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Abstract: Clouds are of high importance for the climate system but they still remain one of its
principal uncertainties. Remote sensing techniques applied to satellite observations have assisted
tremendously in the creation of long-term and homogeneous data records; however, satellite data
sets need to be validated and compared with other data records, especially ground measurements.
In the present study, the spatiotemporal distribution and variability of Total Cloud Cover (TCC)
from the Satellite Application Facility on Climate Monitoring (CM SAF) Cloud, Albedo And Surface
Radiation dataset from AVHRR data—edition 2 (CLARA-A2) and the International Satellite Cloud
Climatology Project H-series (ISCCP-H) is analyzed over Europe. The CLARA-A2 data record has
been created using measurements of the Advanced Very High Resolution Radiometer (AVHRR)
instrument onboard the polar orbiting NOAA and the EUMETSAT MetOp satellites, whereas the
ISCCP-H data were produced by a combination of measurements from geostationary meteorological
satellites and the AVHRR instrument on the polar orbiting satellites. An intercomparison of the two
data records is performed over their common period, 1984 to 2012. In addition, a comparison of the
two satellite data records is made against TCC observations at 22 meteorological stations in Europe,
from the European Climate Assessment & Dataset (ECA&D). The results indicate generally larger
ISCCP-H TCC with respect to the corresponding CLARA-A2 data, in particular in the Mediterranean.
Compared to ECA&D data, both satellite datasets reveal a reasonable performance, with overall mean
TCC biases of 2.1 and 5.2% for CLARA-A2 and ISCCP-H, respectively. This, along with the higher
correlation coefficients between CLARA-A2 and ECA&D TCC, indicates the better performance of
CLARA-A2 TCC data.

Keywords: total cloud cover; CLARA-A2; ISCCP-H; ECA&D; satellites; ground measurements;
Europe; comparison; validation; climatology

1. Introduction

Clouds play a vital role in the Earth’s climate system, being one of its main drivers, while
in turn, they are affected by climate changes. It has already been shown that evidence of climate
change is apparent in the satellite cloud record [1]. However, there is still limited knowledge about
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how cloud, atmospheric circulation and climate interact [2], while disagreement exists about how
clouds will change under future global warming [3]. The inaccuracy of cloud representation in global
climate models is at present the main source of uncertainty in climate sensitivity estimates and climate
change predictions [2]. Therefore, it is crucial to improve our capabilities to observe even basic
cloud properties as, for instance, the Total Cloud Cover (TCC), in order to create long-term, uniform,
and stable global databases.

The rapid development and use of remote sensing techniques during the last decades
have assisted the scientific community tremendously in producing numerous satellite cloud data
records. For instance, various datasets have been developed from the Moderate Resolution
Imaging Spectroradiometer (MODIS) measurements [4] aboard the National Aeronautics and
Space Administration’s (NASA) Aqua and Terra satellites, the Pathfinder Atmospheres Extended
(PATMOS-x) [5] and The Satellite Application Facility on Climate Monitoring (CM SAF) Cloud, Albedo
and Surface Radiation (CLARA) [6,7] datasets, derived from measurements of the Advanced Very
High Resolution Radiometer (AVHRR), mounted on the Polar Operational Environmental Satellites
(POES) and Meteorological Operational Satellite Program of Europe (MetOp) platforms. An additional
dataset is the International Satellite Cloud Climatology Project (ISCCP) [8,9] which uses, besides the
AVHRR, a variety of instruments onboard numerous geostationary satellites (including Meteosat,
Geostationary Operational Environmental Satellite (GOES), and Geostationary Meteorological Satellite
(GMS)). Nevertheless, an in-depth evaluation and intercomparison of the various cloud datasets is
necessary, given the systematic errors or artifacts that arise from the different instruments used and
retrieval algorithms applied in each satellite data record, which could mislead our understanding
of the climatic role of clouds. Moreover, surface observations of TCC and cloud type, despite their
problems and limitations (e.g. scarcity and inhomogeneity) [10,11] have been performed since the
second half of the 19th century [12] and enable us to study long-term cloud trends. Such surface data
should be included in the framework of comparisons among satellite cloud data.

A substantial number of studies have focused on Europe or the Mediterranean since this particular
region is considered a “hot spot” in the context of climate change [13–15]. Sanchez-Lorenzo et al. (2017)
in [14] compared TCC from several satellite-based observational datasets (ISCCP-D2, CLARA-A1,
PATMOS-x), surface observations (EECRA and ICOADS), reanalyses (ERA-Interim, MERRA), and
CMIP5 simulations, and found an overall good agreement between the mean values of TCC of ISCCP,
CLARA, PATMOS-x and surface observations over the Mediterranean. Meerkötter et al. (2004) [16]
compared NOAA/AVHRR-derived TCC with surface observations for Europe and found pronounced
latitudinal and seasonal variations and an overall good agreement with surface observations, except
for the summer months during which the satellite-derived TCC was systematically lower than the
surface observations. Other studies also validated short-term remote sensing products in specific
European areas [17–23]. Since 2016, two state-of-the-art satellite cloud data sets have been released,
namely CLARA-A2 [7] and ISCCP-H series [8], which are significant improvements to their previous
versions, CLARA-A1 and ISCCP-D series. An intercomparison of these recent data sets as well as their
evaluation, either on global or regional scales, is timely and will be useful for any research that includes
these data sets. To date, the ISCCP-H cloud climatology has not been evaluated against ground
measurements. On the other hand, the CLARA-A2 cloud data set has been compared to other satellite
(MODIS, PATMOS-x) and surface (SYNOP) products, but on a global scale. An intercomparison and
evaluation of both CLARA-A2 and ISCCP-H cloud data sets is attempted here for the first time over
Europe, which, as already stated, is a very interesting study region in terms of ongoing climate change
and the ascertained role of clouds in this. Indeed, Europe is appropriate for such a study given its
diverse geomorphology and geography, which along with the prevailing atmospheric circulation
modes results in variable cloud patterns [15,24,25].

