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(SWE) for the Red River basin of North Dakota and Minnesota was retrieved from
data acquired by passive microwave SSM/I (Special Sensor Microwave Imager) sensors mounted on the US
Defense Meteorological Satellite Program (DMSP) satellites, physiographic and atmospheric data by an
artificial neural network called Modified Counter Propagation Network (MCPN), a Projection Pursuit
Regression (PPR) and a nonlinear regression. The airborne gamma-ray measurements of SWE for 1989 and
1997 were used as observed SWE, and SSM/I data of 19 and 37 GHz frequencies, in both horizontal and
vertical polarization, were used for the calibration (1989 data from DMSP-F8) and validation (1997 data from
DMSP-F10 and F13 of both ascending and descending overpass times were combined) of the models. The
SSM/I data were screened for the presence of wet snow, large water bodies like lakes and rivers, and depth-
hoar. The MCPN model produced encouraging results in both calibration and validation stages (R2 was about
0.9 for both calibration (C) and validation (V)), better than PPR (R2 was 0.86 for C and 0.62 for V), which in
turn was better than the multivariate nonlinear regression at the calibration stage (R2 was 0.78 for C and 0.71
for V). MCPN is probably better than the linear and nonlinear regression counterparts because of its parallel
computing structure resulted from neurons interconnected by a parallel network and its ability to learn and
generalize information from complex relationships such as the SWE-SSM/I or other relationships
encountered in geosciences.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction
Snow is themajor source of freshwater formunicipal and industrial
water supply, irrigation, andhydropower generation overwide regions
of themid-latitude covered by the snow for a large part of the year (Shi
& Dozier, 2000). For example, in the Canadian Prairies, as much as 80%
of the annual surface runoff is generated fromsnowcover, and snowfall
accounts for up to 90% of the annual water supply in the Colorado
Rockies and Sierra Nevada of California. It is therefore important to
gather accurate information on the spatial and temporal variation of
snow parameters such as area cover, snow depth and snow water
equivalent (SWE), which is the amount of water in a snowpack after
complete melting.

Owing to the huge cost in collecting ground measurements of
snow, and the harsh environment in remote areas such as mountains
dominated by snowpack, the ground observation of snowpack data is
usually very sparse or not available at all. Therefore, practically the
only feasible alternative for collecting comprehensive snowpack
information on a regional basis is through remote sensing, i.e.
ll rights reserved.
airborne and space borne data, and in our study the airborne snow
measurements were conducted by the Radiation Survey Program of
National Weather Service (NWS) of USA using a gamma-ray spectro-
meter (NWS, 1992). The Office of Hydrology of NWS has been
measuring SWE using airborne gamma radiationwith asmany as 1578
flight lines in 32 states/provinces of the United States. Airborne
gamma radiation acquired at some transects were calibrated against
field observed SWE to establish the retrieval algorithms for such
airborne data. Recently remotely sensed snowpack data have been
used for climate related studies (e.g., Dyer &Mote, 2007; Sobolowski &
Frei, 2007).

The launching of passive microwave remote sensing sensors e.g.,
the Scanning Multichannel Microwave Radiometer (SMMR) prior to
1987 and the Special Sensor Microwave Imager (SSM/I) after 1987,
and in recent years, the Advanced Microwave Scanning Radiometer-
EOS (AMSR-E) (Armstrong et al., 2003) has played important roles in
the snow research, and various snow retrieval algorithms have been
developed and applied (e.g., Chang et al., 1982; Ferraro et al., 1994;
Gan, 1996; Goodison, 1989; Hallikainen & Jolma, 1992; Mekis &
Hopkinson, 2004; Singh & Gan, 2000; Walker & Goodison, 1993;
Wilson et al., 1999). The densemedia radiative transfer theory has also
been used to apply passive microwave data in snow mapping (Tsang
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et al., 2000). Recently, there have been snow studies conducted using
data of MODIS (Moderate Resolution Imaging Spectroradiometer)
sensor on board Terra (since 2000) and Aqua satellites (since 2002)
(e.g., Hall et al., 2002; Salomonson & Appel, 2006; Tekeli et al., 2005).
However, data from optical sensors such as MODIS can only be used to
retrieve snow cover and albedo. In applying SSM/I data for retrieving
SWE, often brightness temperatures (TB) of both vertical and
Fig. 1. The Red River basin of Eastern North
horizontal polarizations at 19 and 37 GHz (V19, H19, V37, and H37)
are used (Chen et al., 2001). Different algorithms use different
combination of these TB, together with physiographic and climate
data in some cases, to retrieve snow data, particularly SWE.

