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ABSTRACT

The algorithm to produce the Clouds and the Earth’s Radiant Energy System (CERES) Edition 4.0 (Ed4)

Energy Balanced and Filled (EBAF)-surface data product is explained. The algorithm forces computed top-

of-atmosphere (TOA) irradiances to match with Ed4 EBAF-TOA irradiances by adjusting surface, cloud,

and atmospheric properties. Surface irradiances are subsequently adjusted using radiative kernels. The ad-

justment process is composed of two parts: bias correction and Lagrange multiplier. The bias in temperature

and specific humidity between 200 and 500 hPa used for the irradiance computation is corrected based on

observations by Atmospheric Infrared Sounder (AIRS). Similarly, the bias in the cloud fraction is corrected

based on observations by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)

and CloudSat. Remaining errors in surface, cloud, and atmospheric properties are corrected in the Lagrange

multiplier process. Ed4 global annual mean (January 2005 through December 2014) surface net shortwave

(SW) and longwave (LW) irradiances increase by 1.3Wm22 and decrease by 0.2Wm22, respectively,

compared to EBAF Edition 2.8 (Ed2.8) counterparts (the previous version), resulting in an increase in net

SW1 LW surface irradiance of 1.1Wm22. The uncertainty in surface irradiances over ocean, land, and polar

regions at various spatial scales are estimated. The uncertainties in all-sky global annual mean upward and

downward shortwave irradiance are 3 and 4Wm22, respectively, and the uncertainties in upward and

downward longwave irradiance are 3 and 6Wm22, respectively. With an assumption of all errors being in-

dependent, the uncertainty in the global annual mean surface LW 1 SW net irradiance is 8Wm22.

1. Introduction

The energy that drives and maintains dynamics in the

Earth system takes different forms while it flows through

the system. Solar irradiance absorbed by Earth is energy

input to the system. Longwave irradiance emitted to

space is energy output by Earth. Driven by the gradient

of the energy deposition, dynamics redistributes the en-

ergy. At an annual scale, the zonal top-of-atmosphere

(TOA) net irradiance is the energy transported pole-

ward by dynamics. The surface of Earth receives solar

radiation (shortwave) and emission from the atmo-

sphere (longwave). Approximately 12%of solar radiation

incident on the surface is reflected and the rest is

absorbed by the surface (Stephens et al. 2012). The

surface emits longwave radiation proportional to the

fourth power of its temperature. The downward long-

wave irradiance emitted by the atmosphere is primarily

sensitive to near-surface temperature and the amount of

water vapor as well as cloud fraction and base height in

the atmosphere.

Although exact values vary depending on satellite

data products used in the estimate and the method to

adjust fluxes to balance energy budget (Trenberth

et al. 2009; Stephens et al. 2012; Wild et al. 2013;

L’Ecuyer et al. 2015), the global annual mean sur-

face net shortwave irradiance is 165 6 6Wm22 and

global annual mean net longwave irradiance is ap-

proximately 253Wm22 (Stephens et al. 2012), where a

positive value indicates net energy deposition to the

surface. Most of the energy deposited to the surface by

radiation is converted to the enthalpy flux and enters theCorresponding author: Seiji Kato, seiji.kato@nasa.gov
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atmosphere in the form of sensible and latent heat

fluxes. Over ocean, 85% and 14%of energy deposited to

the surface by radiation heats the atmosphere by, re-

spectively, latent and sensible heat flux. Less than 1%

heats the ocean at a global annual scale (Loeb et al.

2012; Palmer 2017; Wild et al. 2015). The latent heat flux

from the ocean at a climate time scale is driven by net

surface irradiance (Held and Soden 2006; Stephens and

Ellis 2008). The spatial and temporal distribution of the

difference between net surface irradiance and enthalpy

flux determines the regional energy deposition to

oceans. Therefore, understanding spatial and temporal

distribution of shortwave, longwave, and net surface

irradiances is important in understanding how energy is

distributed within the Earth system.

Net atmospheric irradiance, which is the net TOA ir-

radianceminus net surface irradiance, is negative because

longwave cooling is larger than heating by shortwave

absorption. At a global annual scale, the net atmospheric

shortwave irradiance is 75 6 10Wm22 while the net at-

mospheric longwave irradiance is 2188 6 13Wm22

(Stephens et al. 2012). The radiative cooling of the at-

mosphere is compensated by the latent heat release by

precipitation (886 10Wm22) and sensible heat flux from

the surface (24 6 7Wm22). At a regional scale, because

the sensible heat flux is small compared to other com-

ponents, the three large energy forms that maintain the

balance in an atmospheric column are latent heat re-

leased by precipitation, radiative cooling, and divergence

of dry static energy and kinetic energy by dynamics

(Trenberth and Stepaniak 2003; Kato et al. 2016). Part of

the energy deposited in the tropics by net radiation is

transported to the midlatitude mostly by mean meridio-

nal circulation in the form of potential energy (Peixoto

and Oort 1992). Energy is further transported poleward

mostly by transient eddies in the form of latent heat and

sensible heat fluxes (Peixoto and Oort 1992). Meridional

transport of energy alters the effective emission temper-

ature of atmosphere and surface. Longwave radiation is

emitted to space according to the effective emission

temperature. To quantitatively understand the poleward

transport of energy by atmosphere and ocean, therefore,

the energy flux in all forms needs to be estimated.

Among energy fluxes, the Clouds and the Earth’s

Radiant Energy System (CERES) project provides

TOA and surface irradiances at various temporal and

spatial scales. TOA and surface irradiances are derived

nearly independently. TOA irradiances are derived

from radiance measured by CERES instruments (Su

et al. 2015; Loeb et al. 2005). Surface irradiances are

computed with satellite-derived cloud and aerosol

properties and temperature, and specific humid-

ity profiles from reanalysis. Surface irradiances are,

therefore, more susceptible to the error in inputs used

for the computations. To reduce the error in surface ir-

radiances and increase the consistency with TOA irra-

diances, TOA irradiances are used to constrain surface

irradiances (Kato et al. 2013). The EBAF-surface data

product contains monthly 18 3 18 upward and downward
shortwave and longwave surface irradiances constrained

by CERES-derived TOA irradiances.

The purpose of this paper is to describe the algorithm

used to produce the Edition 4.0 (Ed4) EBAF-surface

data product and to evaluate EBAF-surface irradiances

with surface observations. The previous version, Edition

2.8 (Ed2.8) EBAF-surface data product, has been used

for the evaluation of surface irradiances of climate models

and other data products. These studies identify biases

and spread among surface irradiances in models and data

products (e.g., Boeke and Taylor 2016; Slater 2016; Loew

et al. 2017). In addition, a study by Levine andBoos (2017)

shows that intermodal precipitation variation is related to

intermodal surface albedo variation. The EBAF data

products have also been used for analyses of regional and

global mean surface and net atmospheric irradiances (e.g.,

Hakuba et al. 2016) and for constraining other energy

fluxes (e.g., Boos and Korty 2016; Slessarev et al. 2016;

DeAngelis et al. 2015). Increasing shortwave absorption

in the atmosphere because of increasing water vapor re-

duces the precipitation increase in a warmer climate. Be-

cause the spread of the sensitivity of shortwave absorption

to water vapor change is large among climate models,

DeAngelis et al. (2015) show that sensitivity of shortwave

absorption (derived from EBAF-surface) to precipitable

water can be used to constrain themodels. In addition, the

product has been used for analyses of seasonal and in-

terannual variability of surface irradiances (e.g., Mayer

et al. 2016; Wild 2016).

In describing the revision of the EBAF-surface in this

paper, we provide descriptions of essential elements of

the algorithm in section 2, an evaluation of Ed4 surface

irradiance and how surface irradiances are changed

from Ed2.8 in section 3, a description of the uncertainty

in surface irradiance at various temporal and spatial

scales in section 4, and the application of EBAF-surface

irradiance data to climate research in section 5.