In this study, apart from their intercomparison, both CLARA-A2 and ISCCP-H are validated
against the European Climate Assessment and Dataset (ECA&D) surface-based cloud dataset over
Europe. It should be emphasized that the two utilized satellite data records have the advantage of



Remote Sens. 2019, 11, 212 3 of 20

providing long time series of cloud cover data and also offer a complete spatial coverage, which is
of high importance when analyzing retrieved climate parameters and assessing regional averages
and associated trends. It should be pointed out that both CLARA-A2 and ISCCP-H are recently
produced data sets, derived by improved and state-of-the-art satellite algorithms, and therefore,
an intercomparison between them, as well as a validation study with ground measurements is timely
and important. The aim of our study is to identify differences between these two distinct new
satellite data records and to validate them against ground-based measurements. This will help to
further develop, correct or improve the algorithms utilized for the production of the two satellite
data sets. The data records and the methods used in this study are presented in Section 2. Results
of the comparison between the two satellite products as well as their validation against the ground
measurements are described in Section 3. Section 4 provides the conclusions and a discussion about
further research on the subject.

2. Data and Methods

TCC observations with global coverage were taken from CLARA-A2 and ISCCP-H satellite
datasets, while TCC observations were also taken from the European surface-based ECA&D dataset.
From all datasets, monthly means were taken or created, and the gridded satellite observations were
compared with each other and with the corresponding ECA&D data from the station contained in the
grid cell. More details about the respective datasets are given in the remainder of this section.

2.1. CLARA-A2

CLARA-A2 [7] is an updated (from previous CLARA-A1 [26]) dataset produced by EUMETSAT
CM SAF using measurements of the AVHRR instrument onboard polar orbiting National Oceanic and
Atmospheric Administration (NOAA) and EUMETSAT MetOp satellites, and extends from 1982 to 2015.
The TCC product of CLARA-A2 is derived with a multi-spectral thresholding method implemented
in the Satellite Application Facility on Nowcasting (NWC SAF) polar platform system (PPS) cloud
processing software [27]. TCC is defined as the fraction of cloudy pixels per grid square compared to
the total number of analyzed pixels in the grid square and it is expressed in percentage [6,7]. In this
study, the monthly mean CLARA-A2 TCC data have been averaged to a 2.5◦ × 2.5◦ latitude-longitude
grid and cover the 29-year period 1984–2012, constrained by the availability of ISCCP-H data.
The CLARA-A2 product that combines day and night measurements from all available satellites
was selected in order to represent as well as possible the diurnally averaged monthly TCC. The number
of satellites varies from one in the early part of the record to at least four in the last decade. With each
satellite having two (daytime plus nighttime) or—towards higher latitudes—more overpasses over a
specific location per day, CLARA-A2 reaches a variable coverage of the full diurnal cycle.

AVHRR measures radiation in six spectral channels: 0.58–0.68 µm, 0.725–1.10 µm, 1.58–1.64 µm,
3.55–3.93 µm, 10.5–11.5 µm, and 11.5–12.5 µm, of which only one of the 1.58–1.64 µm and 3.55–3.93 µm
channels is available at a given time. Radiance measurements from all these channels are used in
the CLARA-A2 cloud-masking algorithm. The original horizontal field-of-view (FOV) size of the
measurements at nadir is 1.1 km. The data used in CLARA-A2 are a resampled version of these
measurements at a reduced resolution of about 5 km, defined as global area coverage (GAC).

Original shortwave radiances were inter-calibrated and homogenised using MODIS (Moderate
Resolution Imaging Spectroradiometer) data as a reference, before generating each component of
the CLARA-A2 product portfolio. The inter-calibration was based on the method introduced by
Heidinger et al. (2010) in [28], which has now been updated (MODIS Collection 6) and extended
(6 years have been added). This updated calibration is described by Devasthale et al. (2017) in [29].

2.2. ISCCP-H

The second satellite dataset used is ISCCP-H, processed by the National Centers for Environmental
Information (NCEI) of NOAA. Similarly to the ISCCP-D series products, the primary instruments
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that serve as inputs to the ISCCP-H series are the imaging radiometers on operational weather
satellites. These include the AVHRR on the polar-orbiting satellites and a variety of imagers that fly
onboard geostationary meteorological satellites [8,9]. Many improvements have been made in the
ISCCP H-series, compared to its predecessors C- and D-series [30], such as higher resolution input
satellite data and expanded period of record. Monthly-mean ISCCP-H TCC was averaged to the
same 2.5◦ × 2.5◦ latitude-longitude grid as CLARA-A2. The ISCCP-H data cover the 29-year period
1984–2012, which is the common period of both satellite datasets.