The physical basis of microwave detection of snow lies in the snow
scattering property of incident microwave radiation, which depends
on the snow grain size, snow density, depth, snow water equivalent,
Dakota and northwestern Minnesota.



Table 1
SSM/I data from DMSP satellites and SWE Estimated from Airborne Gamma-Ray Data
with data satisfying the dry snow criteria shown in square brackets.

Year Satellite
data
source and
projection

Total
airborne
e data

Total
gridded
airborne
data

Maximum
SWE (cm)

Minimum
SWE(cm)

Mean
(cm)

Standard
deviation
(cm)

1988 DMSP F8 65 52 11.80 0.00 3.49 2.73
NSIDC EASE-
Grid

[13] [6.95] [0.60] [3.42] [2.12]

1989 DMSP F8 241 175 15.70 3.30 9.29 2.43
NSIDC EASE-
Grid

[121] [15.65] [4.60] [9.24] [2.17]

1997 DMSP F10
and F13

192 197 21.80 1.00 12.44 4.02

MSFC, Swath
Data

[117] [19.40] [7.20] [13.50] [3.02]

[ ] Dry snow cases based on four criteria (V37b250°K; V19−V37=N9°K; V37−
H37=N10°K; and p-factorN0.026).

Table 2
Physiographic and atmospheric data of Red River basin study area.

Data type Source Resolution/climate division

Land use classification USGS 1 km
DEM USGS 1 km
Precipitation (100 yrs)

(Table 6)
State Climatology
Office, Minnesota

5 climate divisions
(CD) of North Dakota
and 3 CD of Minnesota

Air temperature (Table 5)
and snowfall (Fig. 2)
for 30 climate stations

High Plains Climate
Center, University
of Nebraska

Total precipitable water
vapor (TPW)

TIROS Operational
Vertical Sounder

1°
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temperature, degree of metamorphism, nocturnal crust development,
ice lenses and others (Mätzler, 1994). For instance, theoretically the
greater the depth of snow, the lower should be the SSM/I TB if other
climatic and snowpack conditions remain the same, but some studies
have indicated that TB can increase with depth beyond a certain snow
depth (Hofer & Mätzler, 1980; Mätzler et al., 1982; Schanda, 1983).
Possible deviations in the snow scattering property from above
theoretical factors are such as snow metamorphism, which dictates the
internal structure of snowas it ages, and themultiplemelt–freeze cycles,
which together contribute to the complicated physical processes in the
formation of snow structure; and snow redistribution that depends
mainly on wind, terrain features, and land use (Armstrong, 1985;
Hallikainen and Jolma, 1986; Rosenfeld & Grody, 2000; Rott & Nagler,
1995). In general, for areas below the treeline, snow is more variable
spatially in anopen environment than aprotected environment suchas a
forest because in the formerwind canmore freely re-distribute the snow.

Volumetric scattering is a dominant loss mechanism for micro-
wave radiation above 15 GHz for the case of dry snow. Therefore, TB
retrieved from SSM/I sensor should reflect the dry snowpack proper-
ties such as the SWE. However, when snow becomes wet, which
means increased dielectric constant, the information related to
snowpack properties retrievable from SSM/I TB is reduced because
in this case the absorption loss of microwave radiation dominates over
scattering loss (Hallikainen, 1989). In addition to the effect of wet
snow, Mätzler (1994) showed that the estimation of SWE by
microwave radiometry is also hindered by varying grain size
(depth-hoar), temperature gradient metamorphism, and the layering
of snow pack within a sensor's footprint. Consequently, the effect of
wet snow and depth-hoar should be removed from the SSM/I data
before they can be used to estimate SWE reliably. Depth-hoar forms
out of large temperature gradients between the warm ground and the
cold snow surface, and it usually requires a thin snowpack combined
with a clear sky or cold air temperature, and it often grows best at
snow temperatures from −2 °C to −15 °C (Tremper, 2008).
Fig. 2. Red River basin-wide mean cumulative snowfall
Conventional linear and nonlinear regression techniques have
being widely used to retrieve SWE from remotely sensed data (e.g.,
Chang et al., 1996; Foster et al., 1997; Gan, 1996; Goodison & Walker,
1994; Hallikainen, 1989; Singh & Gan, 2000) possibly because of their
simple structure. Given that TB is influenced by many snow
parameters as discussed above, the TB–SWE relationship should be
highly nonlinear. To our knowledge, artificial neural network (ANN)
has not been used much for retrieving snow information from space
platforms such as SSM/I, even though by its parallel computing
structure that arises from neurons being interconnected by a network
of three layers— input, hidden and output shown in Fig. 3, it probably
holds more potential than regression models in estimating SWE. This
leads to the motivation of this study with the primary objective of
comparing the accuracy of SWE retrieved from SSM/I data of
ascending and descending overpass time, physiographic and climate
data by an ANN, with that retrieved by standard regressions models.
2. Study site and data description