2. Method

Overall, the approach used in producing Edition 4.0

EBAF-surface is similar to the approach used in pro-

ducing Ed2.8 EBAF-surface (Kato et al. 2013). The flow

diagram of the Ed4 process is shown in Fig. 1. Ed4

synoptic 18 (SYN1deg)-Month (Rutan et al. 2015) and

Ed4 EBAF-TOA (Loeb et al. 2018) are used as inputs

for all-sky irradiances. In addition, SYN1deg-Hour is used
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for clear-sky irradiances. Clear-sky SYN1deg-Hour irra-

diances are computed by removing clouds and are pro-

vided every hour for all grid boxes. Ed4 SYN1deg-Month

containsmonthly TOAand surface irradiances at a 18 3 18
resolution computed by a radiative transfermodel (Fu and

Liou 1993; Rose et al. 2013). Irradiances are computed

hourly with retrieved cloud properties from Moderate

Resolution Imaging Spectroradiometer (MODIS) and

geostationary satellites (GEOs). Minnis et al. (2011, 2010)

(Sun-Mack et al. 2018; P. Minnis et al. 2017, unpublished

manuscript) discuss the cloud mask algorithm and algo-

rithm for retrieving cloud optical thickness, emissivity,

cloud effective temperature and height, particle size,

phase, and ice and liquid water path from MODIS radi-

ances. Over regions between 608N and 608S, Ed4 cloud

properties from geostationary satellites are derived hourly,

improved from 3-hourly in Ed2.8. In addition, if available,

up to 5 channels are used for cloud retrievals from geo-

stationary satellites. The cloud fraction is increased in Ed4,

especially for low-level clouds, compared with Ed2.8.

These cloud properties are also included in CERES Ed4

SYN1deg-Month and SYN1deg-Hour data products. The

Goddard Earth Observing System, version 5.4.1 (GEOS-

5.4.1), reanalysis (Rienecker et al. 2008), which provides

temperature, specific humidity, and ozone profiles, is

used throughout the time period for Ed4 for irradiance

computations. In addition, the Model of Atmospheric

Transport and Chemistry (MATCH; Collins et al. 2001)

that assimilates MODIS aerosol optical thickness pro-

vides hourly optical thickness, increased from daily for

Ed3 SYN, and aerosol type. MODIS Collection 5 radi-

ances are used for cloud retrievals and aerosol assimila-

tions from March 2000 through February 2017. MODIS

Collection 6 radiances and aerosol optical thickness are

used from March 2017 onward. These input changes are

summarized in Table 1 along with expected impacts. As

discussed in Rutan et al. (2009), the surface albedo for

Ed3 SYN is derived from clear-sky CERES footprints. In

Ed4, partly cloudy footprints are also used to derive

surface albedo.

The Ed4 EBAF-surface algorithm adjusts SYN1deg-

Month surface irradiances by two processes: bias correc-

tion and Lagrange multiplier. Biases in surface irradiances

caused by biases in temperature, humidity, and cloud

fraction with known sign are adjusted in the bias cor-

rection process. The bias correction is needed to miti-

gate the error in the Lagrange multiplier process caused

by incorrectly attributing TOA irradiance differences to

errors in atmospheric and cloud properties.

How well TOA irradiances can constrain surface ir-

radiances depends on the correlation between TOA and

surface. For shortwave irradiances, because of energy

conservation, when TOA albedoA, surface absorptance

a, and atmospheric absorptance a are defined as

A5
F[
TOA

FY
TOA

, (1)

a5
FY
sfc 2F[

sfc

FY
TOA

, (2)

and

a5
(FY

TOA2F[
TOA)2 (FY

sfc2F[
sfc)

FY
TOA

, (3)

then

A1 a1a5 1, (4)

FIG. 1. Flow diagram of the algorithm to produce the CERES Ed4 EBAF-surface data product.
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where F is the irradiance, subscripts TOA and sfc in-

dicate, respectively, top-of-atmosphere and surface, and

superscript arrows indicate upward or downward. When

A is plotted as a function of a, over a 18 3 18 grid where

the surface albedo does not change significantly with

season, A and a are well correlated with a linear re-

lationship (Pinker and Lazlo 1992; Cess et al. 1995; Li

and Moreau 1996; Barker and Li 1997) even with

monthly mean irradiances (Fig. 2, top). The slope of the

linear relationship between A and a is related to the

a change with respect to a by

›A

›a
52

�
11

›a

›a

�
. (5)

TABLE 1. Important input changes made in Ed4 EBAF-surface from Ed2.8 inputs.

Changes Impact

One version of reanalysis (GEOS-5.4.1) that provides

temperatures and humidities is used throughout the time series.

No significant discontinuity in LW irradiances,

especially when they are averaged over lands and

oceans separately.

MODIS Collection 5 is used from March 2000 through

February 2017 and Collection 6 is used from March 2017

onward.

No significant discontinuity in clear-sky SW

irradiances, especially over land.

Temporal resolution of GEOs is increased to hourly. Up to

5 channels are used for cloud retrieval from GEOs.

Improvements of nighttime LW irradiances between

608N and 608S.

FIG. 2. (top)TOAupward SW irradiance dividedbyTOAdownward SW irradiance as a function of surface net (down

minus up) SW irradiance divided by TOA downward SW irradiance. (bottom) TOA upward LW irradiance divided by

TOAdownward SW irradiance as a function of surface net (downminus up) LW irradiance divided by TOAdownward

SW irradiance. The left, center, and right columns are for ocean (08–18S, 1248–1258W), land (368–378N, 978–988W), and

Greenland (728–738N, 388–398W), which correspond to a 18 3 18 grid box containing, respectively, the TAObuoy, ARM

SouthernGreat Plains (SGP) site, andSummit site.All irradiances used for the plots aremonthly 18 3 18means fromEd4

EBAF products from March 2000 through February 2016. Solid lines are linear regression lines.
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The strong correlation among A, a, and a is the reason

that TOA shortwave irradiance can provide a con-

straint to surface shortwave irradiances. The relation-

ship for longwave is complex because surface and

atmosphere emit longwave radiation. As a conse-

quence, the constraint by TOA irradiance on surface

longwave irradiance is weaker (e.g., Ellingson 1995).

The range of the net surface longwave irradiance di-

vided by the TOA downward shortwave irradiance is

about twice as large as the shortwave counterpart; the

root-mean-square (RMS) difference of monthly mean

surface net irradiances and regression line for the left,

center, and right panels of Fig. 2 is approximately 2, 4,

and 7Wm22 for shortwave (top panels), and 6, 9, and

14Wm22 for longwave (bottom panels). These RMS

differences give a range ofmonthly regionalmean surface

irradiances over specific regions if we know TOA irra-

diances and surface, atmospheric, and cloud properties.

Because uncertainties are associated with the inputs and

the relationship varies depending on region, the surface

irradiance uncertainty can be larger than these RMS

differences.

a. Bias correction

The bias correction considered in the Ed2.8 process

is the upper-tropospheric humidity. The variables in-

cluded in the Ed4 bias correction processes are: upper-

tropospheric (500 to 200 hPa) temperature and specific

humidity, low-level cloud fraction viewed from space,

and cloud fraction viewed from the surface. Irradiances

corrected by these bias correction processes are listed in

Table 2. Biases are determined by comparisons of vari-

ables derived from different instruments along with the

difference between computed and observed TOA irra-

diances. For example, GEOS-5.4.1 upper-tropospheric

humidity is larger than upper-tropospheric humidity

derived from the Atmospheric Infrared Sounder

(AIRS) instrument (Chahine et al. 2006). A moist bias

of upper-tropospheric humidity is consistent with the

result using field campaign data (e.g., Wang et al. 2017).

Although the difference alone does not necessarily im-

ply that GEOS-5.4.1 upper-tropospheric humidity is

biased high, reducing upper-tropospheric humidity

helps reduce the difference between computed clear-sky

TOA longwave irradiances (SYN1deg-Month) and

CERES-derived clear-sky TOA longwave irradiances

(EBAF-TOA).

We use radiative kernels (e.g., Soden et al. 2008) to

convert the bias in temperature T and specific humidity

q between the 200 and 500 hPa levels, low-level cloud

fraction viewed from space, cloud fraction viewed from

the surface, and cloud-base height to the bias in TOA

and surface irradiances. All-sky and clear-sky radiative

kernels are derived from Ed4 SYN1deg-Hour with a

temporal resolution of 3-hourly and spatial resolution

of 18 3 18 using 2008 data (Thorsen et al. 2018, manu-

script submitted to J. Climate) except for the bias

correction of cloud fraction viewed from space. Tem-

perature and specific humidity kernels are derived

from 2008 data since the interannual variability of

these kernels was found to be negligible. Cloud base

and fraction kernels are derived separately for each

month and are computed separately for four different

cloud types (high, mid–high, mid–low, and low). High,

mid–high, mid–low, and low cloud types are defined by

their cloud-top height: less than 300 hPa, 500–300 hPa,

700–500 hPa, and greater than 700 hPa, respectively.