In contrast to CLARA-A2, the ISCCP-H products incorporate only one visible (VIS ≈ 0.65 ±
0.05–0.20 µm) and one infrared (IR ≈ 10.5 ± 0.5–0.75 µm) “window” channel. At latitudes between
55◦S and 55◦N these measurements are provided by the geostationary satellites if available, while the
second and third options are the afternoon and morning AVHRR satellite instruments, respectively.
At higher latitudes, ISCCP uses both morning and afternoon polar orbiting satellites with AVHRR
simultaneously for the gridded data products. However, if there are more than 2 afternoon orbiters
ISCCP chooses only 1, while it does the same for morning orbiters. In the ISCCP analysis the orbiter
with the equator overpass time closest to the intended orbit is selected. Both the geostationary and the
AVHRR GAC measurements are resampled to a resolution of ~10 km. The radiances from imagers
onboard the geostationary satellites are normalized to the AVHRR radiances from the afternoon polar
orbiter satellite series. In this approach, NOAA-9 acts as the absolute reference through 2009 [31].
The temporal resolution of the ISCCP-H dataset is 3-hourly where geostationary data is used, and varies
with latitude where the polar orbiters are used.

The ISCCP-H cloud masking algorithm can be described by four steps. First, tests of the space and
time variations of the observed radiances on several scales are used to estimate cloud-free radiances.
Results of the space–time tests are used in conjunction with the ancillary products to obtain a global
composite of clear-sky radiances for each image pixel location and time. Second, cloudy conditions
are diagnosed when IR- or VIS-observed satellite radiances sufficiently deviate from estimated values
using various combinations of VIS and IR thresholds [32,33]. Then, the composite clear-sky radiances
are revised based on the prior detection threshold results and application of revised threshold tests
of each image’s pixels against the revised composite clear-sky radiance values using the ancillary
products. Finally, cloud properties are retrieved producing the HXS product (H-series pixel level
single satellite product) [8,30,34] which are then used to produce the HGM products (H-series Gridded
Monthly products) that provide the monthly averages that are used here [8].

2.3. Summary of Differences between CLARA-A2 and ISCCP-H

Apart from the detailed information about CLARA-A2 and ISCCP-H cloud Climate Data Records
(CDRs) reported in Sections 2.1 and 2.2, their main differences are summarized in Table 1, which also
lists the Fundamental Climate Data Records (FCDRs) and ancillary data used for their production.
In addition, Table 2 shows the temporal coverage of the satellites used by the two data records, as well
as which satellites are included in each one of them.
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Table 1. Summary of main differences between the CLARA-A2 and ISCCP-H cloud data records.

CLARA-A2 ISCCP-H

Fundamental Climate
Data Records (FCDRs)

Based on an AVHRR GAC FCDR
described in [7], including shortwave
calibration with MODIS Collection 6 as a
reference, removal of corrupt data, and
noise reduction for AVHRR channel 3b.

Generated by applying HBT tables to B1U
geostationary satellite data and AVHRR
GAC radiances.

Cloud Detection
Algorithms

Based on an upgraded version (patch 1) of
the PPS (Polar Platform System) Version
2014 cloud processing package.

Improved version of the D-series
algorithm with applied modifications that
mostly serve to reduce uncertainties.

Ancillary data

Various parameters from ERA-Interim
(atmospheric temperature and humidity
profiles, surface skin temperature,
integrated water vapor, snow cover), land
use from Unites States Geological Survey
(USGS) in [35], surface elevation from
GTOPO30
(http://edcdaac.usgs.gov/gtopo30/),
total ozone column from [36], sea ice
observations from (OSI SAF, 2016) [37],
and MODIS-based surface albedo [38]
and surface emissivity [39].

Atmospheric temperature-humidity
profiles (HIRS, SAGE, MLS) [40,41], total
column ozone abundance (TOMS, OMI,
SBUV, TOVS) [42], tropospheric and
stratospheric aerosol optical properties
(MACv.1, SAGEII) [43], land snow cover
(NOAA) [44,45] and ocean sea ice cover
(OSI-SAF, SSM/I) [46,47], land surface
type (MODIS IGBP) [48] and topographic
height information (USGS EROS) and
land water mask (USGS AVHRR).

Satellites

Combines day and night measurements
from all available satellites. The number
of satellites varies from one in the early
part of the record to at least four in the last
decade. With each satellite having two
(daytime plus nighttime) or—towards
higher latitudes—more overpasses over a
specific location per day.

Between 55◦S and 55◦N geostationary
satellites are used. At higher latitudes,
ISCCP uses both morning and afternoon
polar orbiting satellites simultaneously
for the gridded data products.

Spectral Channels Incorporates six spectral channels. Incorporates one VIS and one IR channel.

Table 2. Satellites and their temporal coverage in CLARA-A2 and ISCCP-H. Only the satellites covering
the European study domain and being operational before the end of the study period (31 Dec 2012)
are listed.

Satellite Start End Equatorial
Overpass Time In CLARA-A2 In ISCCP-H

NOAA-7 24 Aug 1981 7 Jun 1986 0230 PM yes yes
NOAA-8 3 May 1983 31 Oct 1985 0730 AM no yes
NOAA-9 25 Feb 1985 11 May 1994 0230 AM yes yes

NOAA-10 17 Nov 1986 17 Sep 1991 0730 AM no yes
NOAA-11 8 Nov 1988 13 Sep 1994 0200 AM yes yes
NOAA-12 14 May 1991 15 Dec 1994 0730 AM yes yes
NOAA-14 30 Dec 1994 23 May 2007 0130 PM yes yes
NOAA-15 13 May 1998 31 Dec 2012 0730 AM yes yes
NOAA-16 21 Sep 2000 9 Jun 2014 0200 PM yes yes
NOAA-17 24 Jun 2002 31 Dec 2012 1000 AM yes yes
NOAA-18 30 Aug 2005 31 Dec 2012 0200 PM yes yes
NOAA-19 2 Jun 2009 31 Dec 2012 0200 PM yes yes
MetOp-A 20 Jun 2007 31 Dec 2012 0930 AM yes yes