The study site is the part of the Red River basin that lies between
100°W–49°N and 95°W–46°N, and is located in the eastern part of
North Dakota and northwesternMinnesota (see Fig.1). The catchment
area of the site is approximately 120,000 km2 with the elevation
ranging from 237m to 552m abovemean sea level (AMSL). Its average
annual precipitation is 520 mm. This study site, predominantly flat
terrain with open farmland, was selected because of the large amount
of good data available formodel calibration and validation. The TB data
from the SSM/I sensor, aboard the Defense Meteorological Satellite
Program (DMSP) spacecraft, were taken from three different satellites,
which are DMSP-F8 for 1988 and 1989 data, and DMSP-F10 and DMSP-
F13 for the 1997 data (Table 1). The data used also included the
airborne gamma-ray spectrometer data of NWS-USA (NWS, 1992)
during thewinter period of 1988,1989, and 1997 (Table 1),whichhad a
wide range of snowfall (Fig. 2). The physiographic and climate data
used in the study are shown in Table 2. In this study, the 1989 SSM/I
data that consist of both ascending and descending overpasses were
first screened for wet snow and snowaffected by depth-hoar, and then
at the end of each month during the study period.
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combined to ensure sufficiently wide range of snow pack information
for the calibration of the ANN model.

The retrieval of SWE frommicrowave data requires dry snow data in
whichvolumetric scatteringdominatesover the absorptionofmicrowave
radiation from a snow pack. With increasing liquid water contents (wet
snow), absorption starts to dominate over scattering as the major loss
mechanism. In that case, the TB detected is independent of SWE (for wet
snow) for the response is mostly from the topmost snow layer
(Hallikainen, 1989). In this study, the SSM/I data (TB) affected by wet
snowwere screenedby several dry snowcriteria ofGoodisonet al. (1986)
[V37b250Kand(V19−V37)≥9K],GoodisonandWalker (1994) [V37−
H37≥10 K], and one from NOAA-NASA SSM/I Pathfinder (NNSP)
criteria (V37N225 K), which is based on the work of Neale et al. (1990).

For dry snow, besides SWE, the SSM/I TB also have strong dependence
on the snow grain size (Chang et al., 1976), and this has prompted some
researchers to use single grain size and single density in their models to
simplify the SWE retrieval (Chen et al., 2001). Another important
condition that influences microwave emission from snow is the extent
of depth-hoar (large, loosely-bounded crystals) due to metamorphism at
the base of the snow pack, which occurs when snow remains on the
ground for a substantial portion of the winter and especially when air
temperatures are very cold. Shallow snows are more susceptible of
producing large grains of depth-hoar near the bottom because of higher
temperature gradient in shallow than in deep snow packs (Zwally, 1977).
Snowpack affected by depth-hoar could lead to over-estimation of SWE
and so such data should be eliminated (Abdalati & Steffen,1998). For deep
snow packs, given an average seasonal surface temperature, it has been
found that snow grain size profile increases with depth from top to
bottom. For dry snow, the difference between the SSM/I TB of high
frequency (37 GHz or 85 GHZ) and low frequency channels (18 GHz or
19 GHz) of horizontal or vertical polarization provides information on
SWE in a snow pack (e.g., Chang et al., 1982).

Chang et al. (1982) indicated the possibility of discriminating the
effect of depth-hoar and the underlying ground condition (frozen or
unfrozen) using the polarization factor, p-factor=(V37−H37)/(V37+
H37), e.g., the ratio of polarization difference and its sum. Singh and Gan
(2000) used a p-factor N0.026 to eliminate the SSM/I data that were
affected by depth-hoar and the presence of water body of significant size
in the vicinity of the footprint that has the effect of causing an
underestimationof predicted SWEbecauseof thehighdielectric constant
of thewater body (underneathor presence ofwater in the snowpackdue
to above freezing temperature), which tends to reduce the overall TB due
to high extinction loss (Hallikainen, 1989). However, the 1997 data were
screened using a different p-factor (N0.041) to account for the effect of
data acquired from different spacecraft (DMSP F10 and F13), data type
(Swath data) instead of DMSP F8 and EASE-Grid data for the 1988 and
1989 data. The presence of water bodies in a footprint was also modeled
by including the area of water bodies, Aw, in Eq. (1).