All kernels are built numerically by perturbing one

variable at a time and computing TOA and surface

irradiances. TOA and surface irradiance changes are

computed by subtracting unperturbed values from

those computed with the perturbation. We average

kernels over a month but maintain the 18 3 18 spatial
resolution.

1) BIAS IN UPPER-TROPOSPHERIC TEMPERATURE

AND SPECIFIC HUMIDITY

The bias of T and q between 200 and 500 hPa is esti-

mated by comparingGEOS-5.4.1 18 3 18monthlymeans

at 5 levels between 200 and 500 hPa with those from the

TABLE 2. Irradiances adjusted in the bias correction process.

Bias correction process Adjusted irradiances Resolution and surface type

Temperature T and specific humidity q

between 200 and 500 hPa

Clear-sky and all-sky TOA

upward LW irradiances

18 3 18, ocean and land

Clear-sky surface downward

LW irradiance

Low-level (top pressure .700 hPa)

cloud fraction viewed from space

All-sky TOA upward SW and

LW irradiances

18 3 18, ocean between 608N and 608S

All-sky surface upward and downward

SW irradiances

Cloud fraction viewed from the

surface separated by cloud type

All-sky surface downward LW

irradiance

18 zonal with 58 smoothing, land

and ocean

1 JUNE 2018 KATO ET AL . 4505



AIRS level-3, version 6, product (AIRX3STM.006,

TqJoint grid product).We convert the difference (GEOS-

5.4.1 2 AIRS) of T and q, layer by layer, to the differ-

ence of all-sky and clear-sky TOA longwave irradiances

using, respectively, all-sky and clear-sky radiative ker-

nels. In addition, the clear-sky surface downward

longwave irradiance is also corrected using clear-sky

radiative kernel.

AIRS observations are not available before Septem-

ber 2002. For this time period, we use climatologicalT and

q differences between GEOS-5.4.1 and AIRS monthly

18 3 18 in the layer between 200 and 500hPa derived from
14 years of data (from September 2002 through August

2015). The standard deviation of the difference ofmonthly

mean gridded T between 200 and 500hPa is about 0.25K,

and the standard deviation of the difference of monthly

mean gridded q between 200 and 500hPa is less than 10%

of the mean q. We also use climatological clear-sky ra-

diative kernel to convert T and q differences to TOA

longwave and surface downward longwave irradiances.

Therefore, TOA longwave and surface downward long-

wave fromMarch 2000 through August 2002 are adjusted

using their monthly 18 3 18 climatological adjustments

derived from September 2002 through August 2015.

2) BIAS IN THE CLOUD FRACTION AS VIEWED

FROM SPACE

Cloud fraction derived fromCALIPSO (Winker et al.

2010), CloudSat (Stephens et al. 2008), MODIS, and

geostationary satellites are used for the bias correction

of all-sky TOA shortwave and longwave irradiances and

surface downward shortwave irradiances. We correct

only low-level cloud fractions over ocean because re-

gions with larger differences between computed and

EBAF-TOA shortwave and longwave irradiances co-

incide with regions where low-level clouds are often

present (Fig. 3).

The cloud fraction derived from CALIPSO and

CloudSat is more accurate than the cloud fraction de-

rived from passive sensors. However, because they were

launched in 2007, a direct comparison with cloud frac-

tion derived from all geostationary satellites is not pos-

sible. The cloud fraction bias is, therefore, estimated in

multiple steps. We first estimate the difference between

the zonal cloud fraction over ocean derived fromMODIS

on Aqua and CALIPSO–CloudSat (CC) using the Ed

Release B1 (RelB1) CALIPSO–CloudSat–CERES–

MODIS (CCCM) data product (Kato et al. 2010) that

FIG. 3. (top left) Mean and (top right) RMS of computed and TOA SW irradiances. Computed irradiances are

before any adjustments are made and observed irradiances are from Ed4 EBAF-TOA. Irradiances from July 2005

through June 2015 are used. (bottom) As in (top), but for TOA LW irradiances.
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uses version 3 of CALIPSO and R-04 CloudSat prod-

ucts. Using 4 months of data (January, April, July, and

October 2010), Ed4 MODIS cloud fraction is derived

over CERES footprints that include the CALIPSO–

CloudSat ground track (Kato et al. 2010). Therefore, the

viewing zenith angle of MODIS is restricted to near na-

dir. Clouds with optical thickness less than 0.3 (Minnis

et al. 2008a,b) are excluded from both cloud fractions

derived from MODIS (using MODIS-derived optical

thickness) and CALIPSO–CloudSat (using CALIPSO-

derived extinction profile). We then derive the zonal

cloud fraction relative difference (CC minus Aqua)/

TAGi (blue line in Fig. 4), including all cloud types,

where CC indicates the cloud fraction derived from

CALIPSO–CloudSat, TAGi indicates cloud fraction de-

rived from Terra MODIS 1 Aqua MODIS 1 geosta-

tionary satellites (GEOs), and Aqua indicates cloud

fraction derived fromAquaMODIS only.When all cloud

types are included, the global mean relative cloud frac-

tion difference averaged over 4 months (CC 2 Aqua)/

TAGi is26.7%, that is, theAquaMODIS–derived cloud

fraction is generally larger than CC. A part of the reason

is the size of the MODIS pixel. Overestimation of the

cloud fraction by MODIS is consistent with the results

of Zhao and Di Girolamo (2006), who compare the

cloud fraction derived from MODIS and Advanced

Spaceborne Thermal Emission and Reflection Radiom-

eter (ASTER) that has a smaller pixel size than MODIS

(15–90m). Our further study indicates that the differ-

ent instrument footprint size of MODIS and CALIPSO

leads to a difference in the global mean water-cloud

fraction difference of about 0.02. We include all cloud

types in comparing MODIS and CALIPSO–CloudSat

because, when high- and low-level clouds overlap,

MODIS tends to retrieve low-level clouds since the high-

level cloud tends to be optically thin, while the upper-

most cloud layer derived from CALIPSO–CloudSat is a

high-level cloud.

Second, we compute zonal low-level cloud fraction

derived from Terra MODIS, Aqua MODIS, and GEOs

using the same seasonal months (January, April, July,

and October 2010). We then compute the relative zonal

cloud fraction difference of Terra, Aqua, and GEOs

combined (TAGi) to Terra plus Aqua by (T&A 2
TAGi)/TAGi (purple line in Fig. 4). The global mean

relative low-level cloud fraction difference is 26.0%,

that is, GEO-derived cloud fraction is generally larger

than MODIS-derived cloud fraction.

Third, we simply add these two relative zonal cloud

fraction differences [(CC 2 Aqua)/TAGi 1 (T&A 2
TAGi)/TAGi] to come up with the zonal relative cloud

fraction bias correction, which is indicated by the black

line in Fig. 4. The global mean relative difference

is212.7%.Wemultiply 18 3 18monthly mean low-level

cloud fraction over ocean by this relative zonal cloud

fraction difference to compute the 18 3 18monthly low-

level cloud fraction bias. We then use 18 3 18 monthly

low-level cloud fraction kernels computed with Ed4

SYN1deg-Month clouds, varying every month, to con-

vert the cloud fraction bias to TOA shortwave and

longwave irradiance and surface downward shortwave

irradiance bias adjustments.

3) BIAS IN THE CLOUD FRACTION AS VIEWED

FROM THE SURFACE

The cloud fraction exposed to the surface separated

by cloud type (i.e., viewed from the surface) is different

from the cloud fraction viewed from space. The surface

downward longwave irradiance depends largely on

low-level cloud fraction viewed from the surface. The

bias of the surface downward longwave irradiance is,

therefore, inferred from the bias in the cloud fraction

viewed from the surface. In addition to four cloud types

(high, mid–high, mid–low, and low), Ed4 SYN1deg

considers lower-level clouds with a random cloud

overlap assumption. This results in a total of 16 dif-

ferent single and two-layer overlapping combinations.

Only the four most frequently occurring cloud-layer

combinations in an hour box and in a 18 3 18 grid are

used in computing surface irradiances in Ed4 SYN1deg.

