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Acronyms and Definitions 
 
Table 1 lists definitions for all acronyms used in this document.  
 

Table 1: List of acronyms and definitions. 

Symbol Comment 

1D-Var 1 Dimensional Variational  

AD Applicable Document 

ATBD Algorithm Theoretical Baseline Document 

AVHRR Advanced Very-High-Resolution Radiometer 

B matrix Background error covariance matrix 

BMBF German Federal Ministry of Education and Research 

CDRs Climate Data Records 

CDOP2 Continuous Development and Operations Phase  

CM SAF Satellite Application Facility on Climate Monitoring 

COARE Coupled Ocean-Atmosphere Response Experiment 

DFG Deutsche Forschungsgemeinschaft 

DMSP Defence Meteorological Satellite Program 

DWD Deutscher Wetterdienst 

ECMWF European Centre for Medium-Range Weather Forecasts 

ECVs Essential Climate Variables 

EIA Earth Incidence Angle 

EUMETSAT European Organization for the Exploitation of Meteorological Satellites 

EVA Evaporation 

FCDRs Fundamental Climate Data Records 

EMP Freshwater Flux 

F08 DMSP Flight-08 spacecraft, F10-F20 accordingly 

FMI Finnish Meteorological Institute 

GCOS Global Climate Observing System 
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Symbol Comment 

GHRSST Group for High Resolution Sea Surface Temperature 

h horizontal 

HOAPS Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data 

HTW Vertically Integrated Water Vapour 

ICOADS International Comprehensive Ocean-Atmosphere Data Set 

KNMI Royal Meteorological Institute of the Netherlands 

L3 Level 3 data (gridded data of geophysical parameters) 

LHF Latent Heat Flux 

LWP Liquid Water Path 

MeteoSwiss Meteorological Service of Switzerland 

MiKlip Mittelfristige Klimaprognosen (project funded by BMBF) 

NetCDF Network Common Data Format 

NMHSs National Meteorological and Hydrological Services 

NOAA National Oceanic and Atmospheric Administration 

NSH Near Surface Specific Humidity 

NWP SAF Satellite Application Facility on Numerical Weather Prediction 

OE Optimal Estimation 

OISST Optimum Interpolation Sea Surface Temperature 

q Specific humidity 

PRD Product Requirements Document 

PRE Precipitation 

RAM Random Access Memory 

RD Reference Document 

R matrix Observational error covariance matrix 

RMIB Royal Meteorological Institute of Belgium 

RTTOV Radiative Transfer for TOVS 
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Symbol Comment 

SMHI Swedish Meteorological and Hydrological Institute 

SSM/I Special Sensor Microwave/Imager 

SSM/T Special Sensor Microwave Temperature 

SSM/T-2 Special Sensor Microwave Humidity Sounder 

SSMIS Special Sensor Microwave Imager/Sounder 

SSMI(S) SSM/I and SSMIS 

SST Sea Surface Temperature 

SWS Near Surface Wind Speed 

Tb Brightness Temperature 

TIROS Television and InfraRed Observation Satellite 

TOVS TIROS Operational Vertical Sounder 

Tskin Skin Temperature 

Tsurf Surface Temperature 

UK MetOffice Meteorological Service of the United Kingdom 

v vertical 

WCRP World Climate Research Program 

WMO World Meteorological Organization 
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1 The EUMETSAT SAF on Climate Monitoring 
The importance of climate monitoring with satellites was recognized in 2000 by EUMETSAT 
Member States when they amended the EUMETSAT Convention to affirm that the 
EUMETSAT mandate is also to “contribute to the operational monitoring of the climate and 
the detection of global climatic changes". Following this, EUMETSAT established within its 
Satellite Application Facility (SAF) network a dedicated centre, the SAF on Climate 
Monitoring (CM SAF, http://www.cmsaf.eu/). 
 
The consortium of CM SAF currently comprises the Deutscher Wetterdienst (DWD) as host 
institute, with partners from the Royal Meteorological Institute of Belgium (RMIB), the Finnish 
Meteorological Institute (FMI), the Royal Meteorological Institute of the Netherlands (KNMI), 
the Swedish Meteorological and Hydrological Institute (SMHI), the Meteorological Service of 
Switzerland (MeteoSwiss), and the Meteorological Service of the United Kingdom (UK 
MetOffice). Since the beginning in 1999, the EUMETSAT Satellite Application Facility on 
Climate Monitoring (CM SAF) has developed and will continue to develop capabilities for a 
sustained generation and provision of Climate Data Records (CDR’s) derived from 
operational meteorological satellites. 
 
In particular the generation of long-term data records is pursued. The ultimate aim is to make 
the resulting data records suitable for the analysis of climate variability and potentially the 
detection of climate trends. CM SAF works in close collaboration with the EUMETSAT 
Central Facility and liaises with other satellite operators to advance the availability, quality 
and usability of Fundamental Climate Data Records (FCDRs) as defined by the Global 
Climate Observing System (GCOS). As a major task the CM SAF utilizes FCDRs to produce 
records of Essential Climate Variables (ECVs) as defined by GCOS. Thematically, the focus 
of CM SAF is on ECVs associated with the global energy and water cycle. 
 
The CM SAF data records can serve applications related to the new Global Framework of 
Climate Services initiated by the WMO World Climate Conference-3 in 2009. CM SAF is 
supporting climate services at national meteorological and hydrological services (NMHSs) 
with long-term data records but also with data records produced close to real time that can 
be used to prepare monthly/annual updates of the state of the climate. Both types of 
products together allow for a consistent description of mean values, anomalies, variability, 
and potential trends for the chosen ECVs. CM SAF ECV data records also serve the 
improvement of climate models both at global and regional scale. 
 