3. Multivariate and projection pursuit regression models

Singh and Gan (2000) developed multivariate regression algo-
rithms for retrieving SWE (Eqs. (1) and (2)) for the Red River basin
which is predominantly open land with scattered vegetation and
farmland. Given that the distribution of snowpack in Red River basin is
greatly influenced by the winds because its open environment, the
algorithms include parameters that reflect the physiographic and
climate conditions, such as the AMSL, fraction of forest andwater areas
(AF and AW), total precipitable water (TPW), and air temperature (Ta).

SWE = K1 V19− H37ð Þ + K2 AMSLð Þ + K3 1− AFð Þ + K4 1− AWð ÞTa + K5TPW

ð1Þ

SWE = K6 TB V19− TB V37ð Þ + K7 TB H19ð Þ + K8 AMSLð Þ + K9AF:

ð2Þ
In Eq. (1), a nonlinear regression because it involves the product of
two predictors AWand Ta, was based on TB at 19 GHz and 37 GHz, AMSL,
AF, AW, TPW, and Ta within the SSM/I footprint. While in Eq. (1), at-
satellite TB, TPW, and Ta datawere taken as separate variables, in Eq. (2),
which is a linear regression, the surface/ground brightness temperature
(TBg) was used instead. Given that electromagnetic waves are
attenuated as they propagate through the atmospheric media, we
expect the at-satellite TB to be smaller than TBg. We propose estimating
TBg from the at-satellite TB by applying the atmospheric attenuation
model (Choudhury, 1993), which uses Ta and TPW to address the effect
of atmospheric water vapor on at-satellite TB given as

TBg;p = TBs;p − Tsky
� �

= ta ð3Þ

ta = exp −τ = μð Þ ð4Þ

τ = 0:011 + 0:0026TPW for 19:3 GHzð Þ ð5Þ

τ = 0:037 + 0:0021TPW for 37:0 GHzð Þ ð6Þ

Tsky = Te 1− tað Þ ð7Þ

Te = Ta − 8 + 0:06TPWð Þ for 19:3 GHzð Þ ð8Þ

Te = Ta − 18 + 0:12TPWð Þ for 37:0 GHzð Þ ð9Þ

where the subscript p is the polarization (H or V), ta is the atmospheric
transmission coefficient, μ is the cosine of the incidence angle 53° (0.6
for SSM/I radiometer), TPW (in mm), τ is the optical thickness, Tsky is
the sky temperature, Te is the effective radiating temperature (iso-
thermal air temperature), Ta is the air temperature, TBs,p is the at-
satellite TB, and TBg,p is the surface/ground TB.

For the Red River Basin, introducing such terms account for the
effects of AMSL, forest cover andwater bodies on the TB captured by the
SSM/I sensor, but it could erroneously give a value of SWE in case of no
snow. Therefore Eqs. (1) and (2) should be applied mainly to the
November–April period during which snowpack should be expected at
the Red River Basin, and the estimated SWE should be cross examined
with groundmeasurements if available. It is also possible to find out the
snowfall conditions of a river basin using data from the western United
States Snow Telemetry (SNOTEL) network of snow pressure pillows.

Singh and Gan (2000) also estimated the SWE (predictand) from
SSM/I TB data, physiographic and atmospheric data (predictors) using
the non-parametric, Projection Pursuit Regression (PPR) of Friedman
and Stuetzle (1981). PPR models the response variable as a sum of
functions of linear combinations of predictor variables. Suppose y and
x's denote response and predictor vectors respectively, PPR finds the
number of terms Mo, direction vectors (α1, α2, …, αMo

) and nonlinear
transformations (ϕ1, ϕ2, …, ϕMo

) as shown in Eq. (10),

ŷ≈y +
XMo

m=1

βmϕm αT
mx

� �
: ð10Þ

Through minimizing the expected distance or mean square error
between y (e.g., observed SWE) and ŷ (estimated SWE) using Eq. (11),
the model parameters βm (the response linear combinations), αm (the
direction vectors), ϕm (the predictor functions), for m=1, 2, …, Mo

are obtained.

L2 β;α;ϕ; x; yð Þ = E½y− ŷ�2: ð11Þ

The use of PPR lies in selecting an optimum number of terms, Mo,
determined by trial and error, often by starting the algorithm with a
large Mo and then decreasing Mo such that the increase in accuracy
due to an additional term is not worth the increased complexity
(Friedman, 1985). The optimum Mo is determined in terms of the



Table 3
Input parameters of the ANN (MCPN) model for both cases 1 and 2.