Using the four most frequently occurring cloud-layer

FIG. 4. Difference of zonal day plus night low-level cloud fraction

over ocean divided by the zonal low-level cloud fractionderived from

TerraMODIS1AquaMODIS1GEOs (TAGi). Red line indicates

the difference of zonal low-level cloud fraction derived from GEOs

(GEOs minus TAGi) divided by TAGi. Purple line indicates the

differenceof zonal low-level cloud fractionderived fromT&A(T&A

minus TAGi) divided by TAGi. Blue line indicates the difference of

cloud fraction derived from CC (CC minus Aqua MODIS) divided

by TAGi. Black line is the sum of blue and purple lines, which is the

relative cloud fraction bias error by TAGi. Four months of data

(January, April, July, and October 2010) are used for the plot.
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combinations used in Ed4 SYN1deg, we compute zonal

cloud fraction viewed from the surface over ocean and

land. Similarly, we compute the zonal cloud fraction

viewed from the surface fromCALIPSO- andCloudSat-

merged cloud profiles (Kato et al. 2010). We exclude

clouds with optical thickness less than 0.3 and CALIPSO

cloud–aerosol discrimination (CAD) score less than 70.

We compute the monthly zonal-mean surface-view

cloud fraction difference over ocean and nonocean

(including land, snow and ice-covered surfaces) sepa-

rately for each cloud type at a 18 resolution with 58
smoothing (to reduce nadir-view sampling noise) using

data from January through December 2008. We also

compute the difference of cloud-base height derived

from CALIPSO–CloudSat and that estimated from

passive sensors (Minnis et al. 2011; P. Minnis et al.

2017, in preparation) by cloud layers. Cloud-base

heights are derived from cloud-top effective tempera-

ture and optical thickness (Minnis et al. 2010, 2011).

We then convert the bias in zonal monthly mean cloud

fraction viewed from the surface and cloud-base height to

the bias in themonthly zonal surface downward longwave

irradiance using zonal cloud-type-dependent cloud frac-

tion and height kernels derived with Ed4 SYN1deg 2008

clouds. Radiative kernels derived with 2008 clouds are

used for all years. Summing up the monthly zonal surface

downward longwave irradiance adjustment computed for

four cloud layers, we obtain the zonal monthly bias cor-

rection for land and ocean separately.

b. Lagrange multiplier

TOA irradiance biases discussed in the previous

section are subtracted from the difference between

Ed4 SYN1deg-Month and Ed4 EBAF-TOA irradi-

ances. Figure 5 shows the bias and RMS differences

between computed and CERES-derived TOA short-

wave and longwave irradiances after the bias correc-

tion is applied to computed irradiances. The correction

reduces the difference shown in Fig. 3 except over the

tropical western Pacific and Indian Oceans. Once the

known bias adjustments are made, we use Lagrange

multiplier to adjust surface, atmospheric, and cloud

properties by region (18 3 18), based on their un-

certainties. Lagrange multiplier finds a solution to

minimize the change of surface, cloud, and atmospheric

properties to eliminate the difference between com-

puted and observed TOA shortwave and longwave ir-

radiances (Rose et al. 2013; Kato et al. 2013). Tables 3

and 4 summarize uncertainties used in the Lagrange

multiplier process. Radiative kernels used in the La-

grange multiplier process are calculated with monthly

mean properties that vary every month with a spatial

scale of a 18 3 18 separated for clear-sky and all-sky.

Mathematical expressions of the algorithm used in

the Lagrange multiplier process are presented in the

appendix. After the bias correction and Lagrange mul-

tiplier processes, themean andRMS difference between

adjusted and EBAF-TOA regional monthly mean irradi-

ances are, respectively, 20.03 and 0.24Wm22 for short-

wave and 20.06 and 0.13Wm22 for longwave. Global

maps of the regional differences are shown in Fig. 6.

c. Clear-sky surface irradiance averaging

Clear-sky surface irradiances are adjusted separately

from all-sky surface irradiances using the same algo-

rithm but with a different set of inputs. Because the

number of observations used to derive mean clear-sky

irradiances depends on the occurrence of clear-sky

scenes, and Ed4 SYN1deg hourly clear-sky irradiances

are computed by removing clouds (i.e., clear-sky irra-

diances are provided every hour for all grid boxes), we

average the computed clear-sky irradiances in the fol-

lowing way to reduce the difference between computed

and observed monthly mean clear-sky irradiances. We

first compute monthly hourly mean clear-sky surface

shortwave and longwave irradiances by averaging Ed4

SYN1deg hourly irradiances of the same hour of the day

in a 18 3 18 grid box over a month weighted by the clear

fraction in a 18 3 18 grid box. Second, we further average
24 monthly hourly mean clear-sky irradiances to form

the monthly mean clear-sky irradiance hFi, that is

hFi5 1

n
hour

�
nhour

i51

�
nday

j51

w
ij
F
ij

�
nday

i51

w
ij

, (6)

where wij is the clear fraction at the ith hour on the jth

day of themonth, nhour5 24, andFij is either hourlymean

shortwave or longwave irradiances. Clear-sky fractions for

hour boxes containing MODIS observations are derived

fromMODIS.Clear fractions forhourboxeswithnoMODIS

observations are derived by interpolatingMODIS-derived

clear fractions. For longwave irradiances, hFLWi 5 hFi.
For shortwave irradiances, the insolation correction

ratio hRi is computed by

hRi5
�
nhour

i51
�
nday

j51

F
0,ij
=(n

day
n
hour

)

�
nhour

i51
�
nday

j51

w
ij
F
0,ij
=

 
n
hour �

nday

j51

w
ij

!, (7)

where F0 is the solar constant and hFSWi 5 hRihFi.
Similar to the all-sky process, clear-sky TOA longwave

and surface downward longwave irradiance bias due to
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upper-tropospheric temperature and specific humidity

is corrected by the process explained in section 2a. Sub-

sequently, clear-sky surface irradiances are adjusted before

the Lagrange multiplier process discussed in section 2b.

3. Results

As mentioned earlier, the difference between Ed2.8

and Ed4 EBAF-surface is primarily in their inputs.

The Ed4 cloud algorithm generally detects more clouds

than the Ed2.8 cloud algorithm does. In addition, Ed4

nighttime cloud properties derived from GEOs are

significantly improved from Ed2.8. Furthermore, Ed4

EBAF-TOA global annual mean all-sky shortwave ir-

radiance decreases by 0.5W22 and longwave irradiance

increases by 0.5Wm22 compared with Ed2.8 counter-

parts (Loeb et al. 2018).

Figure 7 shows the net surface irradiance difference

between Ed4 and Ed2.8. Ed4 net surface irradiance is

larger over the tropics and smaller over the Arctic

compared with Ed2.8 net surface irradiance. Table 5

summarizes the difference of global mean irradiances

between EBAF-surface Ed2.8 and Ed4. The mean

irradiances are computed by averaging over 10 years

from July 2005 through June 2015. Ed4 all-sky net sur-

face shortwave irradiances increase by 1.3Wm22 while

shortwave absorption by the atmosphere decreases by

0.7Wm22 compared with Ed2.8 counterparts. All-sky

net surface longwave irradiance decreases by 0.2Wm22

while net atmospheric longwave irradiance decreases by

0.3Wm22 (i.e., more cooling) compared with Ed2.8

counterparts. A smaller atmospheric absorption of

shortwave and a slightly larger atmospheric cooling by

longwave are likely due to the smaller optical thick-

nesses of low-level clouds. Reducing optical thickness

of low-level clouds reduces shortwave absorption and,

to a lesser extent, increases longwave cooling in the at-

mosphere (Kato 2009, their Fig. 7), resulting in a nega-

tive net atmospheric irradiance change.