MET-2 Jul 1983 Jul 1988 no yes
MET-3 Aug 1988 Apr 1990 no yes
MET-4 May 1990 Jan 1994 no yes
MET-5 Feb 1994 Dec 2006 no yes
MET-6 Mar 1997 May 1998 no yes
MET-7 Jun 1998 Dec 2012 no yes
MSG-1 Jul 2006 Apr 2007 no yes
MSG-2 May 2007 Dec 2012 no yes

http://edcdaac.usgs.gov/gtopo30/
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2.4. ECA&D Surface Observations

TCC data from both CLARA-A2 and ISCCP-H are compared with the corresponding data from
surface observations from 22 stations across Europe, the locations of which are provided in Table 3
and Figure 1. These come from a European dataset compiled within the ECA&D project. ECA&D is a
well-established database of daily WMO station observations which are analyzed for WMO Region IV
(Europe and Middle East), putting particular emphasis on changes in daily extremes [49]. Twenty-two
stations were selected to broadly cover Europe and to provide observations for the full 1984–2012 time
period. For the comparisons, monthly mean TCC values were computed from the originally available
daily ECA&D data in order to match the temporal resolution of the satellite data. The daily data of
each station include either human observations or data from ceilometers. For a number of stations,
ceilometers replaced human observations at some point in time. However, this is not the case for all the
stations. Finally, the CLARA-A2 and ISCCP-H gridded data were compared against the corresponding
ECA&D data from the station contained in the grid cell.
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Table 3. European Climate Assessment & Dataset (ECA&D) stations used in this study along with
their coordinates.

ECA&D Station Latitude Longitude
Tromsø (1) 69.65◦N 18.93◦E

Oslo-Blindern (2) 59.94◦N 10.72◦E
Stockholm (3) 59.35◦N 18.05◦E

Eskdalemuir (4) 55.32◦N 03.20◦W
Groningen (5) 53.12◦N 06.58◦E

De Bilt (6) 52.10◦N 05.18◦E
Heathrow (7) 51.48◦N 00.45◦E

Wien (8) 48.23◦N 16.35◦E
München-Botanischer Garten (9) 48.16◦N 11.50◦E
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Table 3. Cont.

ECA&D Station Latitude Longitude
Geneve-Observatoire (10) 46.25◦N 06.13◦E

Lugano (11) 46.00◦N 08.97◦E
Zagreb-Gric (12) 45.82◦N 15.98◦E

Belgrade (13) 44.80◦N 20.47◦E
A Coruña (14) 43.37◦N 08.42◦W

Bilbao-Aeropuerto (15) 43.30◦N 02.91◦W
Zaragoza-Aeropuerto (16) 41.66◦N 01.01◦W
Barcelona-Aeropuerto (17) 41.29◦N 02.07◦E

Madrid-Barajas (18) 40.47◦N 03.56◦W
Corfu (19) 39.62◦N 19.92◦E

Athens-Hellinikon (20) 37.90◦N 23.75◦E
Sevilla-San Pablo (21) 37.42◦N 05.88◦W

Heraklion (22) 35.33◦N 25.18◦E

3. Results

3.1. Climatologies and Differences of CLARA-A2 and ISCCP-H

Average values of the TCC were calculated for the European region for the 29-year period of
1984–2012, which is the common period for the two satellite data records, CLARA-A2 and ISCCP-H.
The selected study region extends from 30◦N to 70◦N and from 10◦W to 30◦E, and includes areas of
distinct geomorphology characterized by diverse climatic regimes, ranging from the Mediterranean to
oceanic, continental and sub-Arctic, thus encompassing different cloud regimes. Figure 2a,b shows the
overall mean TCC for CLARA-A2 and ISCCP-H. The general geographical pattern regarding the two
satellite data sets appears quite similar, with a gradual increase in cloud cover from the South to the
North-West. Minimum values for both data records are located over the region of North Africa and
the South Mediterranean basin with cloud cover values of approximately 25% and 30% for CLARA-A2
and ISCCP-H respectively. Moreover, the two satellite data records present the maximum TCC values
to the North of the United Kingdom and North-West of Norway (Norwegian Sea). For CLARA-A2 the
absolute maximum is slightly larger than that of ISCCP-H.