SDi 1 2 3 4 5 6

Case 1 V19−H37 AMSL 1−AF 1−AW Ta TPW
Case 2 TBgV19−TBgV37 TBgH19 AMSL AF
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fraction of variance it cannot explain (Friedman & Stuetzle, 1981;
Morton, 1989). From Eq. (11), this unexplained variance, U is given as

U =
L2 β;α;ϕ; x; yð Þ

Var yð Þ : ð12Þ

4. Artificial neural network (ANN) model

ANNmodels have beenwidely used in many fields of research (e.g.,
Clair & Ehrman, 1998; Davis et al., 1993; Foody, 1999; Saad et al., 1994;
Smith & Eli, 1995; Tedescoa et al., 2004; Thirumalaiah & Deo, 1998)
because of their capability ofmodelingnonlinear and poorly understood
systems (Ward & Redfern,1999). The power of ANN is partly associated
with their inherent non-linearity and complex internal structure that
resembles the human brain in acquiring and storing knowledge through
a learning process (Haykin, 1994). During the training process, the
acquired knowledge is stored in the connectionweights joining the one
input, one ormore hidden, and one output layers (only onehidden layer
is shown in Fig. 3). The strength of connections depends on the
connection weights. The input to each neuron in the next layer is the
sum of all its incoming connection weights multiplied by their
respective neuron values adjusted with an offset, and the result is fed
into activation function of the neuron, which can be the non-linear
sigmoid function, the simple linear activation, threshold activation, or
the hyperbolic tangent. Other than some drawbacks such as being
classified as black box models, the problem of over-fitting and tedious
training, ANN can approximate almost any function (Tsukimoto, 2000).

Among thewidely used ANNmodels is the multi-layer feed forward
neural network (MFNN), but its training process is very time consuming
becauseof itsmodel structure (Guptaet al.,1997).On theotherhand, the
less popularModifiedCounter PropagationNetwork (MCPN) has shown
to be superior (Hsu et al.,1999) because its structuremakes the training
process easier. Moreover, it produces intermediate results that can be
analyzed if needed. The MCPNmakes use of the self-organizing feature
map (SOFM) learning algorithm of Kohonen (1989) that has many
successful applications (Kohonen et al., 1996) because of its model
structure and learning ability (Lu & Basar, 1998). On the basis of its past
success, MCPNwas selected as the ANN for this study. MCPN consists of
an interconnected network of three layers, namely, the input, hidden,
and output layers (Fig. 3). The un-supervised clustering procedure of
SOFM performs the input-hidden layer transformation (SDi→ IPi). This
constitutes the non-linear part of the input/output mapping. The
training of SOFM is carried out by computing, for each hidden node, the
distance dj between the normalized input vector (SDiwhich is the input
snow data given in Table 3) and the weighting vector wji as

dj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn0
i=1

SDi−wji

� �2
" #vuut j = 1; N ;n1 ð13Þ

where n0 is the number of input variables (6 or 4), and n1 is the
number of hidden nodes. Among the competing hidden nodes, c is the
Fig. 3. The Modified Counter Propagation Network (MCPN) architecture indicating the
possible input variables (SDi) with the corresponding output (SWE), and the
connection weights wji and vkj.
winning node such that the distance dj is the smallest (dc=min (dj),
j= Ic). To complete the SOFM training, the updating of weights wji is
performed only for the hidden nodes in the neighborhood Λ c

surrounding the winner node as

wji tð Þ = wji t − 1ð Þ + η tð Þ SDi − wji t − 1ð Þ
� �

; for jaΛ c tð Þ i = 1; 2; N ;n0;0 b η tð Þb1
wji tð Þ = wji t − 1ð Þ Otherwise

ð14Þ

with t being the iteration counter for the training process, and η(t) is
the learning rate which together with Λc(t) are decreased after each
iteration from their initial settings of η0=0.2~0.5 and Λ0=n1/2
(Hsu et al., 1999). Herein, a stopping criterion of 2000 iterations was
used to optimize wji, or when a fixed goodness-of-fit criterion (R2, Ef,
RMSE, or bias) is reached. The accuracy of the approximation depends
mainly on training data. Before performing the hidden–output layer
transformation, the intermediate output parameters, IPj, correspond-
ing to the input vector, SDi, are computed as

IPj = 1− dj for jaX
IPj = 0 otherwise ð15Þ

where Ω is the size of hidden nodes centered on the neighborhood of
Ic. As the dimension of Ω should be equal to or greater than that of the
input vector, a size of 8×8 was selected in this study.