For clear-sky, the net surface irradiance difference

between Ed4 and Ed2.8 is larger over land and polar

regions (Fig. 8) compared to all-sky differences. A part

of the difference is caused by larger changes that oc-

curred in TOA clear-sky irradiances. Global annual

mean Ed4 TOA shortwave irradiance is larger by

0.8Wm22 and Ed4 TOA longwave irradiances are

FIG. 5. (top left) Mean and (top right) RMS difference of bias-corrected computed and observed TOA SW

irradiances. Computed irradiances are after bias corrections listed in Table 1 but before adjustment by Lagrange

multiplier. Observed irradiances are from Ed4 EBAF-TOA. Irradiances from July 2005 through June 2015 are

used. (bottom) As in (top), but for TOA LW irradiances.
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larger by 2.7Wm22 compared to Ed2.8 counterparts

(Loeb et al. 2018). The 2.7Wm22 increase of Ed4 clear-

sky TOA longwave irradiance from Ed2.8 is caused by

the improved Ed4 cloud algorithm that screens high thin

clouds better than the Ed2.8 cloud algorithm does. The

primary reason for a smaller Ed4 surface downward

longwave irradiance by 2.2Wm22 and a smaller Ed4

longwave atmospheric net irradiance by 1.3Wm22 is

likely dryer atmospheres used for Ed4 compared to the

atmospheres use for Ed2.8. Because thin cirrus clouds

are usually associated with higher upper-tropospheric

humidity, screening out thin cirrus clouds that exclude

moist atmosphere from the clear-sky sampling also leads

to a dryer clear-sky upper troposphere.

a. Evaluation by surface observations over ocean and
land

We use surface observations to evaluate EBAF-

surface irradiances. General discussions of the use of

surface observations as validation of satellite data are

given in Loew et al. (2017). The geographical location of

surface buoy and land-surface sites used in this study’s

validation is shown in Fig. 9. Some coastal Baseline

Surface Radiation Network (BSRN) sites and BSRN

sites located at mountain regions are excluded in com-

puting bias and RMS differences because irradiances

measured at these sites do not represent mean irradi-

ances over the grid box where these sites are located

(Kato et al. 2012). To computemonthly irradiances from

observed surface irradiances taken at these sites, we first

compute hourly mean irradiances from irradiances at the

native temporal resolution of the original data (e.g., 1 and

10 min) after checking quality flags, if available, provided

with the original data. Once hourly irradiances are com-

puted, we calculate a monthly mean diurnal cycle, and

then use it to calculate a monthly mean. For EBAF vali-

dation we require a minimum of 85% temporal coverage

for the month for a particular site and month to be

included.

There is, as well, uncertainty is associated with surface

observations. The uncertainty in monthly mean down-

ward shortwave irradiances is approximately 5Wm22

(Ohmura et al. 1998; Michalsky et al. 1999, 2003, 2006,

2007; Colbo and Weller 2009). The uncertainty in

monthly mean downward longwave irradiances is about

2%, which corresponds to 2–6Wm22 (Gröbner et al.

2014). Irradiances measured at buoys might have a

larger uncertainty. For example, Foltz et al. (2013) point

out that downward shortwave irradiances over the

tropical Atlantic Ocean are significantly underestimated

because of dust accumulation on buoys. Consequently,

positive biases of downward shortwave irradiances from

Ed4 EBAF-surface are apparent when the biases of in-

dividual buoy sites are plotted separately (Fig. 10). We,

however, do not have a separate uncertainty estimate

for irradiances measured at buoys.

Results of comparisons over ocean are shown in

Fig. 11. Buoys with a bias larger than 20Wm22 are ex-

cluded in the histogram shown in Fig. 11. The bias in Ed4

is slightly larger than Ed2.8 for both downward short-

wave and longwave irradiances over ocean. However,

Ed4 standard deviations are slightly smaller than Ed2.8

TABLE 4. All-sky and clear-sky 1s uncertainties of surface, atmospheric, and cloud properties for 18 3 18 monthly flux adjustment.

Variable Uncertainty (1s)

Skin tempa Monthly 18 3 18 AIRS 2 GEOS-5.4.1 absolute diff

Surface air tempa Monthly 18 3 18 AIRS 2 GEOS-5.4.1 absolute diff

Upper-tropospheric relative humiditya Monthly 18 3 18 AIRS 2 GEOS-5.4.1 absolute diff

Precipitable watera Monthly 18 3 18 AIRS 2 GEOS-5.4.1 absolute diff

Aerosol optical thickness (relative) Ocean: 15%, Land: 10%, Cryosphere: 10%

Surface albedo (relative) Ocean: 1%, Land: 4%, Cryosphere: 8%

Cloud fraction (absolute) 0.05

Cloud optical thickness (relative) 15%

Cloud-top pressure (hPa) 10

Cloud-base pressure (hPa) 10

a Uncertainty value varies depending on month and 18 3 18 region.

TABLE 3. All-sky and clear-sky TOA and surface flux 1s

uncertainties for 18 3 18 monthly flux adjustment.

Irradiance Uncertainty (1s)

TOA SW (Wm22) 0.5

TOA LW (Wm22) 0.5

Surface downward SW 18 zonal RMS difference of

Ed4 and Ed3 monthly irradiancesa

Surface upward SW 18 zonal RMS difference of

Ed4 and Ed3 monthly irradiancesa

Surface downward LW 18 zonal RMS difference of

Ed4 and Ed3 monthly irradiancesa

Surface upward LW 18 zonal RMS difference of

Ed4 and Ed3 monthly irradiancesa

a Twelve seasonal months separated by ocean, land, and cryo-

sphere; all-sky and clear-sky derived based on 2008–2011 data.
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standard deviations for both downward shortwave

and longwave irradiances. While the improvement of

monthly mean irradiance appears to be small, a sig-

nificant improvement is apparent when the nighttime

hourly mean downward longwave irradiance is com-

pared with observations over the eastern and western

Pacific Ocean (Table 6). As mentioned earlier, all Ed4

SYN1deg products use hourly geostationary satellite

data as opposed to 3-hourly data used in earlier versions.

In addition, up to five channels of radiances are used in

cloud property retrieval, which allow the Ed4 cloud algo-

rithm to retrieve particle size andmore accurate cloud-top

height during night. These improvements lead to in-

creasing downward longwave irradiance over ocean. Both

daytime and nighttime Ed4 downward longwave irradi-

ance are slightly positively biased, as opposed to a negative

bias in Ed2.8 nighttime and a positive bias in

Ed2.8 daytime downward longwave irradiance. The im-

provement leads to a smaller standard deviation indicated

in Fig. 11.

Similar to the comparison over ocean, the differ-

ence of Ed4 downward shortwave and longwave ir-

radiances over land is similar, but slightly better

compared to the difference in Ed2.8 (Fig. 12). Re-

sults of these comparisons are used to estimate

the uncertainty in Ed4 EBAF-surface irradiance in

section 4.

b. Evaluation by surface observations for polar
regions

The surface radiation budget over polar regions is

highly variable compared to other regions. In addition,

surface albedo varies spatially and seasonally. However,

only four validation sites in the Arctic and four validation

sites in the Antarctic exist. The bias of downward short-

wave and longwave irradiances for both Arctic and

Antarctic sites is less than 5Wm22 (Table 7). However,

because atmospheric and surface properties (except over

ice sheets) are highly variable temporally and spatially

over polar regions, the bias at one specific site can be

much larger. For example, the bias of the downward

longwave irradiance over the Greenland Summit site is

larger than 10Wm22 (Fig. 13). The large bias is caused by

overestimation of the cloud fraction over the Greenland

Summit site, especially during polar night. Over-

estimation of the nighttime cloud fraction affecting

FIG. 6. (top left) Mean and (top right) RMS difference of computed and observed TOA SW irradiances after

computed irradiances are adjusted by the bias correction and Lagrange multiplier processes. Observed irradiances

are from Ed4 EBAF-TOA. Irradiances from July 2005 through June 2015 are used. (bottom) As in (top), but for

TOA LW irradiances.
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downward longwave irradiances, however, appears to be

limited to high-altitude regions.

c. Anomaly time series

Observed anomaly time series can also be used to

evaluate the Ed4 EBAF-surface irradiance anomaly time

series. For the evaluation, we average observed monthly

mean irradiances at all available buoys or land sites for

each month. Similarly, we average surface irradiances

from grid boxes containing buoys or land sites to compute

monthly mean irradiances. We select EBAF irradiances

to match temporal sampling of observation at each loca-

tion. We then calculate deseasonalized anomalies by

subtracting climatological monthly means of January,

February, etc., from corresponding months. The climato-

logical means are computed for observed and computed

surface irradiance separately. The number of observation

sites and grid boxes used for the climatological monthly

means varies, depending onmonth (shown by gray bars in

Figs. 14 and 15). The variability shown in Figs. 14 and 15

are, therefore, driven by both natural variability and the

number of regionalmonthlymeans used in the time series.