A catalogue of all available CM SAF products is accessible via the CM SAF webpage, 
http://www.cmsaf.eu/. Here, detailed information about product ordering, add-on tools, 
sample programs and documentation is provided. 
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1 Introduction 
 
This Algorithm Theoretical Baseline Document (ATBD) provides information on the 
processing chain implemented for the enhanced HOAPS (Hamburg Ocean Atmosphere 
Parameters and Fluxes from Satellite Data, http://www.hoaps.org/) thematic climate data 
record. This processing chain retrieves geophysical parameters from homogenized SSM/I 
(Special Sensor Microwave/Imager) and SSMIS (Special Sensor Microwave 
Imager/Sounder) observations. Auxiliary information from AVHRR (Advanced Very-High-
Resolution Radiometer) SST (Sea Surface Temperature) retrievals and a predefined 
database of atmospheric background profiles is required for the retrieval. Compared to the 
previous HOAPS version 3.2 (cf. Andersson et al., 2010 and RD 5) a one-dimensional 
variational retrieval (1D-Var) scheme is used to derive a subset of the geophysical 
parameters. The 1D-Var retrieval is based on that of the UK MetOffice NWP SAF (Satellite 
Application Facility on Numerical Weather Prediction). Preliminary work for the HOAPS 1D-
Var retrieval for precipitation has been done within the MiKlip Project (mittelfristige 
Klimaprognose, German Federal Ministry of Education and Research (BMBF)).  
The HOAPS data record contains multiple parameters derived from SSM/I and SSMIS 
observations. The CM SAF version of HOAPS-4.0 contains the following atmospheric and 
near-surface variables, derived for the global ice-free oceans:  
 

Precipitation      CM-12611 (PRE_HOAPS) 
Vertically Integrated Water Vapour    CM-12701 (HTW_HOAPS) 
Evaporation       CM-12801 (EVA_HOAPS) 
Latent Heat Flux     CM-12811 (LHF_HOAPS) 
Freshwater Flux     CM-12821 (EMP_HOAPS) 
Near Surface Specific Humidity   CM-12901 (NSH_HOAPS) 
Near Surface Wind Speed     CM-12911 (SWS_HOAPS) 
 

The 1D-Var retrieves vertically integrated water vapour and near surface wind speed. The 
retrieval procedure of the remaining parameters has not been changed from HOAPS-3.2. 
Precipitation is derived using a neural network algorithm. The parameterization of the latent 
heat flux has not been changed either, but uses the results from the 1D-Var retrieval as 
input. The physical basis of the HOAPS-3.2 retrievals is described in RD 5 and in this 
document a summary is given in section 3.3. 
Within the project FOR1740 of the Deutsche Forschungsgemeinschaft (DFG) a procedure to 
estimate uncertainty for evaporation and related parameters has been developed. This 
approach has been adapted to the new HOAPS-4.0 data record and the resulting uncertainty 
estimates are also provided with HOAPS-4.0.  
This ATBD focuses on information on the HOAPS 1D-Var retrieval scheme used to construct 
the data record employing observations of SSM/I passive microwave radiometers on board 
Defence Meteorological Satellite Program (DMSP) platforms F08, F10, F11, F13, F14 and 
F15 as well as observations of SSMIS instruments on board F16, F17 and F18. 
The CM SAF HOAPS data record from SSMI(S) (this abbreviated form is used from now on 
for SSM/I and SSMIS) provides quasi-global coverage over the ice-free ocean surface, i.e., 
within ±180° longitude and ±80° latitude. Instantaneous SSMI(S) retrievals at original swath 
level are used to derive the spatio-temporal averaged data records. The products are 
available as both 6-hourly composites and monthly averages on a regular latitude/longitude 
grid with a spatial resolution of 0.5° × 0.5° degrees. The temporal coverage of the data 
records ranges from 9th July 1987 to 31st December 2014 as required by the PRD. Future 
updates including an extension of the time period are foreseen for CM SAF’s next phase. 
More detailed information on the products and data format specifications of HOAPS-4.0 are 
given in the Product User Manual HOAPS version 4.0 [RD-6]. 
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Section 2 of this document describes the data sources and processing chain, including a 
summary of instrument characteristics. This is followed by the Algorithm Theoretical Basis of 
the 1D-Var scheme as well as assumptions and limitations.  
More information on the data record will be contained in the product user manual, basic 
accuracy requirements are defined in the product requirements document [RD-1], and the 
validation of the data records versus those requirements is described in the validation report. 
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2 Input data, pre-processing and algorithm overview 
 
An overview of the full (1D-Var and statistical) retrieval is provided in section 2.5. The 1D-Var 
code is capable of processing data from various instruments (here: SSM/I and SSMIS, see 
sections 2.1 and 2.2) using RTTOV as the forward model to obtain simulated radiances and 
Jacobians with respect to atmospheric state parameters that affect the radiances (Hocking et 
al., 2014, [RD-7]). Also, the 1D-Var requires a-priori information on the atmospheric state as 
input. For HOAPS-4.0 an objective profile selection scheme has been developed to construct 
a background profile from a profile data base (Chevallier et al. 2006, [RD-3], see section 3.2). 
For some parameters statistical retrievals are applied which are described in section 3.3, see 
also [RD-5]. SST data (Reynolds et al. 2007, Reynolds 2009, see section 2.3) is required as 
additional input for some of these parameters.  

2.1 Observing Systems: SSMI(S) Instruments 
 
This section gives a short overview of the observing systems (cf. [AD 1]) used to collect the 
basis input data for the processing of HOAPS-4.0. SSM/I sensors have been carried aboard 
the DMSP satellite series since 1987. To date, six SSM/I instruments have been successfully 
launched aboard the F08, F10, F11, F13, F14 and F15 spacecraft. A short summary of the 
SSM/I instrument is given in RD-5 and references therein. The first SSMIS was launched in 
October 2003 aboard the F16 spacecraft, designed to continue the successful SSM/I 
observations. To date, four SSMIS instruments have been launched (F16, F17, F18, F19) 
and one more (F20) will be launched in 2020 (Figure 1 and Figure 2). However, data of F19 
have not been used for processing HOAPS-4.0. A power failure affecting the command-and-
control system on board the F19 spacecraft caused that since 2016 NOAA operators are 
unable to control F19 which was launched in 2014. The quality of the data of F19 is expected 
to be degraded (Gruss, 2016). 
 

 
Figure 1: Temporal coverage of SSM/I (top panel) and SSMIS (bottom panel) aboard DMSP satellite 
platforms used for  HOAPS-4.0 processing. Due to orbit degradation the descending equatorial 
crossing times for all instruments change over time. Some satellite orbits are more stable than others 
and for some little change occurs over the years of operation. 
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Figure 2: SSMIS scan geometry showing directions of active scan, swath width, ground track, and 
footprint averages (from Kunkee et al., 2008). 

