture, a representation of the spatial relationship of gray
levels, is important for computer-assisted interpretation of im-
ages. Since SAR imagery contains spatially dependent class
characteristics, texture extraction methods have been commonly

TABLE II
FEATURES (F) DERIVED FROM THE ERS-SAR IMAGE. CALCULATION

WINDOW SIZE: n. NUMBER OF GRAY LEVELS: G

used for discrimination [22], [23]. Of the many existing tex-
ture methods, cooccurrence probabilities [24] have been suc-
cessfully applied to SAR sea ice imagery. As a result, this is the
texture feature extraction method of choice used in this paper.

Four different features given in Table II
are derived from the ERS-2 SAR images using an window.
The first feature is the output of the Lee filter [25]. The Lee
technique for additive image noise was applied in a 77 pixel
local neighborhood on the (in decibels) images. The other
three outputs are based on gray level cooccurrence probabilities.
The gray level cooccurrence probabilities represent the condi-
tional-joint probabilities ( ) of all pairwise combinations of
gray levels separated by a distanceand an orientation. These
probabilities are typically stored in a matrix, often referred to as
the gray level cooccurrence matrix or GLCM. Here, the textures
are assumed to be rotationally invariant, so, for a given distance
, the probabilities are averaged together. Once the probabili-

ties for a given window are known, then statistics are applied to
generate the texture features. The statistics used here are mean
(MEAN), entropy (ENT), and inverse moment (INV).

Given that remote sensing images tend to be large and given
that each pixel requires its own texture feature vector, a fast
algorithm was employed. A suitable approach is an iterative
framework which is commonly employed in image processing
algorithms [26]. Such a method avoids the need to traverse en-
tire GLCMs and, in doing so, significantly minimizes the com-
putational demands. For example, based on trial testing on an
separate 2000 2000 SAR image, the GLCM method required
over five times the computational time compared to the itera-
tive method given a window size of 1515 and a quantization
level of 32. The iterative method requires anywhere from ap-
proximately 1% to 50% of the computational time of the matrix
method, depending on the parameters selected (, , statistics).

A supervised neural network learning architecture was used
for classification, namely Kohonen’s Learning Vector Quanti-
zation (LVQ) [27]. LVQ approximates the probability density
functions by a set of optimally placed vectors which are called
codebook vectors (CV). The codebook is generated by learning
from examples of class labeled feature vectors (training data).
About 70–200 homogeneous areas of five different surface types
were manually selected for each ERS-2 orbit. First-year (FY),
grease (GR), brash (BR), and level (LE) ice, as well as open
water (OW) regions were discriminated. These areas were used
for training and testing of the neural network. The advantage of
using a neural network is the adaptiveness, i.e., it can be trained
with examples of different appearance, such as calm or wind
roughened open water. Best results are obtained if wind speed
and direction are almost uniform within the region of interest—a
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TABLE III
ESTIMATED EFFECTIVE ICE CONCENTRATIONS[IN PERCENT] IN THEMATIC

SAR MAPS. SEE TEXT FOR MEANING OF COLORS

TABLE IV
OPENWATER AND SEA ICE TIE POINTS [IN KELVIN] OBTAINED FROM AVHRR

CHANNEL 4 T MAPS OFDATES GIVEN IN TABLE V

reasonable assumption when classifying several SAR images
neighboring each other. The classification accuracy for training
(self consistence) and test (test data not used for training) are
95% and 88% for April 10, 88% and 73% for April 13, and 93%
and 81% for April 16.

To give an estimate of the ice concentration using the classi-
fied SAR images an average ice concentration value is needed
for each of the five classes. These values are given in Table III
together with the colors used to display the different ice types in
Fig. 3 in Section IV. The values stem from the experience gained
during experiments of the 1998 ARTIST in the Svalbard area.

The reader should keep in mind, that these values have not
been cross-checked against anyin situ data. However, given
the resolution of the SAR images used and the typical size of
first-year and/or level ice floes, these estimates for these two
ice types are quite realistic. First-year ice contains a small frac-
tion of multiyear ice (below 20%). Typical sizes of ice floes or
floe fragments of brash ice, however, are small, and therefore
the uncertainty of the ice concentration estimate for this ice type
is larger—but still difficult to determine. Grease ice contains a
consolidated suspension of ice crystals in water, acting as pre-
cursor for the development of pancake ice. Certainly, the esti-
mate of 30% for grease ice marks the lower end of possible ice
concentrations.

D. Ice Concentration From AVHRR Imagery

AVHRR imagery can be used to estimate the ice concentra-
tion with a spatial resolution of 1 km 1 km [28], [29]. Ap-
propriate methods use the radiance measured at AVHRR chan-
nels 1 and 2 (0.58–0.68 and 0.72–1.10m) and/or the IR bright-
ness temperature (IR temperature or, henceforth) measured
at AVHRR channel 4 (10.3–11.3m), depending on ice type
and time of the year. During winter and spring, for instance,
freezing conditions prevail. Consequently, the IR temperature
contrast between open water and ice is large. Here, AVHRR
data acquired in April 1999 are used together with a tie point
method based on AVHRR channel 4 IR temperatures [28], [30].
Tie points (see Table IV) are estimated as follows.

i) Generate a map of AVHRR channel 1 and channel 2 per-
cent albedo and AVHRR channel 4 (maps I, II, and
III). Prelaunch slopes and intercepts as well as conver-
sion coefficients as given in the National Oceanic and

Atmospheric Administration (NOAA) LM User’s Guide
[31] are used.1

ii) Apply a cloud-mask by combining maps I and II.
iii) Identify and mark ice floes in map I located as close as

possible to open water and, according to the respective
value, belonging to gray or gray-white ice.

iv) From these floes, take the average AVHRR channel 4
value as the AVHRR ice tie point .

v) Identify and mark areas in map I located as close as pos-
sible to the ice edge revealing a radiance typical of open
water.

vi) From these areas take the average AVHRR channel 4
value as the AVHRR open water tie point .

All of these steps are done for each AVHRR image. Respective
tie points are listed in Table IV.

Finally, the AVHRR ice concentration is calculated
as follows:

100 for

for

0 for

Neither percent albedo nor are corrected for incidence
angle variation or atmospheric attenuation. This is not required
because on the one hand data of channel 1 and 2 are only used to
select appropriate areas for tie point estimation and to generate
a qualitative cloud mask without using absolute values. On the
other hand, tie points and values are similarly influenced by
incidence angle variation and atmospheric attenuation leading
to a consistent bias.