However, the contribution from the variation of the

number of regional means is small, as the correlation co-

efficient is less than 0.5, while the correlation coefficients

of computed and observed irradiance anomalies are

greater than 0.8 (numbers shown on the top-right corner

of Figs. 14 and 15). Similar to Ed2.8 demonstrated inLoeb

et al. (2014) and Kato et al. (2015), the agreement of de-

seasonalized anomalies computed from EBAF and sur-

face observations is remarkable, with correlation

coefficients generally greater than 0.93. The variability of

anomalies is driven by variabilities in atmospheric and

cloud properties, and the good agreement suggests that

these variabilities are captured in inputs used for surface

irradiance computations. We have, however, less confi-

dence in the surface irradiance variability over polar re-

gions because of the small number of surface observation

sites used for the evaluation.

While the agreement of surface downward irradiances

with observations is nearly the same for Ed2.8 and Ed4

(section 3a), the Ed4 anomaly time series is improved sig-

nificantly (Fig. 16). Because two different versions of

GEOS reanalyses are used for temperature and humidity

sources, there is a discontinuity at the beginning of 2008 in

the Ed2.8 time series when the reanalysis is switched. Ed4

FIG. 7. (top left) Mean and (top right) RMS difference of Ed4 and Ed2.8 net surface irradiances (Ed4 minus

Ed2.8) for all-sky. The net irradiance is defined as positive downward (i.e., downward minus upward irra-

diances). Irradiances from July 2005 through June 2015 are used. (bottom) As in (top), but for TOA LW

irradiances.
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usesGEOS-5.4.1 for the entire record,which eliminates the

discontinuity (Fig. 17). In addition, Collection 5 MODIS

aerosol optical thicknesses are used from March 2000

through February 2017 for Ed4 as opposed to Collection 4

being switched toCollection 5 at the beginning ofMay 2006

in Ed2.8. This switch introduced a large discontinuity of

aerosol optical thickness over some land regions. For clear-

sky downward shortwave irradiance averaged over land,

Ed4 anomalies are relatively uniform throughout the time

series shown in Fig. 17 (red line), while Ed2.8 anomalies

tend to benegative beforeMay 2006 and positive afterMay

2006 (blue line in Fig. 17).

4. Uncertainty estimate

Results of the comparison of surface irradiances

from Ed4 EBAF-surface and observations at surface

sites indicate that mean biases are smaller than the

uncertainty of surface observations. In this section, we

estimate the uncertainty in computed surface irradi-

ances at various temporal and spatial scales using

surface observations.

a. Regional monthly mean

We estimate uncertainties in 18 3 18monthly mean

using irradiances from Ed4 EBAF-surface and sur-

face observations and compare with the uncer-

tainties estimated by Kato et al. (2012, 2013). Kato

et al. (2012) compare surface irradiances computed

with CALIPSO- and CloudSat-derived cloud pro-

files and with MODIS-derived cloud profiles to es-

timate the uncertainty associated with vertical cloud

profiles. In addition, Kato et al. (2012) compare

surface skin temperature derived from clear-sky

scenes identified by CALIPSO and CloudSat with

reanalysis skin temperature to estimate the un-

certainty associated with surface skin and near-

surface temperatures. In this study, we use the

RMS difference of computed and observed monthly

mean irradiances at surface sites as 1-sigma un-

certainty, although other measures of uncertainty

could also be used (e.g., Willmott et al. 2009). The

RMS difference separated by region (ocean, land,

Arctic, and Antarctic) is computed by

DF
x,RMS
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where x is either shortwave (SW) or longwave (LW), N

is the number of months, M is the number of surface

sites, DFij 5 Fij,comp 2 Fij,obs, and comp and obs indi-

cate, respectively, computed and observed irradiances.

Table 8 summarizes the RMS difference by region

in the column labeled ‘‘monthly gridded.’’ Arctic and

Antarctic regions are defined as, respectively, 608–908N
and 608–908S.
When compared with uncertainties given by Kato

et al. (2013), DFSW,RMS over ocean is slightly larger

than the uncertainty given by Kato et al. (2013) (blue

and cyan bars in Fig. 17). The term DFLW,RMS is smaller

than the uncertainty given by Kato et al. (2013) for

both land and ocean (blue and cyan bars in Fig. 18). In

estimating the uncertainty in downward shortwave and

longwave irradiances, Kato et al. (2012) mainly con-

sider the uncertainty due to uncertainty in cloud

properties. The cloud properties used in Kato et al.

(2012) were derived by a cloud algorithm similar to the

Ed2.8 cloud algorithm. The smaller DFLW,RMS found

here, compared to the uncertainty of downward long-

wave irradiance given by Kato et al. (2012) is in part

caused by the improvement of cloud properties. In

addition, overlapping clouds are treated by a random

cloud overlap assumption in Ed4 SYN1deg, which

further reduces bias error, especially in the downward

longwave irradiance.

TABLE 5. Global annual mean irradiances (Wm22) computed

with Ed2.8 and Ed4 EBAF products from July 2005 through

June 2015.

Ed4 Ed2.8 Ed4 2 Ed2.8

All-sky (Jul 2005–Jun 2015)

TOA SW insolation 340.0 339.8 0.17

TOA SW up 99.1 99.6 20.5

TOA LW up 240.0 239.5 0.5

SW down 187.1 186.6 0.53

SW up 23.3 24.2 20.81

SW neta 163.8 162.4 1.34

LW down 344.7 345.0 20.22

LW up 398.3 398.3 0.04

LW neta 253.6 253.4 20.18

SW 1 LW net 110.2 109.1 1.16

Atm SW net 77.1 77.9 20.71

Atm LW net 2186.5 2186.2 20.33

Atm SW 1 LW net 2109.4 2108.3 21.05

Clear-sky (Jul 2005–Jun 2015)

TOA SW insolation 340.0 339.9 0.17

TOA SW up 53.1 52.5 0.6

TOA LW up 267.9 265.4 2.6

SW down 243.8 244.3 20.51

SW up 29.8 29.8 0.01

SW neta 214.0 214.5 0.50

LW down 314.0 316.4 22.34

LW up 397.6 398.5 20.87

LW neta 283.6 282.1 1.46

SW 1 LW neta 130.4 132.4 21.96

Atm SW net 73.0 72.9 0.09

Atm LW net 2184.3 2183.2 21.09

Atm SW 1 LW net 2111.4 2110.4 21.0

a Net is computed by downward–upward.
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The example of the bias at Greenland Summit com-

pared to the bias at the other three sites illustrates the

difficulty of generalizing the uncertainty in the surface

irradiance over polar regions. Cloud, surface, and at-

mospheric properties are more variable than those at

other regions, while surface and in situ observations are

limited, especially during polar nights. These properties

and their uncertainty also highly depend on time of year

because retrieval errors depend on day, night, or surface

type, which can change with season. With a caveat that

the uncertainty is highly variable spatially and tempo-

rally, we use the RMS difference at four surface sites as

FIG. 8. As in Fig. 7, but for clear-sky.

FIG. 9. Location of 46 buoys (blue diamond) and 36 land-surface sites (white diamond)

where downward irradiances used in validation were taken (after Rutan et al. 2015). Red-

diamond buoy locations are included in discussion but not in final validation statistics because

of dust contamination.
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the uncertainty in 18 3 18monthlymean irradiances over

polar regions.

For a consistency check, we also compute the un-

certainty in surface irradiances from bias (Table 2) and

random errors of input variables used in the correction

processes (Table 4), and use the sensitivity of surface

irradiance to these variables (radiative kernels) as the

uncertainty (herein input perturbation approach).

Zhang et al. (1995) use this approach to estimate the

uncertainty in ISCCP surface irradiances. In the sensi-

tivity approach, the uncertainty DFj is

DF
x,per
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where subscripts i and x indicate, respectively, dif-

ferent input variables and components of surface ir-

radiances, that is, upward and downward shortwave

and longwave. The first term on the right side is the

uncertainty of variables from Table 4 multiplied by

the radiative kernel of 18 3 18 monthly mean surface

irradiances, and the second term on the right side dFj

is the bias correction of the surface irradiance Fj

(Table 2). An implicit assumption of Eq. (9) is that

errors in different variables are independent. To

compute the mean regional uncertainty from the

sensitivity approach, DFj computed at a 18 3 18 reso-
lution is averaged over 12 months and over 4 different

regions.

When they are compared separated by regions, both

DFSW,RMS and DFLW,RMS (red bars) are larger than,

respectively, DFSW,per and DFLW,per (orange bars),

except for downward longwave irradiance over ocean.