The training of the weights, vkj, required for the hidden–output
transformation (IPj→SWEk), is performed by a supervised process
based on a simple recursive gradient search of the Local Linear Output
Mapping (LLOM). The linear least square estimation, which is a batch
training procedure, is used to obtain the initial estimates of vkj based
on the input–output data set. For nodes in the neighborhood of Ω
surrounding the active node, a sequential training algorithm is used to
recursively update these weights as

vkj tð Þ = vkj t − 1ð Þ + β TSWEk−SWEkð Þyj ; for jaX; k = c ð16Þ

where β is the learning step size (0≤β≤1), and TSWE
k
is the observed

(target) SWE and SWEk is its estimated value after each iteration.
Through this process, adjustments are made to vkj to obtain their final
values, where 100 iterations and a β value of 0.1 were used in this
study. Thereafter, the final adjusted vkj together with IPj are used to
compute the model output, SWEk according to

SWEk =
P

j vkjIPi for jaX; k = c
SWEk = F for k ≠ c

: ð17Þ

To train the network over a wide range of values, a wet (1997) and
a dry year (1989) data were used. To ensure no over-fitting, the
calibrated network is validated with another data set not used in the
calibration.

5. Discussions of results

The performance of a model depends on factors such as model
structure, calibration procedure, information content of the input data
and its associated data processing. The ANN (MCPN) results were
compared to the nonlinear regression (Eq. (1)) and PPR algorithms
(Eq. (10)). Due to insufficient data in 1988, the second algorithm (Eq.
(2)) calibrated with the 1988 data by Singh and Gan (2000) was not
compared.



Table 5
Red River basin mean monthly and annual precipitation (cm).

Year/month Oct Nov Dec Jan Feb Mar Apr Annual

100 years (normal) 3.72 2.02 1.47 1.47 1.33 2.30 4.12 52.07
1988/89 1.07 2.72 2.24 3.00 0.69 3.68 3.10 45.21
1996/97 5.82 4.50 2.72 3.53 0.97 3.23 5.99 56.64

924 T.Y. Gan et al. / Remote Sensing of Environment 113 (2009) 919–927
The ANN model (MCPN) was calibrated from SSM/I TB, physio-
graphic and climate data of 1989 and then validated by the 1997 data.
An ANN with a large number of nodes will give rise to many
parameters which could be difficult to train (excessive training time
and possibly over-fitting) if the amount of data available for model
calibration is relatively short. On the other hand, an ANN with small
number of nodes can learn only few interactions, while the one with
many nodes can learn more (Hsieh & Tang, 1998). As a trade off, we
have kept the number of hidden (SOFM) nodes as 8 because it has to
be equal or greater than input nodes, which were 6 and 4 for cases 1
and 2, respectively.

In developing the ANN model, the SSM/I data were screened for
effects ofwet snow, depth-hoar and presence ofwater body through the
criteria of Goodison et al. (1986), Walker and Goodison (1993), and the
p-factor (N0.026 or N0.041 depending on the satellite used) as described
in Section 2. No separation was made between ascending and
descending portion of the 1997 data of DMSP-F10 and F13 partly to
make use of all available data to validate the ANNmodel, partly because
all the data (ascending and descending) contains information on SWE,
and the results obtained for both the calibration and validation stages
are close to each other, a sound basis for accepting the validity of the
calibrated ANN model, as explained below.

The performance of ANN based on the input parameters for cases 1
and 2 (with reference to Eqs. (1) and (2) respectively, and Table 3)
was assessed by the coefficient of determination (R2), correlation
coefficient (ρ), Nash Sutcliffe coefficient (Ef) (Nash & Sutcliffe, 1970),
root mean square errors (RMSE), and Bias. Compared to the nonlinear
regression that requires a shift parameter (SP) in the validation stage
to get good results because of different scattering albedo between
snowpacks of calibration and validation stages (see more detailed
explanations in Singh & Gan, 2000), ANN results were relatively better
in both calibration (R2 of 0.894 against 0.778) and validation (R2 of
0.916 over 0.708) stages (Table 6). Although no shift parameter was
used in the validation stage, MCPN was able to produce more reliable
results than the nonlinear regression (Eq. (1)) using less input data
because to get an appropriate shift parameter, a sample average of
SWE for that particular period was needed. The superior results of
MCPN compared to the nonlinear regression (Eq. (1)), can be partly
attributed to the inherent non-linearity and inter-connectivity of the
ANN structure, together with its ability to learn and generalize
information from complex systems as opposed to the simple input/
output model structure of the nonlinear regression model.

The calibration results for MCPN and PPR (Eq. (10)) were more or
less similar, but in both cases 1 and 2 MCPN did better than PPR in the
validation stage, even though PPR also needed a shift parameter at the
validation stage as nonlinear regression (Table 6). Given that PPR did
better than the regression model, this further demonstrates that
between regression, PPR andMCPN (ANN),MCPN gave the best results
in Red River Basin, then PPR and finally the regression algorithm.