The absolute differences between ISCCP-H and CLARA-A2 TCC, shown in Figure 2c, indicate
that apart from the similarity in spatial patterns, there is a good quantitative agreement between the
two data records over a significant part of the study region (covering almost the entire continental
Europe) with differences less than 2.5% in absolute terms. However, a greater contrast can be observed
over the Mediterranean Sea and North Africa where ISCCP-H has higher TCC in comparison to
CLARA-A2 (reddish colors). Specifically, the magnitude of differences varies from 5% to 10% for most
of the Mediterranean basin, with an absolute maximum of approximately 15% over the Aegean Sea.
Secondarily, large TCC differences (larger ISCCP-H than CLARA-A2 values) between the two satellite
datasets appear off the western coasts of the Iberian Peninsula and France. In contrast, ISCCP-H
TCC values are smaller than CLARA-A2 over the northernmost part of the study region, namely over
areas with higher latitude than 65◦N, mainly over the Scandinavian countries and to the northwest of
Norway where absolute differences range from approximately -2.5% to -7.5%. Similar findings, namely
larger ISCCP-H than CLARA-A2 TCC over the southernmost parts of the study region and lower
ISCCP-H TCC over its northernmost parts, are shown by Karlsson and Devasthale 2018 (Figure 1) [50]
also in nearby regions. Moreover, our results in Supplementary Figures S1 and S2 show that the
differences in the northernmost parts exist throughout the year and those in the southernmost ones are
apparent in all seasons except winter.
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The observed differences may, to some extent, be related to the switch of preferred ISCCP-H
input data source at 55◦N. South of this latitude, geostationary imager measurements are used, which
are taken with a relatively large viewing zenith angle (VZA). For example, at 45◦N the geostationary
VZA over Europe is around 52–58 degrees depending on the longitude, while the average VZA
for AVHRR is estimated to be around 32 degrees. The differences in VZA between the two TCC
datasets are shown in Figure S3 (Supplement) where the mean VZAs of the two datasets over Europe
(30◦–70◦N) are plotted. There is an obvious changing pattern of differences at 55◦N. South of this
latitude, the ISCCP-H (MSG based) VZAs are larger than the CLARA-A2 (AVHRR based) VZAs,
while north of it the VZAs of the two datasets coincide since AVHRR is used in both of them. As an
example, at 45◦N, the geostationary VZA over Europe is around 52–58 degrees depending on the
longitude, while the average VZA for AVHRR is estimated to be around 32 degrees. Maddux et al.
(2010) in [51] demonstrated a strong increase in MODIS Collection 5 cloud fraction with VZA. Their
Figure 5 yields a difference in cloud fraction of about 8% between VZAs of 55 and 32 degrees. Although
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this value should only be considered as a very rough estimate, it suggests that the differences between
CLARA-A2 and ISCCP-H TCC south of 55◦N can at least partly be attributed to the different viewing
geometries of the employed satellite instruments. Indeed, global difference plots between ISCCP-H and
CLARA-A2 (see Supplementary Figure S2) show signs of discontinuities at 55◦N and 55◦S, especially
over ocean. These discontinuities are also evident in the results of Karlsson and Devasthale (2018) [50]
who inter-compared and evaluated four satellite cloud data sets, including CLARA-A2 and ISCCP-H,
on a global scale. Over land, which covers most of our study area, retrieval differences related to
surface heterogeneity, surface temperature, snow cover, or other factors may be present and obscure
the discontinuity described above. The north–south gradient apparent in the differences between
CLARA-A2 and ISCCP-H TCC datasets may also be attributed to the different number of polar orbiting
satellites and AVHRR instruments used in the two analyses (see Table 2). CLARA-A2 uses all available
instruments. On the other hand, while ISCCP uses both morning and afternoon polar orbiters as
availability simultaneously, it does not use more than 1 afternoon (or 1 morning) at a time for the
gridded products. In fact, ISCCP uses one operational NOAA satellite/AVHRR instrument, usually
the satellite with the equator crossing time closest to the original intended orbit.

The inter-annual and seasonal variability of total cloudiness over the whole study region as
estimated from CLARA-A2 and ISCCP-H is shown in Figure 3a,b, respectively. The time series of the
annual mean TCC values averaged over Europe (Figure 3a) show a fairly good agreement between
CLARA-A2 and ISCCP-H. Both satellite-derived data records exhibit a comparable year-to-year pattern
for their common period 1984–2012. Nevertheless, ISCCP-H shows systematically higher TCC values
during the whole period in comparison to CLARA-A2, with an average annual difference of 3.4%.
The largest (reaching or exceeding 5%) differences (higher ISCCP-H values) are found in the 1980s.
Similarly, higher ISCCP-D2 TCC data compared to PATMOS-x in the 1980s has been reported in
the past and was regarded as an artifact due to systematically larger satellite zenith angles in some
regions for the geostationary satellites contributing to the ISCCP dataset [22,52,53]. These differences
were subsequently reduced as the number of satellites contributing to ISCCP increased. Therefore,
it appears that a similar behavior is still present in the ISCCP-H data, as corroborated by global
results [22]. Another distinguishable feature of the TCC over Europe is a local minimum in 2003 which
has been related to a very hot and dry summer in Central Europe [16] and can be clearly noticed for
CLARA-A2, but is less pronounced for ISCCP-H. Even if the 29-year study period is long enough
for estimating trends, we do not attempt to do this, because long-term variations should be treated
with caution. Most importantly, the satellite constellation changes over the years, and in addition
most of the AVHRR-carrying satellites have a changing local overpass time, also referred to as orbital
drift. These features can cause misleading artificial trends. Considering the seasonal variation of
CLARA-A2 and ISCCP-H, there is a well distinguishable similar seasonality for the two datasets
(Figure 3b), which present the largest TCC values during the winter months and the lowest during
summer in accordance to the usual meteorological conditions in the European region [16]. However,
the amplitude of the annual cycle of ISCCP-H is considerably smaller than the one of CLARA-A2,
mainly attributed to seemingly greater minimum summer values (by up to 10%) and secondarily to
smaller maximum winter values (by up to 5%). ISCCP-H shows quite constant TCC values during
winter and early spring, resulting in a flat pattern in Figure 3b which is not reproduced by CLARA-A2.
The average TCC values computed for CLARA-A2 vary from about 41% in August to 69% in December,
whereas the corresponding values of ISCCP-H have shorter range from 50% in August to 65% in
December. ISCCP-H gives lower TCC values during local winter and higher for the other months
of the year with respect to CLARA-A2 causing the overall systematically higher values shown in
Figure 3a. In addition, the biggest differences take place during the summer months, where ISCCP-H
overestimates CLARA-A2 by about 9% on average. The underestimation of the winter TCC of ISCCP-H
with respect to CLARA-A2 is significantly less intense than the summer overestimation, with a mean
difference of −3%. The aforementioned seasonal differences between ISCCP-H and CLARA-A2 are
also confirmed by the results obtained on a pixel-level basis (see Supplementary Figure S1) which
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display widespread negative differences (up to −15 to −20%) in winter and positive differences (up to
+20 to 25%) in summer spread over almost the entire study region.
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3.2. Validation against ECA&D Ground Measurements

In order to validate the performance of the two satellite data records, TCC data from ECA&D
were used as ground truth. For every station the TCC values of the corresponding grid cell from
CLARA-A2 and ISCCP-H were analyzed for their common period (1984–2012). TCC time-series for
each station were created for both CLARA-A2 and ISCCP-H and were compared to the corresponding
ECA&D ones.