 
An extensive description of the SSMIS instrument and satellite characteristics has been 
published by Kunkee et al. (2008). Hence, only a short summary is given here. The DMSP 
satellites operate in a near-circular, sun-synchronous orbit, with an inclination of 98.8° at an 
approximate altitude of 833 km. Each day, 14.1 orbits with a period of about 102 minutes are 
performed. The Earth’s surface is sampled with a conical scan at a constant antenna 
boresight angle of 45° over an angular sector of 144° resulting in a 1700 km wide swath (see 
Figure 2). The advantage of a conical scanning instrument is that it never observes the 
surface of the earth from nadir, but from a constant angle, thus the path through the 
atmosphere has always the same length and consequently the same characteristics of the 
atmosphere. A nearly complete coverage of the Earth by one instrument is achieved within 
two to three days. Due to the orbit inclination and swath width, the regions poleward of 87.5° 
are not covered. Note that the final product coverage is within ±80° latitude, because the 
HOAPS products are only defined over ice free ocean. All satellites have a local equator 
crossing time between 2 and 11 A.M./P.M. for the descending/ascending node. 
The SSMIS integrates the imaging capabilities of the SSM/I sensor with the cross-track 
microwave sounders Special Sensor Microwave Temperature SSM/T and Special Sensor 
Microwave Humidity Sounder, SSM/T-2 into a single conically scanning 24-channel 
instrument. The SSMI(S) frequencies are centred at 19.35, 22.235, and 37.0 GHz. Another 
frequency is centred at 85.5 GHz for SSM/I and at 91.35 GHz for SSMIS because the 
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channel 85.5 GHz is not included on SSMIS. All frequencies are sampled at both horizontal 
and vertical polarizations, except for the 22.235 GHz channel, which measures only vertically 
polarized radiation. The channels will be referred to as 19, 22, 37, and 91 GHz hereafter. 

The spatial resolution varies from 74 km by 47 km for the 19 GHz channel to 15 km by 13 km 
for the 91 GHz channel. All channels are sampled, resulting in an along-track sampling of 
12.5 km with a resolution of 180 uniformly spaced pixels, while the channels 19, 22 and 37 
are sampled with a resolution of 90 (64) pixels for SSMIS (SSM/I), i.e., 25 km (see Figure 2).  
A fixed cold space reflector and a reference black body hot load are used for continuous on-
board two point calibration (see section 4.3 in [AD-1]). 

2.2 The CM SAF SSM/I and SSMIS FCDR 
 
The SSM/I and SSMIS FCDR (Fennig et al. 2015, AD 1) provides swath-based brightness 
temperatures (Tbs) for the global ice-free ocean as a basis for the processing of HOAPS-4.0.  
The CM SAF FCDR from SSMI(S) Tbs is compiled as daily collections of all observations 
from each sensor. All sensor specific data available in the raw data records are provided as 
well as additional information like quality control flags, Earth incidence angles (EIA), 
averaged 85 GHz brightness temperatures, incidence angle normalisation offsets, 
intersensor calibration offsets and uncertainty information as well as surface type including 
sea ice. The FCDR is available for the time period from July 1987 until end of 2013. 
A more detailed description of the algorithm used to generate the SSMI(S) FCDR can be 
found in [AD 1]. 
The extended CM SAF SSMI(S) FCDR which consists of the SSM/I and SSMIS FCDR 
(Fennig et al., 2015) and a temporal extension of the SSMIS FCDR to 2014 using unchanged 
algorithms will be used here. 
 

2.3 OISST 
 
The NOAA 0.25° daily Optimum Interpolation Sea Surface Temperature (OISST) (Reynolds 
et al., 2007; Reynolds, 2009) has been used as input for the processing of HOAPS-4.0 as it 
is available for the entire time period 1987 – 2014 covered by HOAPS-4.0. The AVHRR 
Pathfinder sea surface temperature (SST) used for HOAPS-3.2 is unavailable past 2012 and 
the ESA CCI SST covers the years 1991 – 2010 only. Therefore, the OISST was selected to 
maintain consistency of the SST for the entire HOAPS record. 
The daily OISST is an analysis constructed at the NOAA National Climatic Data Center. For 
HOAPS-4.0 the daily OISST data files (version 2, AVHRR only) distributed through the 
Group for High-Resolution Sea Surface Temperature (GHRSST) are used 
(ftp://ftp.nodc.noaa.gov/pub/data.nodc/ghrsst/L4/GLOB/NCEI/AVHRR_OI/). 
Daily gridded OISST fields are constructed by combining observations from satellites and in 
situ data from ships and moored and drifting buoys obtained from the International 
Comprehensive Ocean–Atmosphere Data Set (ICOADS version 2.5, Woodruff et al. 2011). 
The in situ SSTs are checked for outliers, and then averaged onto the 0.25° grid, separately 
for ships and buoys. The broad-scale offset between SST observations from ships and those 
from buoys is accounted for by subtracting a constant value of 0.14°C from the ship 
observations. Similarly, satellite temperatures are averaged onto the analysis grid, after 
which they are bias-adjusted to the in situ data. For the marginal ice zone, where there is 
little in situ data, proxy SSTs are generated from sea ice concentrations. The interpolation 
step (“Optimum Interpolation”) combines the prepared inputs. The data record also includes 
sea ice concentrations. However, these are not used for the subsequent processing as the 
CM SAF FCDR includes its own sea ice mask. 
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Latent and sensible heat fluxes are estimated with a COARE bulk aerodynamic approach 
(COARE 3.0) after Fairall et al. (1996, 2003), see Andersson et al. (2010). As in the previous 
version, this algorithm will be used in HOAPS-4.0 using a skin SST as one of the input 
parameters. As the OISST is not a skin SST but a bulk SST at 0.5 m, the processing 
includes the Donlon et al. (2002) approach to calculate the skin temperature utilizing the 
HOAPS wind speed estimates. 
This adjustment does not consider heating of the upper ocean layers during day time. Note 
that systematic and random uncertainties are computed in a post-processing step following 
Kinzel et al. (2016), see also section 3.4. These uncertainties are a function of the utilised 
SST reference.   
 

2.4 Pre-processing 
 
Pre-processing involves the aggregation of the daily OISST-files to yearly files.  
 

2.5 Overview of processing chain  
 

The processing chain implemented for the HOAPS-4.0 data record to retrieve geophysical 
parameters from the CM SAF SSMI(S) FCDR and auxiliary information from OISST is 
schematically illustrated in Figure 3. The HOAPS software processor is a collection of tools 
to produce L2 (swath-based) and L3 (gridded) products. In Figure 3 the processing chain to 
perform the 1D-Var retrieval is presented. The 1D-Var retrieves total column water vapour 
and near surface wind speed. The remaining parameters are retrieved with statistical 
retrievals (section 3.3) as for HOAPS-3.2 (c.f. RD-5). Note that the parameterization of the 
latent heat flux has not been changed either, but uses the results from the 1D-Var retrieval 
as input. 
The starting point in the data processing chain, as illustrated in Figure 3 are SSMI(S) 
brightness temperatures. With the additional input of background profiles and OISST, 
geophysical parameters are calculated on the native sensor resolution (HOAPS-S). Gridded 
HOAPS products are generated from the scan-based HOAPS-S data with additional gridding 
routines. 
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Figure 3: Flow chart for the processing chain in HOAPS-4.0. RTTOV is the radiative-transfer 
model used in the HOAPS processing. 
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3 Algorithm Theoretical Basis 
 
The main improvement in HOAPS-4.0, relative to HOAPS-3.2, is the implementation and 
improvement of the 1D-Var retrieval developed by the NWP SAF and the estimation of 
uncertainty for evaporation and related parameters. The 1D-Var is applied to retrieve 
vertically integrated water vapour and near surface wind speed. This retrieval was adapted to 
the processing of SSMI(S) data by CM SAF utilizing the microwave imager channels and is 
the focus of this section. The remaining parameters are derived with the HOAPS-3.2 
retrievals [RD-5]. The retrievals are implemented on the SSM/I pixel level data. Due to the 
improved sampling and the larger swath width of SSMIS compared to SSM/I only every 
second scanline of SSMIS is processed and not all pixels of SSMIS (only 64 from 90) are 
used to conform with the SSM/I data. 
 