This method has some shortcomings. First, the cloud masking
scheme might fail to remove all clouds. Clouds mimic the sur-
face and depending on whether the surface is warmer or colder
than the clouds, the ice concentration can be under- or over-
estimated. Second, the method assumes that below (above) a
certain value the AVHRR pixel is entirely covered by ice
(open water). Subpixel-scale distributions of open water and ice
cannot be addressed. A mixture of thick, cold small first-year ice
floes and open water, for instance, may cause an IR temperature
well below the ice tie point despite a notable open water
fraction. An ice concentration overestimation would result. Fi-
nally, thin ice can cause ice concentration underestimation due
to its rather high IR temperature compared to thicker ice.

IV. RESULTS

ASI and SLA have been used to calculate Greenland Sea ice
concentrations for days given in Table V. These SSM/I 12.5 km

12.5 km ice concentration ( ) maps have been quanti-
tatively compared with NOAA-15 AVHRR visible/IR imagery
and with classified ERS-2 SAR images (thematic SAR maps)
acquired on the same days. AVHRR maps have been interpo-
lated into a 1 km 1 km polar-stereographic fine-mesh ver-
sion of the grid used at the National Snow and Ice Data Center
(NSIDC) [32]. For the thematic SAR maps, latitude/longitude

1Available online at http://www2.ncdc.noaa.gov/docs/klm/index.htm.
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TABLE V
AVHRR, ERS-2 SAR,AND SSM/I OVERPASSTIMES (UTC)

USED IN THIS STUDY

values of this grid have been interpolated to a spatial resolution
of 250 m 250 m, first. Second, SAR corner and center coordi-
nates are used to generate latitude/longitude pairs for each pixel
of the SAR map at the same resolution. Third, by searching for
the minimum difference between both latitude/longitude arrays,
each pixel of the interpolated SSM/I grid is assigned the corre-
sponding value of the SAR map using the drop-into-the-bucket
method. Fig. 1(a) shows the region of interest together with a
typical example of an AVHRR IR temperature image superim-
posed with colocated SLA ice concentration iso-lines. The col-
ored rectangles denote subareas used in the comparison.

A. AVHRR Versus SSM/I Ice Concentration

A compromise has been made between time difference of
AVHRR and SSM/I overpasses and extent of cloud-free areas
in AVHRR images when selecting overpasses for the compar-
ison (see Table V). For April 10 and 16, AVHRR and SSM/I
overpass times differ by less than 30 min, while for April 13 the
time difference is about 3 h. However, the considered area (see
Fig. 1(a), large green rectangle) remained cloud-free during that
day, and ice drift velocities in this area are about 5 km per day
[33] so that any influence due to the time difference is negli-
gible.

Fig. 1 shows maps of AVHRR channel 1 percent albedo and
channel 4 together with the 1 km 1 km AVHRR ice con-
centration in images Fig. 1(b)–(d) for April 16 (see
Fig. 1(a), large green rectangle, for location, and Table V for
times). Both albedo and reveal a compact ice cover along
Greenland and a diffuse ice edge. Several large to vast ice floes
as well as some open water/thin ice areas can be identified.
There is a clear transition from discernible ice floes with IR tem-
peratures below 263 K in the northwest (pack ice) to the MIZ in
the southeast bordered by ice filaments and open water. Fig. 1(b)
exhibits a rather uniform texture with almost no change in the
gray level (percent albedo) between more dense ice and ice fil-
aments in the MIZ. Fig. 1(c) indicates a gradual increase of
toward open water to about 266 K in the MIZ. An abrupt change
from 266–269 K at the transition from dense ice to the ice fil-
aments occurs, followed by another abrupt change at the tran-
sition from ice filaments to open water. Accordingly, Fig. 1(d)
reveals 100% ice concentration in the pack ice area—except in
the mentioned open water/thin ice areas. These high ice con-
centrations extend well into the MIZ. Toward the ice edge, ice
concentrations drop abruptly to values below 40% to 50% north-
west of the ice filaments and to 10% to 30% in the ice filaments.

The high-resolution ice concentration map has been averaged
to 12.5 km 12.5 km spatial resolution [Fig. 1(e)] to match the
resolution of SSM/I ice concentrations of the ASI [Fig. 1(f)] and
of the SLA [Fig. 1(g)]. By comparing Fig. 1(e) with Fig. 1(f)

and (g), SLA and ASI ice concentrations ( and ) are
lower than in the pack ice area, especially in the north
and in the MIZ. The ice edge is located more to the northwest
in both SSM/I ice concentration maps compared to the AVHRR
ice concentration.

Similar ice concentration maps have been calculated and
compared with each other for the other two days (see Table V).
The results have been combined and statistically examined.
Fig. 2(a) and (b) show scatterplots of versus .
Both SLA and ASI ice concentrations are not in perfect
agreement with AVHRR ice concentrations, particular at high
ice concentrations, although the regression line slope is about
0.9 and correlation coefficients are around 0.95. For April 10,
AVHRR ice concentrations are consequently underestimated
by the ASI. For April 13 and 16 (red and blue symbols),
the data pairs form a banana-shaped cloud pointing to an
underestimation of at high and low values and an
overestimation of at moderate values. This is most
pronounced at high AVHRR ice concentrations, where SSM/I
ice concentrations take values down to 20% (ASI) and 40%
(SLA).

B. SAR Versus SSM/I Ice Concentration

Sixteen ERS-2 SAR images of orbits listed in Section II (see
also Fig. 1(a), yellow, orange and red rectangles) are used for
comparison with SSM/I ice concentrations. Time differences
between acquisition of selected ERS-2 SAR images and cor-
responding SSM/I overpasses is about four hours (see Table V).
This is considerable given that ice drift is greater in this part of
the Greenland Sea compared to the area shown in Fig. 1(b)–(g)
[33]. However, the spatial overlap between preceding SSM/I
overpasses and selected SAR images is not optimal and reduces
the amount of data to be used for a comparison significantly.
Therefore, data as given in Table V are used for the statistics,
keeping in mind possible errors due to ice drift.

Thematic SAR maps have been derived from all selected SAR
images using the scheme described in Section III. In the second
step, all pixels within a 12.5 km 12.5 km grid cell belonging to
one ice type are counted for all ice types of Table III. Thereafter,
the sum of the resulting counts is calculated using the ice con-
centration weights in Table III. Finally, this sum is divided by the
number of 1 km 1 km grid cells within a 12.5 km 12.5 km
grid cell to obtain the SAR ice concentration .