The overall comparison between CLARA-A2, ISCCP-H, and ECA&D is presented in Figure 4.
TCC data from all the corresponding grid cells of CLARA-A2 and ISCCP-H were analyzed against all
the ECA&D stations. Both satellite data records perform fairly well against the ground measurements.
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However, CLARA-A2 is overall better correlated to ECA&D ground measurements in comparison to
ISCCP-H, having a correlation coefficient of 0.90 versus 0.84, respectively. Satellite measurements from
both data records mainly overestimate ground measurements from ECA&D. CLARA-A2 is slightly less
biased against ECA&D (2.08%) with respect to the bias value of ISCCP-H (5.15%). CLARA-A2 shows
only a minor overestimation and only for a few TCC values, whereas ISCCP-H appears to overestimate
TCC, particularly for low TCC values, resulting in a slope value of 0.62 compared to 0.93 for CLARA-A2.
An overestimation of satellite-based TCC with respect to ground measurements has frequently been
found before on a global basis since there is a slight tendency for surface observations to give less TCC
in comparison to satellites, which may be caused by an effect of the viewing angle of the geostationary
satellites or the fact that satellites may detect cirrus that are not observed from the surface [17,26,30,54].
However, underestimations of satellite cloud cover with respect to surface-based observations have
also been reported by Meerkötter et al. [16] who attributed them to different observational geometries
and to characteristics in the satellite algorithm or, in particular, for higher latitudes (i.e., the Arctic)
by Schweiger et al. [55], which seems to be in accordance with the negative bias values computed in
this study for the northern stations (i.e., Scandinavia and the UK). Furthermore, Yousef et al. (2018)
compared satellite retrieved cloud cover to ground measurements for the Arabian Peninsula and
found similar results. They reported both CLARA-A2 and ISCCP-D2 overestimating TCC compared to
ground measurements, with the TCC values of CLARA being closer to the ground observations and
better correlated than ISCCP-D2 [56].
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Figure 4. Scatter density plots of monthly mean TCC (%) of (a) CLARA-A2 and (b) ISCCP-H against
all selected ECA&D stations.

The computed correlation coefficients for the comparison between the satellite data and ECA&D
are shown in Figure 5. Both CLARA-A2 and ISCCP-H compare fairly well to ECA&D, having
correlation coefficients larger than 0.7 for most cases and larger than 0.8 for a considerable number
of stations. However, CLARA-A2 appears to have quite higher correlation coefficient values, which
are greater than 0.8 or 0.9 for the majority of the stations, but even more so primarily over central and
northern Europe and secondarily over the UK. It should be noted that over these areas, the correlation
coefficient values between ISCCP-H and ECA&D drop to 0.5, whereas the correlation coefficients
computed for CLARA-A2, remain higher than 0.7. Furthermore, with increasing latitude there
is an obvious decrease in the correlation between both comparisons (CLARA-A2-ECA&D and
ISCCP-H-ECA&D), where the correlation coefficient drops to values less than 0.7 (over Scandinavia
and the UK). This can be attributed to the stronger TCC covariability between satellite data and
ECA&D in southern than northern stations combined with a smaller TCC seasonality in northern
stations (Figure S4). This finding is just based on the 22 stations used in the present study and could
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be further validated using a larger number of stations. The different behavior between higher and
lower latitudes could be attributed to differences in the seasonal variation for Northern and Southern
regions. A smaller seasonal variation over high latitudes could lead to lower correlations. Considering
areas of lower latitude, besides the overall better performance of the satellite data in comparison to
northern regions, correlation values between ISCCP-H and ECA&D are considerably high and much
closer to those of the CLARA-A2 and ECA&D comparison. Moreover, the overall better performance
of CLARA-A2 can be clearly confirmed by the higher linear regression slope values for each station
(Figure 6). It is evident that CLARA-A2 has slope values close to 1 (0.9–1.0), whereas the corresponding
slope values for ISCCP-H indicate stronger deviations, being smaller than 0.7 or larger than 1.3 for
most stations.
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Figure 5. Correlation coefficients between (a) CLARA-A2 and ECA&D and (b) ISCCP-H and ECA&D
TCC values. Correlation coefficient values are given for each one of the 22 selected stations and are
increasing with increasing circle size.