The NWP SAF 1D-Var is a variational method used for the retrieval of the HOAPS-4.0 
parameters TCWV and near surface wind speed. Phalippou (1996) presented a similar 1D-
Var retrieval and a stand-alone SSM/I, SSMIS and AMSU 1D-Var scheme that was available 
from NWP SAF. The code of the NWP SAF 1D-Var contains the merged capabilities of the 
previously supported UK MetOffice and ECMWF 1D-Var schemes, i.e., the NWP SAF 
partners ECMWF and the Met Office have developed, in parallel, different 1D-Var codes. The 
HOAPS 1D-Var retrieval is an implementation of the NWP SAF MetOffice package with 
adaptions for the HOAPS processing chain. 
In a variational retrieval the a-priori or background information of the atmosphere and 
surface, and the measurements (observed Tbs) are combined in a statistically optimal way to 
estimate the most probable atmospheric state. 
The method is based on nonlinear optimal estimation theory, and its context in satellite data 
assimilation has been discussed by Rodgers (1976) and Eyre (1989). The algorithm is 
applicable for both daylight and night-time scenes as backscattered microwave radiation is 
used as input. However, the highly uncertain emissivity of land surfaces and ice or snow 
covered scenes at microwave frequencies restricts the application of the retrieval to open 
ocean pixels. A further limitation is the perturbation of microwave signals by heavy 
precipitation events.  Under these conditions the atmosphere is opaque for the retrieval of 
surface parameters. Additionally, the retrieval is not able to handle scattering effects of 
hydrometeors properly in such situations and will either not converge or introduce large 
uncertainties in the retrieved quantities.  
 
The 1D-Var retrieval requires a background profile as input to derive a first guess of 
atmospheric state. This background profile may stem from a NWP or reanalysis model or 
concerning the HOAPS climatology it is selected from a predefined data base (see section 
3.2). 
The geophysical variables from the first guess are mapped into radiance space with the help 
of a radiative-transfer model (RTTOV), i.e. RTTOV calculates Tbs for channel-specific 
wavelengths based on atmospheric background fields. RTTOV also includes a fast emissivity 
model of the ocean surface, FASTEM (Deblonde, 2001; Deblonde et al., 2007). The 
variational approach applied here enables the simultaneous deduction of different 
parameters and is therefore an efficient way of extracting information from satellite radiances 
by using a-priori information (Phalippou, 1996). A minimization procedure searches the 
optimal solution, which, if successful, is written to output retrieval files accompanied with 
further diagnostic data. 

3.1 Physical Basis Overview of 1D-Var retrieval 
 
The following terminology is used (for details see Rodgers, 2000):  
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• The state vector (𝑥𝑥) consists of the quantities retrieved by the optimal 
estimation (OE) retrieval.  

• The observation vector (𝑦𝑦) holds observed brightness temperatures.  

• The a-priori (𝑥𝑥𝑏𝑏) is the solution to which the state vector will converge in the 
absence of measurements.  
 

The terminology is adapted from Bayesian estimation and ‘a-priori’ refers to the a-priori 
knowledge about the state. In data assimilation a-priori is often used synonymously with 
‘background’. 𝑥𝑥𝑏𝑏 is therefore the best estimate of the state 𝑥𝑥 in the absence of additional 
constraining observations (𝑦𝑦).The a-priori can be determined e.g. from an NWP model, from 
climatological estimates or from a data base of the state vector 𝑥𝑥. Here a profile is used that 
has been constructed from a predefined profile data base (see section 3.2) The lower 
temperature layers of the selected background profile are adjusted to match the actual sea 
surface temperature. 
 

 
Figure 4: Flowchart of the 1D-Var minimization and output procedures [AD 2]. For HOAPS-4.0 the 
Marquardt-Levenberg routine is used for minimisation. 

 
The remaining quantities required to set up the equation of the cost function which has to be 
minimised during the 1D-Var are: 

• Background error covariance (𝑩𝑩): The uncertainty of the a-priori information is 
characterized by the background error covariance matrix.  

• First guess (𝑥𝑥𝑜𝑜): The first guess consists of the initial values of the state vector 
when the OE process is started. The first guess can be identical to the a-priori but can also 
be chosen differently, for example by a first retrieval estimate of the state vector, e.g., from 
statistical retrievals. The first guess for HOAPS-4.0 is the same as the background. 

• Observation operator (H(𝑥𝑥)): maps from state space into observation space. 
Here, a radiative transfer model (RTTOV) is applied (see below). 
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• Observation error covariance matrix (𝑹𝑹): describes uncertainties associated 

with observation vector y. These include sensor noise but also e.g. uncertainties caused by 
parameterizations in the radiative transfer model.  

 
The 1D-Var scheme searches for the best estimate of atmospheric and/or surface variables 
(called state vector or control vector) by weighting the a-priori or background vector and the 
coincident satellite observation vector according to their uncertainties. Integrated over the 
spectral response function of the selected channels, RTTOV calculates the Tb corresponding 
to the first-guess atmospheric state.  
An optimal state is found for which the expected analysis variance is minimal (Deblonde et 
al., 2007). This is achieved as follows (see also Figure 4): 1D-Var maximizes the probability 
density function by minimizing the cost function  

𝑱(𝒙) =
𝟏
𝟐 �
𝒙 − 𝒙𝒃�

𝑻𝑩𝑩−𝟏�𝒙 − 𝒙𝒃� +
𝟏
𝟐 �
𝑯(𝒙)− 𝒚𝟎�𝑻𝑹𝑹−𝟏�𝑯(𝒙) − 𝒚𝟎� 

 

3-1 

 
where 𝑥𝑥 is the control vector, 𝑥𝑥𝑏𝑏 is the a-priori or model derived background, 𝑦𝑦𝑜𝑜 are the 
observations (SSMI(S) brightness temperatures), and 𝑩𝑩 is the background error covariance 
matrix.  
The state vector or control vector 𝑥𝑥 may contain the following variables:  

Profiles:  
• Humidity*,  

• Temperature.  