Fig. 3 shows AVHRR channel 4 maps superimposed with
thematic SAR maps and iso-lines at 5%, 30%, 60%, and
90% for April 10 [Fig. 3(a) and (b)] and April 16 [Fig. 3(c) and
(d)] (see Table V for details of dates). The SAR maps of Fig. 3(a)
and (b) comprise four SAR frames. The MIZ is characterized by
the transition from a compact ice cover with a rather well-de-
fined ice edge in the top third to an increasingly diffuse ice edge
further below. According to the SAR map first-year and brash
ice (orange and green patches; see Table III for colors) domi-
nate. Therefore, the ice concentration is rather high. There is ev-
idence for this in SLA and ASI ice concentrations with values
above 60% in these areas. The transition from a compact to a
diffuse MIZ/ice edge can be identified from SSM/I ice concen-
trations quite well by means of an increasing interisoline dis-
tance. However, only ASI ice concentration iso-lines (5%, 30%,
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Fig. 1. (a) Overview of area and subareas used for the comparisons: AVHRR channel 4T map of April 16 superimposed with SLA ice concentration iso-lines
of April 16. The smaller green rectangle denotes the subarea for the comparison AVHRR versus SSM/I for April 10. The larger green one denotes the subarea
for the comparison AVHRR versus SSM/I for April 13 and 16. Other rectangles mark subareas for the comparison SAR versus SSM/I for April 10 (yellow), 13
(orange), and 16 (red). Land, coast, and missing data are gray, black, and white, respectively. (b)–(g) AVHRR images and AVHRR and SSM/I ice concentrations
for April 16. (b) and (c) AVHRR channel 1 percent albedo and channel 4 IR temperature. (d) and (e) AVHRR ice concentrationC at 1 km� 1 km and 12.5
km� 12.5 km spatial resolution, respectively. (f) ASI ice concentration. (g) SLA ice concentration. White areas: clouds/land/missing data.

Fig. 2. (a) and (b) SSM/I versus AVHRR ice concentration for dates listed in Table V. (a)C versusC . (b)C versusC . Images (c)–(e)
SSM/I and SAR ice concentrations for April 10. (c) ASI ice concentration, bad-weather threshold. (d) SLA ice concentration. (f) SAR ice concentration. Pale
yellow is open water (see legend), and white denotes missing data. (f) and (g) SSM/I versus SAR ice concentration for dates given in Table V. (f)C versus
C ; (g): C versusC . Black, red, and blue symbols in (a), (b), (f), and (g) are for April 10, 13, and 16, respectively. CC, RC, and N are the linear
correlation coefficient, the regression coefficient, and the number of data points. Solid lines show the regression ofC versusC in (a),C versus
C in (b),C versusC in (f), andC versusC in (g). Dotted lines denote perfect agreement.
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Fig. 3. (a) and (c) AVHRR IR temperature maps superimposed with thematic SAR maps and SLA and (b) and (d) ASI ice concentration iso-lines at 5%, 30%,
60%, and 90% for April 10 [(a) and (b)] and April 16 [(c) and (d)]. See Table III for colors of SAR maps and Table V for acquisition times.
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and 60%) follow the SAR ice edge remarkably well. Respective
SLA ice concentration iso-lines tend to align further away from
the SAR ice edge.

The SAR maps of Fig. 3(c) and (d) comprise seven SAR
frames. Compared to Fig. 3(a) and (b) the situation has changed.
According to the SAR map, considerable first-year ice has been
converted to brash ice, which dominates (green patches). SLA
and ASI ice concentration take values above 60% in this area.
Large areas are covered by grease ice (black patches) aligning
along the ice edge. Especially in the bottom third, the MIZ
becomes very disrupted with alternating open water and first-
year/brash ice bands. This is evident in the AVHRR channel 4

map by means of alternating bands of high and low
as well as in SLA and ASI ice concentration maps. However,
ice concentration iso-lines of 5% and 30% again do not align
too well along the SAR ice edge, and SLA ice concentration
iso-lines of 5% and 30% agree less with the SAR ice edge than
those of the ASI [compare Fig. 3(a) and (b)].

Fig. 2(c)–(e) gives an example of SSM/I ice concentrations
[Fig. 2(c): ASI; and Fig. 2(d): SLA] in comparison to SAR ice
concentration [Fig. 2(e)] for April 10, 1999 (see Table V and
Fig. 1(a), yellow rectangle). Size of the shown area is 200 km

412.5 km. Only SSM/I pixels entirely covered by the SAR
map have been used. SLA ice concentrations [Fig. 2(c)] re-
main above 20% along almost the entire ice edge, while ASI
[Fig. 2(d)] and particularly SAR ice concentrations Fig. 2(e) re-
veal a smoother transition to open water. Respective SAR im-
ages (see Fig. 3) reveal a compact ice pack in the top and a
more diffuse ice pack in the bottom. Neither ASI nor SLA ice
concentrations confirm this change in ice concentration. The
orange-brown area denoting ice concentrations above 80% is
largest in Fig. 2(e) and smallest in Fig. 2(c). Maximum values
tend to be highest in Fig. 2(d) and lowest in Fig. 2(c). However,
Fig. 2(c) and (d) shows agreement in the ice concentration vari-
ation in the high-concentration area. SAR [Fig. 2(e)] shows a
different pattern.

Similar ice concentration maps have been calculated and
compared with each other for the other days (see Table V). The
results are combined and statistically examined. Fig. 2(f) and
(g) shows scatterplots of versus .

SLA and ASI ice concentrations are not in perfect agreement
with the SAR ice concentration. Regression and correlation
coefficients are 0.78 and 0.84, respectively. Part of the data
form a banana-shaped cloud (blue and red symbols) pointing
to an overestimation (underestimation) of at low and
high values and to an underestimation (overestimation) of

at moderate ice concentrations for data of April 16
(April 13) by the blue (red) symbols. For April 10, data pairs
align more closely along the line of perfect agreement. The
overall relationship between and is similar for
ice concentrations of both algorithms. Both reveal the best
correlation for April 10 (ASI: 0.92, SLA: 0.91) and the worst
correlation for April 13 (ASI: 0.75, SLA: 0.78).