While Foster et al. (1997) indicated that horizontal polarization is
more sensitive than vertical polarization in vegetated areas, Goodison
and Walker (1994) proposed an algorithm using vertically polarized
brightness temperature difference (V19−V37), which provided very
consistent and compatible SWE over the Canadian prairies. Given that
the Red River basin has a prairie-like environment with some few
scattered vegetation, Case 1 used a mixture of vertical and horizontal
Table 4
Weekly maximum and minimum air temperature (°C) of the Red River basin correspondin

Year Month February Marc

Week 1 2 3 4 1

1989 Min −28.3 −17.6 −26.0 −18.7 −23
Max −19.0 −5.2 −13.5 −6.4 −11

1997 Min −14.9 −21.4 −16.4 −18.5 −20
Max −4.6 −7.5 −3.1 −5.3 −7
polarization (V19 and H37), while the effects of forest cover and water
bodies were removed by (1−AF) and (1−Aw), and the effects of
terrain and climate were accounted for via AMSL, Ta, and TPW,
respectively. Case 2 (based on Eq. (2)) was formulated to test the
advantage of using surface/ground brightness temperature (TBg)
derived from the at-satellite TB and the atmospheric effect accounted
for by the atmospheric attenuation model of Choudhury (1993) (Eqs.
(3)–(9)), and the vegetation cover effect considered in last the term of
Eq. (2). The effect of the water body was indirectly considered by
screening off affected data using the p-factor (N0.026 or N0.041
depending on the satellite data used).

It can be seen (Table 6) that, Case 1 performed slightly better than
Case 2 in the Calibration stage in terms of all test statistics (e.g., Ef of
0.800 over 0.762). This may be partly attributed to Case 1 explicitly
considering the effect of water body in the SSM/I footprint by the term
(1−Aw), instead of data screening by the p-factor adopted in Case 2.
Also, there were possibly errors associated with the atmospheric
attenuation model (Eqs. (3)–(9)) used to convert the at-satellite TB to
surface/ground brightness temperature (TB_) in Case 2, partly
because of model assumptions and model parameters used in say,
Eqs. (5), (6), (8) and (9), and partly because of data errors such as
TPW retrieved from the operational vertical sounder of the TIROS
(Television and Infrared Observation Satellite) satellite. Chen et al.
(1996) found that TPW and topospheric humidity of two sensors
(SSM/I and TIROS-N) agreed with the vapor distribution simulated by
the ECHAM-4 general circulation model in terms of mean, seasonal
and inter-annual variations but there are biases in details. The effect of
atmospheric attenuation in the Prairies during winter was likely not
significant as the (total precipitable water) TPW was relatively small
and of coarse resolution (10 latitude by 10 longitude) as compared to
TB data (25 km×25 kmpixels). Given that differences between TB and
TBg were small, the gain obtained from converting TB to TBg may be
marginal. In the validation stage, Table 6 shows that, although the
performance between Cases 1 and 2 was almost similar (e.g., Ef of
0.838 against 0.855), Case 2 performed slightly better than Case 1 in
all test statistics. This can be attributed to using validation data (1997
data) that are different from calibration data in terms spacecraft (F10
and F13 versus F8), snowpacks exposed to a different metamorphism
process (due to different air temperature (see Table 4), wind speed
and direction, the 1988/89 was a relatively dry year while 1996/97 a
relatively wet year (see Table 5 and Fig. 2), and length of time that
snow was on the ground) from their calibration counterparts (1989
data).

In both cases 1 and 2, the calibration result of the ANN model was
slightly poorer than the validation counterpart (see Table 6) which is
surprising, e.g., Case 1 (Ef of 0.800 over 0.838) and Case 2 (Ef of 0.762
against 0.855). This is partly because the amount of snowfall was higher
in 1997 than in 1989 (see Fig. 2), e.g., the SWE in 1997 (mean
g to the 1989 and 1997 Airborne SWE data collection.

h April

2 3 4 1 2 3

.5 −5.5 −19.2 −5.3 −3.4
.7 1.5 −5.9 2.3 6.0
.0 −15.8 −14.3 −4.2 −4.9 −10.7 −1.7
.6 −4.4 −1.5 4.6 3.8 −0.5 10.2



Table 6
Calibration and validation results of the nonlinear regression (Eq. (1)), projection
pursuit regression (Eq. (10)), and artificial neural network (MCPN) cases 1 and 2.