Scalars:  
• Surface temperature,  

• Cloud liquid water (total column),  

• Skin Temperature, 

• Surface u wind*, 

• Surface v wind*, 

• Surface Humidity, 

• Surface liquid precipitation flux (rain), 

• Surface solid precipitation flux (snow), 

• Ice water path. 

where the variables labelled with an asterisk are used within generating HOAPS-4.0. The 
cost function is minimized across all parameters of the control vector simultaneously. The 
observation error matrix 𝑹𝑹 is mainly composed of the instrumental error and the error of the 
RTTOV model. RTTOV acts as an observation operator, which computes Tb from first-guess 
input.  
In order to minimize the cost function 𝐽(𝑥𝑥), its gradient has to be computed. The Jacobian 
matrix contains derivatives of H with respect to the control vector, and is computed with an 
adjoint code included in RTTOV. The minimization procedure applies a Marquardt-Levenberg 
descent algorithm until the convergence criteria are met (see Figure 4). This is the case when 
the cost function does not change much (about 0.01), the gamma multiplier used in the 
Marquardt-Levenberg routine is not increasing, and the cost function gradient is sufficiently 
small (about 1.0). The optimization stops when the solution has converged or a maximum 
number of iterations (7 iterations in the current implementation) has been exceeded, i.e. the 
retrieval did not converge. A processing flag is set accordingly and the processing of the next 
pixel starts. 
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1D-Var retrievals have the advantage of providing an estimate of the error in the retrieved 
profile, because 1D-Var retrievals allow the combination of observations with a background 
estimate in an optimal way, which accounts for the error characteristics of each. The analysis 
error covariance matrix is an additional output of the NWP SAF 1D-Var for every pixel and 
impacts the expected retrieval error (see Rodgers, 1990 [RD 4] for more details. 
Values for the R matrix were estimated as follows: SSM/I observations were compared with 
forward simulations of RTTOV using ERA-Interim analysis as input. The resulting standard 
deviation forms the basis for the uncertainty entries in the R matrix. These uncertainties are 
interpreted as the sum of observational and model errors. Hence, the uncertainty entries in 
the R matrix do not only contain uncertainties due to instrument noise but also the 
uncertainty arising from radiative transfer. The error of the low frequency channels is defined 
as 2 times the standard deviation while the high frequency channel is defined as 4 times the 
standard deviation to account for the large sensitivity of this channel to scattering effects. 
 
The R matrix for the 7 channels of SSMI(S) in the non-scattering case is given in Table 2. The 
letters v and h denote vertical (v) and horizontal (h) polarization. The listed frequencies of the 
channels are rough values, for the exact values see section 2.1.  
 

Table 2: The R matrix for the 7 channels of SSMI(S) in non-scattering case. 

Freq. (GHz) v19 h19 v22 v37 h37 v85/91 h85/91 
Variances (K) 1.8 2.4 1.8 1.8 3.8 12. 20. 
 
 
Optionally the band-diagonal or the full matrix can be stored as input to the 1D-Var. Here the 
band-diagonal option is chosen. Therefore the R matrix only contains the band-diagonal 
values representing the variances of the observation and model errors. These variances are 
used for all observations being processed. The covariance errors between different channels 
have not been considered (see section 3.5). 
 
The B matrix used for HOAPS-4.0 is derived from the SSMIS 1D-Var Package of NWP SAF 
(see http://nwpsaf.eu/site/software/1d-var/previous-packages/1d-var-ssmis-package/). 
HOAPS-4.0 utilises the NWP SAF MetOffice 1D-Var code but the provided B matrix in this 
software package does not allow latitudinal variation. Therefore the B matrix file from the 
SSMIS 1D-Var Package (ATOVS_Bmatrix72_43, see Deblonde, 2002) specifying B matrices 
for the northern hemisphere, the tropics and the southern hemisphere, serves as basis for 
the creation of the B matrix used in HOAPS-4.0. The original B matrix was constructed to be 
latitude dependent more precisely for three geographical zones from south to north, and 
contains elements separately for ocean and land applications. The B matrix for HOAPS-4.0 is 
taken from the original B matrix in reverse order (30°N-90°N, 30°N-30°S and 30°S-90°S) and 
the land elements have not been taken. For every zone the first 43 elements of the B matrix 
for HOAPS-4.0 contain temperature values in K. The following elements 44-69 contain 
values for ln(q) in g/kg (bottom 26 levels only). Afterwards elements 70, 71 and 72 contain 
values for Tsurf, ln(q) at surface and Tskin, respectively. The number of elements of the B 
matrix corresponds to the number of pressure levels of the variables that are to be retrieved 
with the 1D-Var. The namelist “Retrieval.NL” provided within the Met Office 1D-Var software 
package controls the variables that are to be retrieved and provides the mapping between 
the minimization vector, the radiative transfer model vector and the B matrix (Weston et al., 
2013). 
 

3.2 Background profiles 
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The background or first guess initial states required for the 1D-Var retrieval are estimated 
from a predefined profile database that has been constructed from the “Diverse profile 
datasets from the ECMWF 91-level short-range forecasts” by NWP SAF (version 1, 
Chevallier et al., 2006, [RD 3]).  
The dataset contains five collections of profiles simulated by the ECMWF system that have 
been sampled to represent a wide distribution of atmospheric temperature, water vapour, 
ozone, cloud condensate and precipitation. Each collection contains 5000 profiles. Roughly 
13000 of the profiles are located over ocean and are used to derive the background 
information.  
The profiles have been interpolated to the 43 pressure levels used in the 1D-Var routines. 
The interpolation is linear in log(pressure).  
 
The background profile that is most consistent with the measured conditions is estimated 
from the profile data set by NWP SAF (version 1, Chevallier et al., 2006) by constructing a 
weighted average of several selected profiles, similar to a Bayesian approach as outlined 
e.g. in Kummerow (1996). The selection is based on sensor derived data and SST only. No 
further ancillary data, such as water vapour profiles from reanalysis data is used.  
In the first step, a subset of profiles is extracted from the profile data base based on the 
precomputed geophysical parameters: The database is filtered by LWP, water vapour path 
and SST (SST and water vapour for scattering mode only). Furthermore, a weak latitude filter 
and a Tb screening is applied to filter out large missmatches. 
 