V. DISCUSSION

A primary reason for using 85-GHz SSM/I data for assessing
ice concentrations is the spatial resolution improvement

compared to other SSM/I frequencies. The ability to monitor
smaller open water areas (e.g., leads, polynyas) helps to monitor
daily the distribution of bio-geochemical processes. Also, the
amount of land-contaminated ice concentrations is reduced and
the ability to monitor coastal or flaw polynyas is improved.

Ice concentrations derived from SSM/I 85-GHz data have al-
ready been used for navigation [7] and, if prescribed to numer-
ical meso-scale atmospheric models, have proven to notably im-
prove their output [8]. Kaleschkeet al. [8] made a qualitative
comparison between SAR data, ASI, and NASA Team algo-
rithm (NTA) ice concentrations. The ASI represented the ice
concentration gradient across the MIZ more realistically relative
to the NTA. SLA ice concentrations have been demonstrated to
illustrate finer details than the NTA for Antarctic sea ice [9],
[11].

An enhancement of the NTA, the NASA Team 2 algorithm
(NT2), was used to mitigate certain snow property influences by
Markus and Cavalieri [10]. They have quantitatively intercom-
pared ice concentrations of Comiso Bootstrap algorithm (CBA),
NTA, NT2, and AVHRR IR imagery for data of one transect
in the Sea of Okhotsk (February 4, 1995) and Ross Sea (Au-
gust 23, 1993). The NT2 provides more accurate ice concentra-
tions with much less bias than the other two algorithms: corre-
lation coefficients improved from 0.50 (CBA) and 0.65 (NTA)
to 0.83 (NT2) in the Ross Sea and from 0.65 (CBA) and 0.71
(NTA) to 0.74 (NT2) in the Sea of Okhotsk. Average differences

improved from 2.2% (CBA) and 7.9% (NTA)
to 0.8 (NT2) for the Ross Sea and from7.2 (CBA) and
1.6% (NTA) to 1.1 (NT2) in the Sea of Okhotsk.

A first quantitative comparison among NTA, CBA, and SLA
ice concentrations, i.e., of ice concentrations obtained at a spa-
tial resolution of 25 km 25 km (NTA, CBA, 19- and 37-GHz
data) and of 12.5 km 12.5 km (SLA, 85-GHz data), with SAR
ice concentrations was made for the Greenland Sea by Kern
[17]. This was done in the same manner and for the same dates as
in this study. CBA (NTA) ice concentrations exceeded SAR ice
concentrations on average by 15.519.5 (8.5 18.8 ) with
regression and correlation coefficients of 0.552 and 0.832 (0.571
and 0.848). In comparison to Table VI, correlation coefficients
are similar to SLA results, while regression coefficients are sig-
nificantly smaller compared to SLA and ASI results. Also, using
the SLA or ASI, average differences between SAR and SSM/I
ice concentrations are much smaller with a comparable standard
deviation compared to CBA and NTA. The focus of this paper,
however, is the quantitative intercomparison of SLA and ASI,
both based on SSM/I 85-GHz data, with SAR and AVHRR ice
concentrations.

Table VI summarizes the statistics for comparing AVHRR
versus SSM/I ice concentration and SAR versus SSM/I ice con-
centration of all dates given in Table V. It contains correlation
coefficients (CC), regression coefficients (RC), the root-mean-
square error (RMS), and bias (BIAS) for this regression, and
the number of data points used (). Columns denoted by DIFF
contain the average differenceone standard deviation. Land-
and cloud-contaminated pixels (AVHRR) or pixels not entirely
covered by the SAR maps (SAR) have been omitted.

A. AVHRR Versus SSM/I Ice Concentration

The correlation coefficients of SLA and ASI with respect to
AVHRR are each very strong (0.95) as well as the regression
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TABLE VI
CORRELATION COEFFICIENT(CC), REGRESSIONCOEFFICIENT(RC), REGRESSIONROOT-MEAN-SQUARE ERROR(RMS),AND REGRESSIONBIAS (BIAS), NUMBER

OF DATA POINTS USED (N), AND AVERAGE ICE CONCENTRATION DIFFERENCE� ONE STANDARD DEVIATION (DIFF) OF THE COMPARISONSSM/I VERSUS

AVHRR OR SAR ICE CONCENTRATION OFALL DATES GIVEN IN TABLE V

coefficients (0.90). Average differences are acceptable for the
SLA (3.6%) and elevated for the ASI (8.3%), each with a stan-
dard deviation around 12%. The RMS error of the regression
compares with the standard deviations (also12 ). Emery
et al. [30] reported differences for a comparison of NTA and
CBA ice concentrations ( and ) with AVHRR ice
concentrations in the Fram Strait for March 24, 1989, of1.3
and 0.8% for NTA and CBA, respectively, with a standard devi-
ation around 5%. A comparison between and with
ice concentrations obtained from LANDSAT imagery revealed
average differences for of 8.6 7.0% and
for of 6.0 6.8% for the Bering Sea on
March 13 and 21, 1988 [34]. The much larger comparable stan-
dard deviation in Table VI can be partly explained by the fact
that [30] and [34] used a 25 km 25 km grid instead of a 12.5
km 12.5 km grid. This causes less smoothing of the ice con-
centration, a lower (higher) number of grid cells with medium
(low and high) ice concentrations, and therefore an increased
probability for higher and more variable ice concentration dif-
ferences. This is of particular relevance in regions with leads,
polynyas and/or a well-defined ice edge as is the case in [30]
and our work. A third comparison between AVHRR and SSM/I
ice concentrations has already been mentioned [10].

Fig. 2(a) and (b) reveals that less than 20% of all ice concen-
trations lie between 6% and 94%, while about 80% are either
close to 0% or 100% (see , Table VI). The statistics might
be strongly biased toward low/high ice concentrations. There-
fore, the statistics have been repeated for ice concentrations be-
tween 6% and 94%. Correlation coefficients decrease to below
0.8. New values for bias (BIAS) and slope of the regression co-
efficient (RC), as well as the increase of the RMS error by 4% to
15% (SLA) and by 6% to 18% (ASI), point to a poor agreement
between and in this concentration range. The
average difference remains unchanged for and decreases
for , but its standard deviation increases to almost 20%.
Standard deviations of the average ice concentration (not shown
in Table VI) decrease from about 40% to 25%.