Biases for the two comparisons were computed from the overall mean TCC value of each
station and corresponding grid cell (Figure 7). For grid cells and stations located in higher latitudes
(Scandinavia and the Northern UK) biases acquire negative values (greater than −3.0%), showing a
tendency of underestimation (blue circles) of the satellite TCC data in comparison to the ground-based
observations from ECA&D. In lower latitudes (i.e., Iberian Peninsula, Greece etc.), there is widespread
overestimation (red circles) of both CLARA-A2 and ISCCP-H to the ECA&D measurements of TCC
(biases mainly greater than 6.0%). Enriquez-Alonso et al. (2016), while studying TCC over the
Mediterranean, also found that surface observations show a slight tendency to lower mean values of
TCC compared to ISCCP-D and CLARA-A1, especially over land areas [17]. A similar overestimation
of satellite MODIS TCC against ECA&D has been also reported over the Mediterranean taking place
mainly in winter [25]. On the other hand, the magnitude of the biases decreases with increasing
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latitude especially for ISCCP-H. This could be attributed to the shift from geostationary to polar
orbiting satellite measurements, above 55◦N, in the ISCCP-H data set. It is also apparent that ISCCP-H
is significantly more biased to ECA&D in comparison to CLARA-A2. For CLARA-A2 biases range
from −3.0% to +6.0% for the majority of cases with the exception of a few stations. ISCCP-H biases are
greater than +6.0% for more stations and for some stations even greater than +12.0%.
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The conclusions derived from Figures 5–7, i.e., the better performance of CLARA-A2 than
ISCCP-H TCC data, is also confirmed by the results for another two statistical parameters, namely
the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), shown in Table 4. In 16/22
stations for MAE and 14/22 stations for RMSE CLARA-A2 performs better.

By averaging over the 22 selected ECA&D stations and the corresponding grid cells, we created
a mean of the station-based TCC and an average of the corresponding grid cells of CLARA-A2 and
ISCCP-H, in order to evaluate the overall inter-annual long-term and seasonal variability of the
biases between CLARA-A2, ISCCP-H and ECA&D (Figure 8). In this way, better insight is given into
the year-to-year and season-to-season patterns of differences between the satellite and surface TCC
datasets. As expected, ISCCP-H and CLARA-A2 show a positive bias for most of their common period;
however, ISCCP-H is constantly more biased than CLARA-A2 with respect to ECA&D. In spite of the
general pattern, it can be noticed that from 2004 until 2011, CLARA-A2 is slightly underestimating
ECA&D-derived TCC. In addition, since approximately 1999 a considerably improved agreement
between CLARA-A2 and ECA&D can be discerned, having bias values mostly less than 2% in absolute
terms. That might be explained by the fact that more satellites were included in CLARA-A2, leading
to a better representation of daily averages. However, apart from the aforementioned difficulties
imposed by the orbital drifts and the satellite changes in the evaluation of the satellite-derived TCC
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trends, the TCC time series from ground-based observations should also be treated with caution due
to potential changes in the observation method (e.g., from human observers to ceilometers) that might
induce artifacts in the trends [57]. Regarding the seasonal variability of mean TCC over the stations
(Figure 8b), we found that, as expected, all three data records have their maximum values during winter
and the minimum values in summer. The overall pattern of the variability of ECA&D is similar to the
ones of CLARA-A2 and ISCCP-H (see also Figure 3b). However, the CLARA-A2 TCC is much closer
to ECA&D than ISCCP-H. For the summer months CLARA-A2 just shows slightly lower TCC than
ECA&D whereas for the rest of the months CLARA-A2 overestimates the ground measurements of
TCC. On the other hand, ISCCP-H TCC is constantly higher in magnitude than ECA&D. Although from
November to February the overestimation of ISCCP-H is lower than that of CLARA-A2 with respect to
ECA&D, during the rest of the months ISCCP-H overestimates considerably (by up to 9%) more than
CLARA-A2, which has values much closer to ECA&D (biases less than 3.5%). Thus, the seasonal cycle
of ECA&D matches better with the one of CLARA-A2 than ISCCP-H, which is largely due to the fact
that ISCCP-H exhibits a flattened curve in winter months. Note however, that this is within the range
of interannual variability of the ECA&D winter cloudiness. This can be clearly seen in Figure 8c which
depicts the month-to-month variability of the bias value computed between the mean grid cell of the
two satellite data records and the equivalent average of the ground stations. An additional feature of
the seasonality that is more evident in Figure 8c is that there is also an obvious opposite seasonality of
the biases between CLARA-A2, ISCCP-H and ECA&D. CLARA-A2 is more biased during winter and
less during the summer months, whereas ISCCP-H (which is positively biased throughout the year)
has increased biases during summer and is less biased for the winter months.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 21 
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Table 4. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), both in percent cloud
cover, for the comparison between CLARA-A2 and ISCCP-H against ECA&D stations.

ECA&D Station MAE RMSE
CLARA-A2—ECA&DISCCP-H—ECA&D CLARA-A2—ECA&DISCCP-H—ECA&D

Tromsø 7.0 6.2 9.0 7.8
Oslo-Blindern 7.2 5.8 9.3 7.6

Stockholm 6.2 6.2 8.2 8.0
Eskdalemuir 4.3 4.7 6.4 6.2
Groningen 6.7 10.4 8.8 12.4