To determine the individual weights for each profile in the subset, a cost function is 
calculated similar to equation 3-1: 

𝑱(𝒙) = 𝟏
𝟐
�𝒙 − 𝒙𝒃�

𝑻𝑩𝑩−𝟏�𝒙 − 𝒙𝒃�+ 𝟏
𝟐
�𝑯(𝒙) − 𝒚𝟎�𝑻𝑹𝑹−𝟏�𝑯(𝒙)− 𝒚𝟎� +𝟏

𝟐
C 

 
3-2 

 
The atmospheric state x is represented by SST, wind speed, TCWV and LWP, while 
brightness temperatures are all SSMI(S) imager channels plus the polarization differences of 
the 19, 37 and 85 GHz channels. 
The extra penalty (C) is only added to the cost function of profiles, if the retrieval is running in 
scattering mode. This is not the case for HOAPS-4.0, so that this term is neglegted in the 
current implementation of the 1D-Var retrieval. 
 
The background profile is then calculated from the weighted average of the selected profiles: 

𝑬�(𝒙) = �𝒙𝒋
𝒋

𝒆𝒙𝒑�− 𝑱(𝒙𝒋)�
𝑨

 
 

3-3 

where A represents the normalization factor: 

𝑨 = �𝒆𝒙𝒑�− 𝑱(𝒙𝒋)�
𝒋

 
 
3-4 

Theoretically, the background profile can be unphysical in terms of saturation since 
temperature and humidity are averaged independently. However, individual unphysical 
temperature or humidity values at a specific layer cannot appear, as none of the averaged 
profiles contain unphysical values. Moreover, the minimization routine will not allow values 
that are out of physical limits defined by RTTOV. 
 

3.3 Physical Basis Overview of statistical retrievals 
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The HOAPS-4.0 parameters near surface specific humidity, latent heat flux, evaporation, 
precipitation and freshwater flux have been derived with the statistical retrievals as used in 
HOAPS-3.2. All parameters are derived from SSMI(S) measurements. This section recaps 
the statistical algorithms and more details on the statistical algorithms can be found in [RD 5].  

3.3.1 Near surface specific humidity 
 
A direct measurement of the humidity in the layer directly above the sea surface from 
satellite soundings is difficult to obtain. Radiometers such as the SSMI(S) measure the 
radiation that originates from a relatively thick layer rather than from a single level. However, 
the satellite-retrieved signal contains some information to derive the humidity in the lowest 
layer of the boundary layer. 

The algorithm that is applied here directly relates SSM/I Tbs to the near surface specific 
humidity qa. It derives qa directly from SSMI(S) Tbs using the 19 GHz, 22 GHz, and 37 GHz 
channels. Bentamy et al. (2003) demonstrated that the chosen combination of SSM/I 
channels is sufficient for the direct estimation of the near surface specific humidity. The 
regression model and its coefficients are provided by the following equation: 
 

𝑞𝑞𝑠𝑠 =  𝑎0 +  𝑎1 ∙  𝑇𝑇𝑏𝑏19𝑉 +  𝑎2 ∙  𝑇𝑇𝑏𝑏19𝐻  + 𝑎3 ∙  𝑇𝑇𝑏𝑏22𝑉  + 𝑎4 ∙  𝑇𝑇37𝑉  
 
where a0 = -55.9227, a1 = 0.4035, a2 = -0.2944, a3 = 0.3511, and a4 = -0.2395. 
 

3.3.2 Latent heat flux 
 
The direct measurement of the latent heat flux with space borne sensors is not possible. 
Here, the parameterization of the latent heat flux Ql is estimated using the COARE bulk 
aerodynamic approach of Fairall et al. (1996b, 2003). This method requires the knowledge of 
near surface wind speed, atmospheric near surface specific humidity, saturation specific 
humidity and the SST:  

𝑄𝑄𝑙𝑙 =  𝜌𝜌𝐿𝐿𝐸𝐸𝐶𝐸𝐸𝑢(𝑞𝑞𝑠𝑠 −  𝑞𝑞𝑠𝑠) 
 
where ρ is air density, u is the wind speed at 10 meters height (resulting from the 1D-Var), LE 
is the specific latent heat of evaporation, CE is the Dalton number, qs is the saturation specific 
humidity at the sea surface, and qa is the specific humidity at the 10 m. The SST is needed to 
determine qs (see section 3.3.3). Turbulent fluxes, like the latent heat flux or the sensible heat 
flux are derived from bulk formulas using mean values of surface meteorological variables. 
The COARE bulk flux algorithms are based on the Monin-Obukhov similarity theory (MOST). 
The basic approach of MOST is to scale the mean and turbulent properties of the dynamical 
variables by combinations of surface fluxes, while their height dependence is described by 
the ratio of the height above the surface to the Monin-Obukhov length L (Fairall, 1997, 2003). 
MOST is one of the most widely used scaling theories in meteorology and has been applied 
extensively over the ocean and forms the basis of several surface flux estimation methods. 
Such a model must contain parameterizations for the roughness lengths (or, equivalently, the 
transfer coefficients) and the empirical profile stability functions Ψx. The HOAPS-4.0 latent 
heat flux is parameterized using the COARE bulk flux algorithm version 2.6a (Bradley et al., 
2000), which is an updated version of the COARE 2.5b algorithm (Fairall et al, 1996), based 
on an extended flux database containing covariance measurements from higher latitudes 
and under stronger wind conditions. With minor modifications of physics and 
parameterizations to the version 2.6a, the algorithm is equivalent to the algorithm published 
as COARE 3.0 by Fairall et al. (2003). The COARE 3.0 algorithm is derived from more than 
5000 direct covariance flux measurements collected over the global oceans. Further updates 
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to the previous version 2.5 were a variable Charnock parameter, a new roughness length 
parameterization for wind speeds up to 20 m/s, and adjustments to the basic profile stability 
functions to improve the results under near-stable boundary layer conditions. The stability 
dependent MOST scaling parameters and wind gustiness, which accounts for sub-scale 
variability, are estimated iteratively in the COARE algorithm. The algorithm is run for each 
SSMI(S) pixel where all necessary input data are available. Among others, the near surface 
air temperature is needed. Since it is not possible to measure this parameter directly from 
space, it is estimated using the mean of two simple bulk approaches: 

(a) The satellite derived near surface specific humidity is assumed to be at a constant 
relative humidity of 80% as proposed by Liu et al. (1994). 

(b) A constant temperature difference of 1 K between sea surface and air temperature is 
assumed (Wells and King-Hele, 1990).  

The implementation of the COARE algorithm in HOAPS omits the warm-layer code, since no 
continuous diurnal cycle information on the surface radiation budget is available from 
SSMI(S) or AVHRR measurements. These would be needed to infer the warm layer 
evolution and cool skin effect. 