There is notable difference in the relationship between
and between April 10 and April 13 and 16,

especially for ice concentrations between 20% and 80%. This
can be explained by the different locations (compare Fig. 1(a),
green rectangles) and the associated different compatibility

of SSM/I tie points to the local conditions (the AVHRR tie
point is estimated locally). SLA ice tie points reflect the
average ice properties of the last ten days of the entire investi-
gated area (Section III-A) and may—to a certain degree—even
represent the ice properties within one or both green rectangles
(large: area I, small: area II). In contrast, ASI tie points were
obtained from ARTIST experiment data (Section III-B) and,
therefore, are totally independent from SSM/I data used in
this study. Consequently, if ice properties between area I and
II differ significantly, and/or if ice tie points represent the ice
properties of area I better than those of area II or vice versa,
and/or if ice properties of area I and II differ from ice properties
the tie points are based upon, then differences in and

as well as in the agreement between and
are likely to occur.

A large number of grid cells shows values for close
to 100%, while takes values down to 40% (SLA) or 20%
(ASI). How can this be explained?

1) The weather filter of the ASI and the SLA weather correc-
tion might have failed. This is rather unlikely because cor-
responding AVHRR images reveal clear-sky conditions
and therefore no cloud-influence. Also, low air temper-
atures (common for the investigation period) favor low
total water vapor content. This influence on SSM/I bright-
ness temperatures can easily be corrected in both algo-
rithms.

2) AVHRR tie points could have been poorly chosen. If, for
instance, is too high an overestimation of
would result. This could happen in the MIZ, where a no-
table amount of open water coexists with cold ice, giving
IR temperatures which might already be below .
However, for thin ice exhibiting a rather high IR tem-
perature a higher value would be required for . To
choose a value for that is representative of different
ice types across different IR temperatures is crucial and at
the same time very difficult. Using the albedo instead of

is expected to be a better choice in this region.
3) Fog or low-level clouds might have obscured open water

areas. This would have caused lower-than surface IR
temperatures and an overestimation of . A com-
parison of with , including the used cloud
mask (not shown), reveals that about ten grid cells with
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100 are in fact caused by an insufficient
cloud mask on April 10. Using a more sophisticated
cloud mask would reduce this error.

As an example for 2) and 3) on April 13, many grid cells
have values above 90%, while takes values be-
tween 20% and 70% [red symbols, Fig. 2(a) and (b)]. Both SLA
and ASI identify a flaw polynya along the fast ice of Greenland.
This polynya can be identified in the AVHRR channel 1 percent
albedo map quite clearly (not shown). But takes values al-
ready slightly below resulting in the observed high values
of . Additionally, the polynya is partly covered by high
clouds not flagged by the cloud mask further increasing a po-
tential overestimation of .

At low ice concentrations disagreement is pronounced on
April 13 [ 0 but 0 to 45 ;
0 to 70 but , red symbols in Fig. 2(a), and
(b)] and on April 16 [ but 0 to 40 ;

0 but 0 to 25 , blue symbols in
Fig. 2(a) and (b)]. In case of the ASI, agreement might be im-
proved using the good-weather threshold of 5% instead of the
bad-weather threshold of 30% (see Section III-B). However,
ASI ice concentrations of April 13 and 16 have been examined
for both thresholds, revealing practically no improvement. To
estimate the ice concentration in the outer part of the MIZ is dif-
ficult due to the numerous ice bands [compare Fig. 1(b) and (c)].
Here, ice might have been flooded by sea water and, therefore,
most likely exhibits values close to that of open water. This
would result in an underestimation of . Ice edges given
by and are not in perfect agreement. On April
13, (not shown) reveals an ice edge where many pixels
are shifted by one to two pixels relative to the ice edge given by

, in both directions. This gives 0 where
0 and vice-versa. The corresponding map of

(not shown) reveals a more systematic shift toward the
ice edge, i.e., the ASI tends to underestimate ice concentrations
along the ice edge.

B. SAR Versus SSM/I Ice Concentration

Correlation (regression) analysis of SSM/I and SAR ice con-
centrations yield coefficients of 0.84 and 0.78 (0.77 and 0.73)
for SLA and ASI, respectively (see Table VI). Markuset al.
[35] investigated ice concentrations obtained with the enhanced
NASA Team algorithm (NT2, [10]) with ice concentrations de-
rived using a different automatic SAR ice discrimination algo-
rithm (SICA, [36]). They reported average correlation coeffi-
cients of 0.66 and 0.87 for the central Arctic and the northern
Fram Strait region, respectively, for September 1996. The re-
gions investigated in their study, however, were covered by a
minimum of 40% sea ice and, at that time of the year, exhibit
different surface properties compared to the data used in this
study. Therefore, a direct comparison is not appropriate.

The average difference is acceptable for both
SLA ( 4.4 ) and ASI ( 1.5 ); however, the associated stan-
dard deviations are elevated around 21%. The RMS error of
the regression compares with the standard deviations (20 ).
Both ice concentration algorithms tend to both under- and over-
estimate for almost the entire ice concentration range. In
particular, values of between 60% and 100% coexist with
values of between 0% and 100% and of between
20% and 100%. How can this be explained?

1) Although ice concentration estimates given for ice types
in Table III are based on experience gained during sim-
ilar conditions in 1998, the accuracy of these values is
questionable. For brash and grease ice, ice concentration
estimates may differ from those in Table III. An ice con-
centration of 90% for brash ice seems to be too high for
ice filaments along the ice edge. Repeating the SAR ice
concentration analysis with a 70% concentration of brash
ice would probably reduce the disagreement for high SAR
ice concentrations. This would also be valid for discrep-
ancies at low ice concentrations [see 3) and 4) below].

2) The SAR image classification itself might be improved.
For April 16, for instance, to separate ice types “first-year
ice” and “brash ice” was difficult. In contrast, discrim-
inating wind-roughened open water from thin level ice
or grease ice is simple due to the large difference in
backscattering properties of these surface types. For all
days, best classification results have been obtained for
“open water.” However, due to the quite large classified
area (four SAR frames, i.e., 100 km 400 km for
April 10 and seven SAR frames, i.e., 100 km700 km
for April 16), misclassifications can easily arise from
a change of the wind vector. For instance, the small
region of grease/level ice at the top of Fig. 3(a) and (b)
(black/red patch) could be such a misclassification. Tests
of the classification scheme described in Section III-C
revealed an error of 12% to 27%—which gives a notable
error in the SAR ice concentration.

At low ice concentrations takes values between 0% and
40%, while and take values between 0% and 90%
and 0% and 80%, respectively. How can this discrepancy be
explained?