While this may suggest that uncertainties shown in

Tables 2 and 4 are either underestimated or missing

the contribution from other variables or both, we

FIG. 10. Difference of EBAF monthly 18 3 18 mean surface (top) SW and (bottom) LW

downward irradiances from observed irradiances at buoys (computed minus observed). The

size of the circle is proportional to the difference. Open circles are with the bias larger than the

maximum value of the filled circles. The red and white circles indicate, respectively, a positive

and a negative difference. The number of months used for comparisons varies depending

on buoys.
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expect that DFSW,RMS and DFLW,RMS are larger. The

terms DFSW,RMS and DFLW,RMS include the un-

certainty of surface observations discussed in section

3a. In addition, the spatial variability of surface irra-

diance within a 18 3 18 grid box can cause a difference

greater than 10Wm22 between the monthly mean ir-

radiance averaged over a 18 3 18 grid and the monthly

mean irradiance at a site in the grid box (Kato et al.

2012). These are a part of uncertainty elements and

should be included in the uncertainty estimates.

While the reason for larger differences between two

estimates (cyan and green bars) for polar regions are un-

known, we conclude that the agreement of uncertainties

derived by the two approaches is reasonable.

Figure 18 also shows the sum of adjusted irradiances

from both the bias correction and Lagrange multiplier

processes, as well as the RMS difference between Ed2.8

and Ed4 EBAF downward shortwave and longwave ir-

radiances averaged by region. It confirms that, except

for the downward longwave over ocean, all adjustments

and RMS differences are within the uncertainty shown

by red bars.

b. Uncertainties in different spatial scales

The evaluation of uncertainty at different spatial

scales using surface observations is complicated by the

spatial distribution of the surface sites and the fact that

surface observations are often not continuous over time,

with sites being established and removed. To evaluate

the uncertainty in spatially averaged irradiance at dif-

ferent scales, as given by Kato et al. (2013), we modify

Eq. (8) by first averaging over selected K surface sites

before calculating the RMS difference with the aver-

aged irradiances from L groups of K sites. As any single

grouping of sites is arbitrary, we calculate each RMS

difference 100 times, each time randomly selecting

sites with no repetition in the selected group. Defin-

ing Fil,comp(K)5 (1/K)�K

k51Filk,comp and Fil,obs(K)5
(1/K)�K

k51Filk,obs, thenDFil(K)5Fil,comp(K)2Fil,obs(K),

where, with no duplicated sites being used, the number

ofL groups of averaged irradiances overK sites requires

that L 3 K is less than or equal to the total number of

sites M, that is, LK # M. The RMS difference with L

averaged irradiances over N months is

FIG. 11. Histogram of the difference between monthly 18 3 18mean downward (top) SW and

(bottom) LW irradiance and those observed at 46 buoy sites.
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Figure 19 showsDFx,RMS as a function ofK. As expected,

DFx,RMS decreases as the number of sites averaged over

K sites increases, indicating that a monthly mean irra-

diance difference contains a spatially random error.

Although it may not be the only cause of the random

error, the deviation of the monthly mean irradiance

measured at the site from the gridded monthly mean

irradiance where the site is located (Kato et al. 2012) is

likely the primary reason for the random error. The

vertical bars indicate the variability found as groups of

sites are randomly selected 100 times and found to have

relatively small effect. The downward shortwave and

longwave irradiance difference over land decreases

faster than the difference over ocean. This implies that

the error in the downward irradiance over land tends to

be more spatially random than the downward irradiance

over ocean. The decrease of downward longwave dif-

ference over ocean with K is much slower, probably for

the following reason. The downward longwave irradi-

ance wasmeasured only 20 buoys (out of 46). Two-thirds

of them only have measurements though 2005. There-

fore, the number of observation sites is significantly

smaller. In addition, buoys are concentrated within

limited geographical regions. As a consequence, the

TABLE 6. Nighttime hourly mean downward LW irradiance over ocean.

Region Obs mean (Wm22) No. of hours Ed4 bias (std dev) (Wm22) Ed3 bias (std dev) (Wm22)

Eastern Pacific Ocean 385 162 831 1 (15) 24 (17)

Western Pacific Ocean 391 46 968 1 (14) 23 (14)

Atlantic Ocean 398 12 400 5 (15) 21 (14)

Nighttime hourly mean irradiances are provided by Ed4 SYN1deg-Hour data product.

FIG. 12. As in Fig. 11, but for 36 land sites.
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error in the downward longwave irradiance over ocean

is not as spatially random as the error in the downward

shortwave.

The relationship between DFx,RMS and K is fitted by

DF
x,RMS

2 5DF2
x,bias 1

DF2
x,random

K
(11)

to derive bias DFx,bias and spatially random DFx,random

errors. Once DFx,bias and DFx,random are known, the un-

certainty can be computed for any K.

The uncertainty as a function of K is plotted in

Fig. 19 by solid lines. The uncertainty corresponding to

the order of 100 samples approximately represents the

uncertainty in a zonal monthly mean irradiance. The

uncertainty corresponding to the order of 104 is con-

sidered as the uncertainty in a monthly mean irradiance

averaged over the entire ocean or land. With this re-

lationship, the uncertainty in zonal and global down-

ward surface irradiance over land is smaller than the

corresponding uncertainty over ocean even though the

uncertainty in the irradiance over a 18 grid box contain-

ing a surface site might be larger. The uncertainty in the

TABLE 7. Bias and RMS diff of downward irradiance over polar regions compared to observations.

Sites Mean (Wm22) Ed2.8 bias (RMS) (Wm22) Ed4 bias (RMS) (Wm22) No. of months

Arctic avg (4 sites)

Downward SW 98.6 4.2 (12.9) 3.6 (13.0) 286

Downward LW 218.0 1.8 (9.5) 0.2 (12.3) 296

Antarctic avg (4 sites)

Downward SW 132.0 21.8 (15.9) 24.1 (20.1) 571

Downward LW 168.5 6.9 (12.7) 3.1 (11.7) 632

FIG. 13. As in Fig. 10, but for land and polar sites. The number of months used for comparisons

varies depending on sites.
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irradiance averaged over ocean or land shown in Fig. 19

is smaller than the uncertainty in monthly mean irradi-

ances given by Kato et al. (2013). While smaller un-

certainties might be, in part, caused by the difference

between Ed4 and Ed2.8, the difference is largely due to

different ways of estimating the uncertainty. We there-

fore use the average values of Fig. 19 and uncertainties

given by Kato et al. (2013) as uncertainties for Ed4

downward irradiances at equal to or larger than a zonal

spatial scale. If the resulting uncertainty at a larger spa-

tial scale is larger than the uncertainty in the gridded

irradiance, we use the uncertainty of the gridded irradi-

ance for the uncertainty at that spatial scale. We use

uncertainties given by Kato et al. (2013) for the un-

certainty in Ed4 upward irradiances. Because Fig. 19

shows the uncertainty is nearly constant forK. 100, we

also assume that the uncertainty in annual global mean

irradiances is the same as the uncertainty in the monthly

global mean irradiances. Uncertainties for Ed4 surface

irradiances, revised from Ed2.8 uncertainties given in

Kato et al. (2013), are shown in Table 8.

If we assume that errors affecting upward and down-

ward shortwave and longwave irradiances are in-

dependent, 1s (or k 5 1) uncertainty in the global

annual mean surface net irradiance is 8Wm22 [5(52 1
32 1 42 + 32)1/2]. Therefore, the residual of surface

energy balance computed with satellite data products of

nearly 15Wm22 (Kato et al. 2011; Stephens et al. 2012;

Loeb et al. 2014; L’Ecuyer et al. 2015) is well outside the

1s uncertainty of the net surface irradiance. In addition,

the difference of the global annual mean net irradiance

derived from Ed2.8 and Ed4 EBAF-surface is only

1.1Wm22. Given differences in inputs and algorithm

used in two different versions, the small difference

suggests robustness of the global annual mean net sur-

face irradiance. As our result indicates, one reason

for a small uncertainty in global mean irradiances is

that a part of the error is spatially random. Averaging

FIG. 14. Monthly deseasonalized anomalies computed with downward (top) SW and

(bottom) LW irradiances measured at 46 buoys (black lines). Red lines indicate deseason-

alized anomalies computed with Ed4 EBAF using grid boxes containing the buoys. Numbers

shown on the top-right corner are correlation coefficients between (top) computed and ob-

served deseasonalized anomalies and between (bottom) computed anomalies and number of

sites used for computing anomalies. Gray shading indicates the number of sites used to

compute anomalies.
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irradiance over a large area reduces the random er-

rors, resulting in a small uncertainty in a global mean

irradiance.