3.3.3 Evaporation 
 
The liquid water evaporation equivalent of the latent heat flux is related to the latent heat flux 
by:  

𝐸𝐸 =  𝑄𝑄𝑙𝑙/(𝐿𝐿𝐸𝐸𝜌𝜌0) 
where ρ0 is the freshwater density as a function of temperature (Fairall, 1996). 

 
For the derivation of the evaporation through the bulk formula, the difference in humidity, i.e. 
sea surface specific humidity minus near surface specific humidity, is calculated. The sea 
surface saturation specific air humidity is calculated by applying the Magnus formula to the 
SST input data: 

𝑒𝑒𝑤𝑤 = 6.1078 ∙ 𝑒𝑒𝑥𝑥𝑒𝑒 �
a(𝑇𝑇 − 273.16

𝑇𝑇 − b
� 

where ew is in [hPa], T is temperature in [K], a= 17.2693882, b=35.86 (Murray, 1967). 

An approximate salinity correction to take into account the reduction in vapour pressure 
caused by a typical salinity of 34 ‰ is applied by scaling the value for pure water with a 
factor of 0.98 (Sverdrup et al., 1942): 

𝑒𝑒𝑤𝑤_𝑠𝑠𝑠𝑠𝑙𝑙 = 0.98 ∙ 𝑒𝑒𝑤𝑤 

𝑞𝑞𝑠𝑠 = (0.622099 ∙ 𝑒𝑒𝑤𝑤_𝑠𝑠𝑠𝑠𝑙𝑙/(slp − 0.377901 ∙ 𝑒𝑒𝑤𝑤_𝑠𝑠𝑠𝑠𝑙𝑙) 

where qs is the saturation specific humidity in [kg/kg]; slp is the sea-level pressure, which is 
implemented with a constant value of 1013.25 hPa. 

The qs values are calculated individually for each SST observation prior to the gridding and 
remapping procedures. 

 

3.3.4 Precipitation 
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A neural network algorithm is used to derive a statistical retrieval for the precipitation from 
SSMI(S) Tbs. Generally, the ocean surface precipitation algorithm relates an input vector of 
the measured Tbs to an output vector of the geophysical parameter. The basic principle 
behind the retrieval is that emission from, and scattering by, cloud and rain particles 
increases Tbs at low frequencies and decreases Tbs at high frequencies relative to the 
radiometrically cold sea surface. Therefore microwave based retrievals of precipitation are 
based on the direct interaction of the radiation field and the hydrometeors (water droplets, ice 
particles). The neural network was trained with precipitation rates retrieved from assimilated 
Tbs in a 1D-Var scheme from the ECMWF. The training data set for the neural network is 
based on radiative transfer calculations as described in Bauer et al. (2006a,b). The data set 
contains one month (August 2004) of assimilated SSM/I Tbs and the corresponding ECMWF 
1D-Var retrieved precipitation values of the ECMWF model. Using precipitation values from 
the operational variational analysis to compile the training data set not only ensures the 
statistical representativeness of the input data, it also makes use of the advantage to have 
the background meteorological surface fields and profiles consistent with the measured 
SSM/I brightness temperatures. Moreover, it allows to construct a training data set from a 
large number of samples based on a sophisticated radiative transfer model. This data set 
contains a wide variety of globally distributed rainfall events including extreme rainfall in 
hurricanes and snowfall at high latitudes. For more details on the neural network architecture 
of the precipitation retrieval algorithm see [RD 5] and Andersson et al. (2010). The resulting 
HOAPS precipitation retrieval is a statistical algorithm which only depends on SSMI(S) Tbs 
as input and does not need a first guess or other ancillary data. 
 

3.3.5 Freshwater flux 
 
The freshwater flux at the sea surface is defined as positive for a flux that is directed from the 
ocean into the atmosphere. If precipitation and evaporation are retrieved the freshwater flux 
is computed as the difference of evaporation minus precipitation. The freshwater flux product 
is not computed directly from the SSMI(S) swath data, since the concurrent retrieval of 
precipitation and evaporation is generally not possible in presence of precipitation. 
In order to retrieve the freshwater flux, the input parameters precipitation and evaporation are 
averaged separately onto the HOAPS grid on a monthly basis. Then the freshwater flux is 
computed for the gridded data products for each grid box as the difference between the 
spatial and temporal means of evaporation and precipitation. In certain regions with frequent 
precipitation this method may introduce a clear sky bias from the evaporation fields in the 
resulting freshwater flux fields. 

 

3.4 Uncertainty estimates and post-processing 
 

The gridding routines enabling the processing from swath based HOAPS L2 data to gridded 
and averaged HOAPS L3 data remain unchanged relative to HOAPS-3.2 and are described 
in RD 9. Furthermore the turbulent flux parameters are calculated in the post-processing. 
Additionally systematic and random retrieval uncertainties to all L2 evaporation-related 
geophysical parameters are assigned. A comprehensive DWD-ICOADS data archive serves 
as the in situ ground reference. As the in situ ground reference buoy and ship observations 
were used: The buoy and ship observations were collected and quality controlled with a High 
Quality Control (HQC) procedure at the Marine Data Centre of DWD (located in the Hamburg 
Marine Meteorological Office of DWD, Seewetteramt, 
http://www.dwd.de/EN/ourservices/marine_data_centre/maritimesdatenzentrum.html). 
Missing data in the DWD data set were filled with ICOADS (International Comprehensive 
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Ocean-Atmosphere Data Set) data before the quality control routines were applied, see also 
Kinzel et al. (2016). 
The assignment of the systematic uncertainties is carried out by applying multi-dimensional 
bias look-up tables as a function of the concurrent atmospheric state; here based on wind 
speed, near-surface specific humidity, SST and integrated water vapour. Using the DWD-
ICOADS data as reference, a four-dimensional bias look-up table is spanned, with equally 
distributed number of bin entries. A more detailed description of the construction of the four-
dimensional bias look-up table, where the dimensions correspond to wind speed, near 
surface specific humidity, SST and integrated water vapour is given in Kinzel et al. (2016). 
On basis of the look-up table the systematic uncertainty is defined while the random 
uncertainty is the associated spread. Respective uncertainties of the latent heat flux and 
evaporation are derived via standard error propagation. This includes uncertainty estimates 
of the transfer coefficient, which are estimated after Fairall et al. (2003) and Gleckler and 
Weare (1997). Likewise, random uncertainties are derived. The following systematic 
uncertainty estimates for the transfer coefficient have been used: 5 % for wind speeds ≤ 
10 m/s, 10 % for wind speeds ≥ 10 m/s, and 12 % for wind speeds ≥ 20 m/s. 20 % are 
assumed as random uncertainty estimates of the transfer coefficient. 
To isolate the retrieval contribution from the overall random uncertainty, random uncertainties 
decomposition via multiple triple collocation was carried out, following the approach of Kinzel 
et al. (2016). 
Selected geophysical parameters are additionally equipped in L3 with externally derived 
sampling uncertainties, following the approach of Tomita and Kubota (2011). 