3) Again, ice concentration estimates given in Table III could
have caused some of these discrepancies [see 1) above].
Particularly, classifying ice filaments as brash ice with
90% ice concentration could have caused many of the
symbols below the line of perfect agreement in Fig. 2(f)
and (g).

4) Again, misclassifications could have caused some of the
discrepancies [see 2)]. For instance, thematic SAR maps
of April 13 (not shown) and April 10 and 16 reveal one
major difference. A much larger area of the MIZ (not
along the ice edge but in the interior) was classified as
grease ice on April 13, while it was classified as brash
ice, first-year ice, or level ice on April 10 and 16. These
grease ice areas are a likely source for being much
smaller than and .

5) SSM/I ice concentrations could still be biased by the
weather influence. On April 16, surface wind speed,
atmospheric water vapor content, and cloud liquid water
content were all quite high in the investigated area [see
Fig. 3(c) and (d)]. The weather filter (ASI) as well as
the weather influence correction (SLA) seem not to be
sufficient because both images [Fig. 3(c) and (d)] reveal
an SSM/I ice edge located notably further to the west
compared to the SAR ice edge. This has possibly caused
many of the blue symbols above the line of perfect
agreement in Fig. 2(f) and (g). The weather influence on
April 10 and 13 was significantly weaker.
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So far, the statistics have been discussed for the entire ice
concentration range. Because many data are situated at low/high
ice concentrations (compare Section IV), the statistics have been
repeated for ice concentrations between 11% and 89%, i.e., for
all and data pairs of this range. The results are
also shown in Table VI and reflect the rather poor agreement for
this concentration range already visible from Fig. 2(f) and (g).
Correlation and regression coefficients are below 0.5 for both
algorithms.

In the part of the Greenland Sea relevant for the compar-
ison between SAR and SSM/I ice concentrations, ice drift along
Greenland can amount up to 20 km per day [33] and might have
biased the results given in Table VI. For this reason, the compar-
ison has been repeated for SSM/I overpasses with a maximum
time difference to SAR image acquisition of less than 1 h. The
resulting statistics reveals no improvement, neither for the entire
ice concentration range nor for the range 11% to 89%. Conse-
quently, ice drift may not have influenced the comparison.

VI. SUMMARY AND CONCLUSION

Early spring Greenland Sea sea ice concentration maps ob-
tained with the ARTIST Sea Ice algorithm (ASI) and the SEA
LION algorithm (SLA) with a grid cell size of 12.5 km 12.5
km for April 10, 13, and 16, 1999, have been presented. Both al-
gorithms utilize the 85-GHz channels of the Special Sensor Mi-
crowave/Imager. The ASI uses the brightness temperature po-
larization difference, while the SLA uses the normalized bright-
ness temperature polarization difference (also called polariza-
tion ratio). Using 85-GHz data requires a special considera-
tion of the weather influence (change in brightness tempera-
ture caused by change in roughness of the sea surface and by
absorption/emission in the atmosphere due to water vapor and
cloud liquid water), which is much larger compared to low-fre-
quency SSM/I data. ASI tie points include this weather influ-
ence empirically and therefore no explicit weather correction
is required. SLA tie points reflect almost clear-sky conditions.
Therefore, 85-GHz SSM/I brightness temperatures are explic-
itly corrected for the weather influence using atmospheric data
taken either from low-frequency SSM/I data or from Numer-
ical Weather Prediction model data for radiative transfer calcu-
lations.

SLA and ASI ice concentrations have been compared with ice
concentrations derived from NOAA-15 AVHRR data and clas-
sified ERS-2 SAR data. Channels 1, 2, and 4 are used to esti-
mate tie points for each AVHRR scene to be used to estimate the
ice concentration ( ) from AVHRR IR temperature. For
cloud-free areas, the comparison between and
as well as and reveals a strong positive corre-
lation (about 0.95) with corresponding linear regression values.
Confining the analysis to ice concentrations between 6% to 94%
generates significantly weaker correlation and regression values
and with significantly larger values for RMS error and regres-
sion bias.

Sixteen ERS-2 SAR images have been classified using a su-
pervised approach. Five classes (open water, level ice, grease
ice, brash ice, and first-year ice) have been identified. By as-

signing estimated ice concentrations, the SAR ice concentra-
tion ( ) has been calculated. The comparisons reveal strong
agreement, but not as strong as AVHRR comparisons to ASI or
SLA. Again, by omitting low/high ice concentrations and con-
fining the analysis to ice concentrations between 11% and 89%,
the agreement becomes poor.

Previously, SLA and ASI have been evaluated only qualita-
tively with independent data [8], [9]. To the best of the authors’
knowledge, this is the first time that SLA and ASI ice concentra-
tions are compared quantitatively with AVHRR IR temperature
and classified SAR imagery ice concentrations. Both SLA and
ASI have to be used with care for ice analysis since they each
use a different approach to address the significant weather in-
fluence associated with 85-GHz SSM/I data compared to other
SSM/I data. The performance of both algorithms is similar for
clear-sky (AVHRR) and cloudy (SAR) cases, which can be ex-
pected if the respective schemes used to mitigate the weather
influence work correctly. However, at low ice concentrations,
the SLA tends to overestimate ice concentrations, while the ASI
does the opposite. The SLA needs to be improved by using more
realistic atmospheric data for the weather influence correction
or by discarding pixels with a high liquid water content. There is
evidence that ASI ice concentrations are biased in areas where
tie points fail to represent local conditions. In contrast, SLA tie
points reflect average ice conditions of a certain, selectable pe-
riod, reducing such bias. More data have to be investigated to
cover these issues satisfactorily.

The tie point selection required to obtain , as well
as classification, colocation, and assignment of ice concentra-
tions to classified ice types in SAR imagery, also has high error
potential. Improvements that would enhance reliability of a sim-
ilar comparison include: 1) applying a more sophisticated tech-
nique to obtain ice concentrations from AVHRR imagery; 2) op-
timizing SAR ice concentration estimation by performing the
classification frame-by-frame to minimize any effects due to
changes in wind vector, and by assigning more realistic ice con-
centrations to the classified ice types; and 3) utilizing a much
larger dataset.