De Bilt 4.7 7.8 6.4 9.7
Heathrow 7.2 6.5 9.5 8.5

Wien 4.8 9.2 6.6 10.8
München-Botanischer Garten 6.6 9.2 8.6 11.1

Geneve-Observatoire 4.2 8.3 6.2 10.2
Lugano 5.7 10.4 8.0 12.5

Zagreb-Gric 4.6 6.8 6.2 8.7
Belgrade 8.7 10.2 10.8 11.9

A Coruña 5.9 7.1 8.0 8.7
Bilbao-Aeropuerto 7.7 7.2 10.4 9.6

Zaragoza-Aeropuerto 5.9 8.6 7.8 9.8
Barcelona-Aeropuerto 5.7 9.1 7.5 10.8

Madrid-Barajas 9.7 9.7 11.8 11.2
Corfu 8.5 13.1 11.4 15.3

Athens-Hellinikon 7.0 16.7 12.6 18.7
Sevilla-San Pablo 8.1 8.4 10.5 10.2

Heraklion 6.8 11.7 9.2 14.8
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Figure 8. (a) Mean annual TCC and (b) seasonal variation of TCC averaged over all ECA&D stations
and the average of the corresponding grid cells of ISCCP-H and CLARA-A2 for their common period
(1984–2012). Vertical bars denote the year-to-year variability of monthly TCC values. (c) Seasonal
variation of the bias of CLARA-A2 and ISCCP-H with respect to ECA&D.
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A final remark about the sensitivity of the measurements to specific cloud types should be made.
The cloud detection sensitivity of CLARA-A2 has been assessed through extensive comparisons against
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud products for the
period between October 2006 and December 2015. The results, Figure 6, in Karlsson and Hakansson
2018 [58] show that the probability of cloud detection drastically decreases below 70% for optically
thin clouds (cloud optical thickness—COT—smaller than 1). For a probability of detection larger than
50% the COT values must be larger than 0.225. On the other hand, to our knowledge, no similar
reported limit of ISCCP-H COT values is available in the literature, but it is expected that the ISCCP-H
retrieval algorithm has a similar reduced sensitivity to optically thin clouds. Indeed, night-time ISCCP
retrieval depends only on the IR, so thin high clouds could be at least partially missed. It should
be noted that CLARA-A2 and ISCCP-H determine cloud top in different ways. ISCCP-H uses the
nnHIRS T/q profiles and/or detectability limits in order to determine cloud top. In CLARA-A2 no
HIRS information is used. The cloud top height retrieval for semi-transparent clouds is done using
the difference between the 11- and 12-micron channels. Another type of clouds posing challenges
to the satellite retrievals are broken, sub-pixel clouds, the sensitivity to which may differ between
the datasets. Ground-based measurements can also suffer from limited sensitivity to certain cloud
types. In particular, some types of ceilometers are not able to detect thin high clouds. These varying
sensitivities of the different observing systems discussed in this study provide additional potential
reasons why the observed cloud fractions, as shown, for example, in Figure 8b, do not line up.

4. Conclusions

In this study, two recent satellite Total Cloud Cover data records (CLARA-A2 and ISCCP-H)
were intercompared over the region of Europe for their coinciding years (1984–2012) and validated
against surface-based observations from 22 selected stations of a European dataset of WMO stations
(ECA&D). Such intercomparisons are essential for validating and assessing uncertainties in Satellite
Climate Data Records [59–61]. Both ISCCP-H and CLARA-A2 show a similar geographical pattern,
however ISCCP-H has higher TCC values over lower latitudes (i.e., Mediterranean region and North
Africa) and slightly lower TCC over Northern Europe. This changing pattern of differences between
the two satellite TCC data sets could be attributed to the shift from geostationary to polar orbiting
satellite measurements in the ISCCP-H data set, while the differences poleward of 55◦N may be partly
explained by the different number of AVHRR instruments onboard polar orbiting satellites used in the
two satellite analyses. Throughout the common period of the two satellite data records, both ISCCP-H
and CLARA-A2 have a similar year-to-year variability with ISCCP-H having constantly higher TCC.
The aforementioned datasets have a similar seasonality with higher ISCCP-H TCC for most of the
months. The validation against the ECA&D ground observations indicates a reasonable performance
of the two satellite datasets. Nevertheless, CLARA-A2 is better correlated (especially over Central
Europe) and less biased (in particular over Southern Europe) than ISCCP-H, with respect to ECA&D.
Our results indicate a changing pattern of the comparison between the two satellite data sets and
ECA&D stations with increasing latitude. More specifically, the correlation coefficients decrease with
increasing latitude, above 55◦N, while the biases improve. The improving ISCCP-H–ECA&D TCC
biases could be attributed to the shift from geostationary to polar orbiting satellite measurements in
the ISCCP-H data set. Although the latitudinal patterns of differences are not expected to significantly
change using more stations, this deserves to be further investigated and validated in a future work.
In addition, future research could focus on potential systematic differences that may appear when
studying individual cloud types. Both ISCCP-H and CLARA-A2 overestimate TCC compared to
ECA&D for most of the study period, resulting in overall mean overestimations of 5.2% and 2.1%,
respectively. The TCC biases also vary seasonally, with maximum overestimations by CLARA-A2 in
winter and by ISCCP-H in summer. Trends of both the satellite and ground-based datasets should be
treated with caution because of potential artifacts due to changes in satellite configurations and their
local overpass times as well as changes in ground-based instrumentation.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/2/212/s1,
Figure S1: European Geographical difference (in absolute terms) between ISCCP-H and CLARA-A2 TCC for (a)
January, (b) April, (c) July and (d) October. Results are averaged over the 29-year period 1984-2012. Figure S2.
Global geographical difference (in absolute terms) between ISCCP-H and CLARA-A2 TCC for (a) January, (b)
April, (c) July and (d) October. Results are averaged over the 29-year period 1984-2012. Figure S3. Latitudinal
dependence of the mean satellite zenith angle of CLARA-A2 and ISCCP-H over Europe (30◦–70◦N). For ISCCP-H
two curves are plotted: the lower and upper curves show the mean satellite zenith angle at a longitude of 0◦
and 30◦E, respectively. For latitudes larger than 50◦N the CLARA-A2 and ISCCP-H curves overlap. Figure S4.
Seasonal variation of TCC averaged over all ECA&D stations (in blue) south (left) and north (right) of 55N and
the corresponding grid cells of ISCCP-H (in red) and CLARA-A2 (in black). These results are similar to those of
Figure 8b of the manuscript but given separately for northern and southern stations.
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