3.5 Assumptions and Limitations 
 
The retrieval is only applicable over the ice-free open sea. Surface parameters like wind and 
near surface humidity (and consequently turbulent fluxes) cannot be retrieved for scenes 
affected by heavy precipitation. If the a-priori information exhibits significant mismatches with 
the underlying “real” weather scene, the 1D-Var may not converge. If no a-priori profile could 
be constructed for the underlying weather scene the 1D-Var is not run for that scene.  
The current implementation of the 1D-Var does not utilise covariances of errors between 
different channels. It is anticipated that the estimation of the covariances of errors is very 
complicated as it will depend not only on Tbs but also on atmospheric conditions and 
instrument characteristics, here in particular the heating and cooling depending on position 
relative to Sun/Earth. Thus the R matrix would ideally be recomputed for every pixel and 
time. In consequence, associated processing would be computationally very expensive. The 
covariance of errors between different channels is assumed to be relatively small because 
the spectral separation is relatively large, with the exception of the vertically and horizontally 
polarised channels. Deblonde (2002) assumes that the instrument and forward model errors 
are not correlated between channels. 
Assumptions and limitations for the geophysical parameters near surface specific humidity, 
precipitation, latent heat flux, evaporation and freshwater flux given in RD 5 are still valid.     
A summary is given in the following. 
As the implemented retrievals are statistical procedures, the retrievals are only as good as 
the quality of the input data set and how they represent the atmospheric state. The training 
data for the retrievals for near surface specific humidity, latent heat flux and thus evaporation 
originates from ship data. Therefore not all regions and hence atmospheric situations may be 
equally well represented in the training data set. Another general issue in the training data 
set is that the buoy data consists of temporal averages of point measurements which are 
related to area averages of the SSM/I footprint. This introduces additional scatter into the 
data through the different scales of the data. However, the number of samples in the input 
data is large enough, to compensate for this. For the precipitation retrieval the well 
established ECMWF radiative transfer and assimilation schemes are used to generate the 
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input data. The quality of the statistical precipitation retrieval therefore depends on the 
physical ECMWF 1D-Var retrieval.  
The retrieval for the near surface specific humidity is not possible for atmospheric situations 
with high liquid water content or high rain water content, because the strong emission from 
atmospheric water masks the signal. High water content values above 80 g/kg within the 
sampled pixels are therefore treated as undefined. In scenes over very warm water masses 
with high air humidity the satellite-retrieved qa signal tends to saturate. This leads to a 
tendency to underestimate qa for values above 20 g/kg.  
The COARE algorithm applied to derive the latent heat flux and subsequentially the 
evaporation depends on a few assumptions, but the main limitations stem from the satellite 
retrieved input parameters wind speed, near surface specific humidity, and sea surface 
saturation specific humidity (derived from SST). Among others, the near surface air 
temperature is needed as input. Since it is not possible to measure this parameter directly 
from space, it is estimated using the mean of two simple bulk approaches (see section 
3.3.2). On climatological scale these assumptions are valid for the majority of oceanic 
conditions. However, in regions with strong stable stratification of the atmospheric surface 
layer, this approach will affect the quality of sensible heat flux estimates. The impact of these 
assumptions on the latent heat flux retrieval is smaller since the air temperature is not 
directly used in the bulk formula and has only a secondary effect on the parameterization as 
it is used in the stability estimation of the atmosphere (Liu et al., 1994). 

Due to the inability to derive the surface wind speed from SSMI(S) in cases of high 
atmospheric water content, i.e. precipitation, no values are retrieved for such situations. 
Hence, it is only possible to retrieve evaporation in situation with no or light rain. The use of 
daily mean SST fields may lead to errors in the flux estimates in certain regions with a strong 
diurnal cycle of the SST. The COARE algorithms include a module to estimate the diurnal 
evolution of the oceanic warm layer. This part is disabled in the HOAPS retrieval, as it would 
require continuous radiative flux measurements for the whole day, which are not available 
from SSMI(S). The COARE 2.6a/3.0 parameterizations are derived from flux measurements 
data containing situations with wind speeds in the range of 0-20 m/s. The accuracy described 
by Fairall (2003) is within 5% for wind speeds of 0–10 m/s and 10% for wind speeds between 
10 and 20 m/s. For higher wind speeds the accuracy may decrease further. Although the 
underlying data base has been extended for the recent versions of the COARE algorithm, 
most of the data stems from tropical regions of the pacific. However, there seem to be no 
implications for global application of the algorithm from this limitation as Brunke et. al. (2003) 
found the COARE algorithm to be one of the least problematic in a comparison of different 
bulk flux estimates over the tropical and midlatitude oceanic regions. 

A general limitation of the precipitation retrieval is the detectability of precipitation at low rain 
rates. The current retrieval uses a lower cutoff value of 0.3 mm/h. Hence, these light rain 
events are not captured by the retrieval. 

The freshwater flux product relies on the output of the individual HOAPS algorithms for 
evaporation and precipitation. Since it is not possible to retrieve the evaporation in situation 
with precipitation (except for light rain), the freshwater flux cannot be determined for 
individual SSMI(S) pixels in these cases. Instead it is computed for each grid box as the 
difference of the spatially and temporally averaged evaporation and precipitation fields. 
These averages may contain different numbers of observations. Thus no statistical variables 
like the number of observations or standard deviation are available in the gridded freshwater 
flux data products. The largest effect on the mean freshwater flux fields by this clear sky bias 
is observed over the Southern Ocean, the ITCZ, where in 10% to 15% of all SSMI(S) 
observations the retrieval of wind speed, near surface humidity, and hence evaporation is not 
possible. The systematic omission of potentially extreme deviations from the mean values or 
from the surrounding area may result in biases. However, even under the extreme 
assumption of 100% error for the missed evaporation estimates, this would not result in more 
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than about 10-15% error for the monthly mean in the most affected regions (see also [RD 8]). 
Evaporation and precipitation often have of the same order of magnitude. Thus the resulting 
values in the freshwater flux fields are sensitive to relatively small variations in either of the 
input parameters. Small errors in one of the input parameters may lead to larger deviations in 
the resulting freshwater flux fields. This effect decreases with longer temporal and/or larger 
spatial averages. 
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