The Advanced Microwave Scanning Radiometer (AMSR)
aboard EOS-AQUA will allow improved sea ice analysis com-
pared to SSM/I. The main improvement will be due to the finer
spatial resolution of used AMSR channels: 18.7 and 36.5 GHz.
They have an FOV of 27 km 16 km and 14 km 8 km at a
sampling distance of 10 km. Since radiative properties of the
surface and the atmosphere are rather similar at 85 and 89 GHz,
one can benefit from the finer spatial resolution of the 89-GHz
AMSR channels (FOV: 6 km 4 km, sampling distance 5 km).
A first attempt toward this direction has already been made by
Kaleschke [37].2 This would produce 12.5 km 12.5 km ice
concentration maps (up to three times daily from SSM/I data
acquired by DMSP spacecraft F13, F14, and F15) as well as 5
km 5 km ice concentration maps (AMSR data). These can
serve 1) as input for comparison of modeling efforts and 2) as
independent data for evaluation of other spaceborne sensors
monitoring sea ice (e.g., ERS, ENVISAT, and QuikSCAT).

2See also http://www.seaice.de.



KERN et al.: COMPARISON OF TWO 85-GHZ SSM/I ICE CONCENTRATION ALGORITHMS 2305

ACKNOWLEDGMENT

The authors would like to acknowledge data provided by
the Global Hydrology Resources Center, NASA, Huntsville,
AL, European Space Agency, Esrin, Italy, Danish Meteo-
rological Institute, Copenhagen, Denmark, and the Satellite
Active Archive, NOAA, Washington DC. The input of three
anonymous reviewers is greatly appreciated.

REFERENCES

[1] K. Aagaard and E. C. Carmack, “The arctic ocean and climate: A per-
spective,” inThe Polar Oceans and Their Role in Shaping the Global
Environment, O. M. Johannessen, R. D. Muench, and J. E. Overland,
Eds. Washington, DC.: Amer. Geophys. Union, 1994, vol. 85.

[2] P. Lemke, W. D. Hibler, III, G. M. Flato, M. Harder, and M. Kreyscher,
“On the improvement of sea ice models for climate simulations: The Sea
Ice Model Intercomparison Project (SIMIP),”Ann. Glaciol., vol. 25, pp.
183–187, 1997.

[3] J. P. Hollinger, R. Lo, and G. Poe,Special Sensor Microwave/Imager
User’s Guide. Washington, DC.: U.S. Naval Res. Lab., 1987.

[4] D. J. Cavalieri, J. P. Crawford, M. R. Drinkwater, D. T. Eppler, L. D.
Farmer, R. R. Jentz, and C. C. Wackermann, “Aircraft active and pas-
sive microwave validation of the sea ice concentration from the defense
meteorological satellite program special sensor microwave imager,”J.
Geophys. Res., vol. 96, no. C12, pp. 21 998–22 008, 1991.

[5] J. C. Comiso, “SSM/I ice concentrations using the bootstrap algorithm,”
NASA Goddard Space Flight Center, Greenbelt, MD, NASA Tech. Rep.
1380, 1995.

[6] E. Svendsen, C. Mätzler, and T. C. Grenfell, “A model for retrieving
total sea ice concentration from a spaceborne dual-polarized passive mi-
crowave instrument operating near 90 GHz,”Int. J. Remote Sens., vol.
8, pp. 1479–1487, 1987.

[7] D. Lubin, C. Garrity, R. Ramseier, and R. H. Whritner, “Total sea ice
concentration retrieval from the SSM/I 85.5 GHz channels during arctic
summer,”Remote Sens. Environ., vol. 62, pp. 63–76, 1997.

[8] L. Kaleschke, G. Heygster, C. Lüpkes, A. Bochert, J. Hartmann,
J. Haarpaintner, and T. Vihma, “SSM/I sea ice remote sensing for
mesoscale ocean-atmosphere interaction analysis,”Can. J. Remote
Sens., vol. 27, no. 5, pp. 526–537, 2001.

[9] S. Kern and G. Heygster, “Sea-ice concentration retrieval in the antarctic
based on the SSM/I 85.5 GHz polarization,”Ann. Glaciol., vol. 33, pp.
109–114, 2001.

[10] T. Markus and D. J. Cavalieri, “An enhancement of the NASA team
sea ice algorithm,”IEEE Trans. Geosci. Remote Sensing, vol. 38, pp.
1387–1398, May 2000.

[11] S. Kern, “A new algorithm to retrieve the sea ice concentration using
weather-corrected 85 GHz SSM/I measurements,” Ph.D. thesis, Dept.
Physics Elect. Eng., Univ. Bremen, Bremen, Germany, 2001.

[12] D. J. Cavalieri, K. M. S. Germain, and C. T. Swift, “Reduction of
weather effects in the calculation of the sea-ice concentration with
DMSP SSM/I,”J. Glaciol., vol. 41, pp. 455–464, 1995.

[13] M. A. Goodberlet, C. T. Swift, and J. C. Wilkersen, “Remote sensing
of ocean surface winds with the special sensor microwave/imager,”J.
Geophys. Res., vol. 94, no. C10, pp. 14 547–14 555, 1989.

[14] C. Simmer,Satellitenfernerkundung Hydrologischer Parameter Der At-
mosphäre Mit Mikrowellen. Berlin, Germany: Verlag, 1994.

[15] U. Karstens, C. Simmer, and E. Ruprecht, “Remote sensing of cloud
liquid water,”Meteorol. Atmos. Phys., vol. 54, pp. 157–171, 1994.

[16] R. Fuhrhop, T. C. Grenfell, G. Heygster, K.-P. Johnsen, P. Schlüssel,
M. Schrader, and C. Simmer, “A combined radiative transfer model for
sea ice, open ocean, and atmosphere,”Radio Sci., vol. 33, pp. 303–316,
1998.

[17] S. Kern, “The SEA LION algorithm: A new method for medium-reso-
lution sea ice analysis using weather-influence corrected special sensor
microwave/imager 85 GHz data,”Int. J. Remote Sens., submitted for
publication.

[18] B. R. Furevik, O. M. Johannessen, and A. D. Sandvik, “SAR-retrieved
wind in polar regions-Comparison with in situ data and atmospheric
model output,” IEEE Trans. Geosci. Remote Sensing, vol. 40, pp.
1720–1732, Aug. 2002.

[19] H. Laur, P. Bally, P. Meadows, J. Sanchez, B. Schaettler, E. Lopinto, and
D. Esteban, “ERS SAR calibration derivation of the backscattering coef-
ficient sigma-nought in ESA ERS SAR PRI products,” ESA, Noordwijk,
The Netherlands, Doc. No. ES-TN-RS-PM-HL09 7, Sept., 1998.