Data Mode R2 Ef RMSEa (%) Biasa (%) SP

Eq. (1) 1989 C 0.778 0.696 121.1 0.34 0.00
1997 V 0.708 0.634 346.7 0.96 +4.00

Eq. (10) 1989 C 0.857 0.760 73.5 0.20 0.00
1997 V 0.623 0.557 442.8 1.23 +4.00

Case 1 1989 C 0.894 0.800 10.5 0.03 –

1997 V 0.916 0.838 8.97 −0.01 –

Case 2 1989 C 0.873 0.762 11.76 −0.01 –

1997 V 0.923 0.855 8.485 −0.0044 –

C=calibration; V=validation; R2= coefficient of determination; Ef = Nash and Sutcliffe
(1970) coefficient; RMSE = root mean square error; and SP = shift parameter (cm).

a See Appendix A for equations of RMSE (%) and Bias (%).
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SWE=13.50 cm) was higher than that of 1989 (mean SWE=9.24 cm)
(Table 1). Table 4 shows that theweeklymaximum air temperatures for
February and March were much cooler and more highly variable for
1989 (−19 °C to 2.3 °C) than for 1997 (−7.6 °C to 4.6 °C). Because
relatively large snowfall occurred in1997 compared to 1989, the effect of
depth-hoar should more pronounced in the shallow snowpack of 1989
than the deep snowpack of 1997. So, even though generally MCPN
Fig. 4. Scatter plots of observed (x-axis) versus predicted (y-axis) snow water equivalent (S
neural network (MCPN) model.
parameterswerewell calibrated (a sufficient and goodquality data set is
always essential to achieve a good calibration by activating all themodel
parameters during the calibration stage), the better validation results
may partly indicate that validation data of 1997 were of better quality
than calibration data of 1989. The difference in data sources (DMSP F10
and F13 instead of DMSP-F8; Swath data instead of EASE-Grid data)
between 1997 and 1989 may have also contributed to better validation
than calibration results. However, the good validation results at least
indicate that MCPN was properly calibrated.

Besides the above statistics, the performance of MCPN was also
assessed with respect to SWE observed from airborne gamma data by
scatterplots (see Fig. 4). In both cases 1 and 2, likely for reasons explained
above, the scatters is relatively larger in the calibration than in the
validation stages. In addition, there were more underestimations of
predicted SWE in Case 2 than in Case 1 because water bodies were not
explicitly considered in Case 2 which could lead to some reduction in the
brightness temperature because of high extinction loss. There were six
airborne flight lines of 1989 and 1997 that fell in three SSM/I footprints, of
which 12.7%, 6.1%, and 4% of footprint areas respectively were covered by
water bodies. However, this problem of water body effect on TB (e.g.,
higher underestimation of large SWE for Case 2 than Case 1 in the
calibration stage, see Fig. 4,was probably partly corrected by screening the
data for Case 2 using the p-factor (N0.026 or N0.041).
WE) for Red River basin under both calibration and validation stages using the artificial
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6. Summary and conclusions

On the basis of airborne gamma-ray measurements collected
through the Radiation Survey Program of NWS-USA as the observed
snow water equivalent (SWE), the MCPN (an artificial neural network
model)was trained against two cases of input nodes, respectively set up
using at-satellite, SSM/I brightness temperature (TB) of DMSP-F8, and
surface/ground brightness temperature (TBg) data derived from at-
satellite TB, to simulate the 1989 SWE for the Red River Basin of North
Dakota and northwestern Minnesota. The SSM/I data, of 19 and 37 GHz
frequencies and in both horizontal and vertical polarization, were
screened to eliminate footprints affected by wet snow, large water
bodies and depth-hoar. The input data also included physiographic and
climate data. Then driving the calibrated MCPN with SSM/I data taken
from DMSP-F10 and DMSP-F13 satellites for 1997, the simulated SWE
was validated against the corresponding observed 1997 SWE data.

The MCPN model results obtained were better than those of a PPR,
which in turnwas better than that ofmultivariatenonlinear regression,
in both calibration and validation stages (see Table 6). It seems that
MCPN is more versatile and powerful than PPR and nonlinear
regression models in retrieving SWE from passive microwave data of
SSM/I because of its parallel computing structure that arises from
neurons being interconnected by a network, and complex internal
structure that makes them capable of learning complex input–output
mappings without a direct knowledge of the underlying physical
processes of the system. Tedescoa et al. (2004) also found ANN to
perform better than other algorithms in mapping the SWE of Finland.
Lastly, as previously shown by others (e.g., Armstrong & Brodzik,
2002), the results demonstrate the feasibility of retrieving regional
SWE data from passive microwave data of SSM/I.

Lastly, the freeze and thaw cycle gives rise to re-frozen ice layers in
snow pack, or large-scale cyclones can transfer sufficient energy to
increase the air temperature close to melting point, and such melt-
layers can re-freeze, which could affect the retrieval of SWE from
passivemicrowavedata, andwhich should be a focus of future research
in retrieving SWE from such data.
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Appendix A

Root mean square error

RMSE kð Þ =
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