[20] L. Kaleschke and S. Kern, “ERS-2 SAR image analysis for sea ice clas-
sification in the marginal ice zone,” inProc. IGARSS, Toronto, ON,
Canada, June 24–28, 2002.

[21] M. P. Mäakynen, A. T. Manninen, M. H. Similä, J. A. Karvonen, and M.
T. Hallikainen, “Incidence angle dependence of the statistical properties
of C-band HH-polarization backscattering signatures of the Baltic sea
ice,” IEEE Trans Geosci. Remote Sensing, vol. 40, pp. 2593–2605, Dec.
2002.

[22] L. K. Soh and C. Tsatsoulis, “Texture analysis of SAR sea ice imagery
using gray level co-occurence matrices,”IEEE Trans. Geosci. Remote
Sensing, vol. 37, pp. 780–795, Mar. 1999.

[23] D. A. Clausi, “An analysis of co-occurrence texture statistics as a func-
tion of grey level quantization,”Can. J. Remote Sens., vol. 28, no. 1, pp.
45–62, 2002.

[24] R. M. Haralick, K. Shanmugam, and L. Dinstein, “Textural features for
image classification,”IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp.
610–621, Nov. 1973.

[25] J. S. Lee, “Refined filtering of image noise using local statistics,”
Comput. Graph. Image Process., vol. 2, no. 2, pp. 380–389, 1981.

[26] M. Unser, “Recursion in short-time signal analysis,”Signal Process.,
vol. 5, pp. 229–240, 1984.

[27] T. Kohonen,Self-Organizing Maps, ser. Springer Series in Information
Sciences. Berlin, Germany: Springer-Verlag, 1997.

[28] W. J. Emery, M. Radebauch, C. W. Fowler, D. J. Cavalieri, and K.
Steffen, “A comparison of sea ice parameters computed from advanced
very high resolution radiometer and landsat satellite imagery and from
airborne passive microwave radiometry,”J. Geophys. Res., vol. 96, no.
C12, pp. 22 075–22 085, 1991.

[29] G. Zibordi, V. vanWoert, G. P. Meloni, and I. Canossi, “Intercomparison
of sea ice concentration from SSM/I and AVHRR data of the Ross sea,”
Remote Sens. Environ., vol. 53, pp. 145–152, 1995.

[30] W. J. Emery, C. W. Fowler, and J. Maslanik, “Arctic sea ice concentra-
tions from Special Sensor Microwave Imager and Advanced Very High
Resolution Radiometer satellite data,”J. Geophys. Res., vol. 99, no. C9,
pp. 18 329–18 342, 1994.

[31] NOAA, KLM User’s Guide, Rev. ed. Boulder, CO: National Environ.
Satellite Data Inform. Services (NESDIS) National Climatic Data
Center (NCDC), 2000.

[32] NOAA, “National Snow and Ice Data Centre (NSIDC) DMSP SSM/I
brightness temperature and sea ice concentration grids for the polar re-
gions: User’s guide,” NSIDC Distributed Active Archive Center, Univ.
Colorado, Boulder, CO, Rev. ed., 1996.

[33] W. J. Emery, C. W. Fowler, and J. Maslanik, “Satellite-derived maps of
Arctic and Antarctic sea ice motion: 1988 to 1994,”Geophys. Res. Lett.,
vol. 24, no. 8, pp. 897–900, 1997.

[34] J. C. Comiso, D. J. Cavalieri, C. L. Parkinson, and P. Gloersen, “Passive
microwave algorithms for sea ice concentration—A comparison of two
techniques,”Remote Sens. Environ., vol. 60, pp. 357–384, 1997.

[35] T. Markus and S. T. Dokken, “Evaluation of late summer passive mi-
crowave Arctic sea ice retrievals,”IEEE Trans. Geosci. Remote Sensing,
vol. 40, pp. 348–356, Feb. 2002.

[36] S. T. Dokken, B. Hakansson, and J. Askne, “Intercomparison of Arctic
sea ice concentration using RADARSAT, ERS, SSM/I and in-situ data,”
Can. J. Remote Sens., vol. 26, pp. 521–536, 2000.

[37] S. Kaleschke, private communication, 2002.

Stefan Kern received the Diploma degree in meteo-
rology from the University of Hannover, Hannover,
Germany, in 1997, and the Ph.D degree in physics
from the University of Bremen, Bremen, Germany,
in 2001.

After working on radiosonde and VHF radar mea-
surements at the Institute of Meteorology and Clima-
tology, Hannover, Germany, he joined the Institute of
Environmental Physics, Bremen, Germany, in 1998,
where he worked as a Graduate Research Assistant
on passive microwave remote sensing of sea ice and

the atmosphere. Since 2001, he has been with the Institute of Oceanography
of the University of Hamburg, Hamburg, Germany, as a Research Assistant,
where he has been involved in synthetic aperture radar data analysis of oceanic
phenomena and multisensor sea ice studies. His research interests include data
analysis and fusion of active and passive remote sensing data for polar climate
system studies, remote sensing of atmospheric and oceanic phenomena, andin
situas well as helicopter-borne measurements of sea ice and snow properties.



2306 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003

Lars Kaleschke received the M.A.Sc. degree in
physics from the University of Bremen, Bremen,
Germany, in 1998, where he is currently pursuing
the Ph.D. degree.

He is a Graduate Research Assistant currently with
the University of Bremen. His present research topic
is remote sensing of sea ice and frost flowers, and the
role of frost flowers for tropospheric chemistry. His
research interests include active and passive remote
sensing, data analysis image processing, and pattern
recognition.

David A. Clausi (S’93–M’96) received the B.A.Sc.,
the M.A.Sc., and Ph.D. degrees, all from the Uni-
versity of Waterloo, Waterloo, ON, Canada, in 1990,
1992, and 1996, respectively.

He has worked in the medical imaging industry
with Mitra Imaging Inc., Waterloo, ON, Canada, and
later was an Assistant Professor in the Department of
Geomatics Engineering at the University of Calgary,
Calgary, AB, Canada. In 1999, he returned to the Uni-
versity of Waterloo and is currently an Associate Pro-
fessor in systems design engineering. His research in-

terests include automated image interpretation, digital image processing, and
pattern recognition with applications in remote sensing and medical imaging.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