5. Applications to climate research

We expect that the Ed4 EBAF-surface data product

will continue to contribute to research areas discussed in

the introduction section. In addition, one of our goals is

to record surface irradiance responses to increasing ra-

diative forcing with time. According toWild et al. (2008)

the rate of the downward shortwave irradiance averaged

over GEBA land sites from 1986 through 2000 is

2.2Wm22 decade21. The standard deviation of desea-

sonalized monthly anomalies of downward shortwave

irradiance averaged over land is 1.35Wm22, while the

autocorrelation coefficient with a 1-month time lag is

0.23. Based on the form given by Weatherhead et al.

(1998), 9 years of data is sufficient to detect the trend

reported byWild et al. (2008) at a 95% confidence level.

The trend in the global mean irradiance is much smaller

and requires a longer time to detect the trend [e.g., a

2.2% surface net irradiance or a 0.4Wm22 decade21

signal (Held and Soden 2006) with observed variability

(;0.7Wm22) and autocorrelation coefficient (0.65)

would take 2–3 decades]. Given the length of the current

data record, the expected contribution to future climate

prediction is through providing mean-surface irradi-

ances and their natural variability. Although the re-

lationship between global-scale covariabilities of

temperature and TOA irradiance derived from natural

variability and feedback parameters is not well un-

derstood (Loeb et al. 2016), a study by Zhou et al. (2015)

shows encouraging correlation. Klein and Hall (2015)

list potential regional-scale natural variabilities that

might be relevant to future climate prediction. Klein

and Hall (2015) argue that understanding physical

reasons underlying the empirical relationship between

variability under current climate condition and changes

that occur under radiative forcing is required to constrain

future climate prediction. We believe that conservation

of energy used as a constraint can be a powerful tool to

understand physical reasons. Understanding how the

energy balance in the atmospheric column varies with

natural variability might provide insights into how the

energy balance is altered under radiative forcing. A

possible approach to gain insight into physical reasons of

the empirical relationship is to build an energy balance

FIG. 15. As in Fig. 14, but for 36 land sites.
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model that focuses on a particular physical process re-

sponsible for the empirical relationship. Observed co-

variabilities of multiple variables provide insights into

how variables change when they are perturbed. Using

radiative forcing as a perturbation combined with feed-

back constructed based on observed covariability from

observations used in the energy balance model, we can

test whether or not themodel can reproduce the feedback

predicted by climate models (e.g., Boos and Korty 2016).

6. Summary

Inputs and algorithms to produce Ed4 EBAF-surface

are revised from those for Ed2.8. The reanalysis product

GEOS-5.4.1, which provides temperature, specific hu-

midity, and ozone profiles, is used for the entire record

of Ed4. In addition, MODIS Collection 5 is used from

March 2000 through February 2017 and Collection 6 is

used from March 2017 onward. The Ed4 cloud algo-

rithm is used to detect clouds from MODIS and geo-

stationary satellite observations, which produces more

low-level clouds compared with the Ed2.8 cloud algo-

rithm. The Ed4 cloud algorithm also detects more thin

high-level clouds compared with the Ed2.8 cloud al-

gorithm. In addition, using up to five channels to re-

trieve cloud properties from geostationary satellite

observations improves nighttime cloud properties. Ed4

EBAF all-sky global annual mean TOA shortwave and

FIG. 16. Anomaly time series of LW surface net (downward minus upward) irradiances

over ocean. Blue and red lines are computed, respectively, with Ed2.8 andEd4EBAF-surface

data products. The numbers appearing across the top of the panel are, from the left to right,

the std dev, trend with a 95% confidence interval (Ed4 in red and Ed2.8 in blue), and cor-

relation coefficient between the two time series (black).

FIG. 17. As in Fig. 16, but for clear-sky surface downward SW irradiances over land.
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longwave irradiances are, respectively, smaller by

0.5Wm22 and larger by 0.5Wm22 compared with Ed2.8

counterparts, while clear-sky global annual mean TOA

irradiance differences are larger, especially for longwave.

The algorithm to produce Ed4 EBAF-surface consists of

two parts: bias correction and Lagrange multiplier. The

bias correction adjusts the TOA and surface irradiance

error because of the bias in 500 to 200hPa temperature

and humidity, and cloud fraction viewed from space and

the surface.

Even though inputs and algorithms used in Ed4 data

products and algorithms of Ed4 EBAF-surface are

significantly revised, the global annual mean surface

upward and downward shortwave and longwave irra-

diances change less than 1Wm22 compared with

Ed2.8 irradiances. The change in the global annual

mean surface shortwave plus longwave net irradiance

is 1.2Wm22. The uncertainty of surface irradiances

given by Kato et al. (2013) is also revised using surface

observations. Differences of revised values from those

TABLE 8. Uncertainty (k 5 1 or 1s) in Ed4 EBAF-surface irradiances.

Estimated uncertainty

Mean irradiance Monthly gridded Monthly zonal Monthly global Annual global

Downward LW Ocean 1 land 345 7 6 5 5

Ocean 364 5 5 5 5

Land 333 10 9 5 5

Arctic 183 12 — — —

Antarctic 183 12 — — —

Upward LW Ocean 1 land 398 15 8 3 3

Ocean 402 13 9 5 5

Land 394 19 15 5 4

Arctic 219 12 — — —

Antarctic 219 13 — — —

Downward SW Ocean 1 land 187 13 7 6 4

Ocean 191 11 7 6 4

Land 195 12 7 5 4

Arctic 119 14 — — —

Antarctic 119 21 — — —

Upward SW Ocean 1 land 23 11 3 3 3

Ocean 12 11 3 3 3

Land 53 12 8 6 6

Arctic 86 16 — — —

Antarctic 86 24 — — —

FIG. 18. Comparison of uncertainty estimates of 18 3 18monthlymean irradiance separated

by regions. Blue, red, and orange bars indicate, respectively, the uncertainty estimated by

Kato et al. (2013), RMS difference between computed and observed irradiance DFx,RMS

[defined by Eq. (8)], and perturbation method DFx,per [defined by Eq. (9)], respectively.

Purple bars are the adjusted amount of irradiances in the bias and Lagrange multiplier

processes and green bars are the RMS difference of 18 3 18 monthly mean Ed2.8 and Ed4

EBAF irradiance averaged by region.
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given in Kato et al. (2013) are small. If we assume

errors in all surface irradiance components are in-

dependent, the uncertainty in the global annual mean

surface net irradiance is 8Wm22. Downward irradi-

ance measured at 46 buoys and 36 land sites is used to

evaluate monthly mean downward irradiances. Mean

biases of Ed4 EBAF-surface downward shortwave

and longwave irradiances separately averaged for all

buoys and land sites are less than 5Wm22, which is

within the uncertainty of surface measurements.

Mean biases of downward shortwave and longwave

irradiance averaged separately for four Arctic and

four Antarctic sites are also smaller than 5Wm22.

However, because of a larger positive bias of cloud

fraction in high altitude over polar regions during

polar night, the mean bias of monthly mean downward

longwave irradiance at the Greenland Summit site is

11Wm22. This is also the result of large spatial and

temporal variability of surface irradiances over polar

regions that warrants caution when interpreting the

validation results from only four sites in the Arctic or

Antarctic.
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APPENDIX

EBAF-Surface Lagrange Multiplier Algorithm

Following Eq. (A4) of Kato et al. (2013), we mini-

mize Z, of which components are surface, cloud, and

atmospheric property changes as well as irradiance

uncertainties under the constraint that the change of

computed TOA shortwave and longwave irradiance

matches with the difference between computed and

observed TOA irradiance to within their uncertainties.

(Rose et al. 2013). We define the difference of com-

puted Fcomp and observed Fobs top-of-atmosphere

(TOA) irradiances DF 5 Fcomp – Fobs, where the ele-

ments of F are all-sky TOA shortwave and longwave

irradiances. The difference DF also contains four other

elements, surface upward and downward irradiance

bias corrections.

We then express Y as

Y5Z1 l
0 �

2

i51

dc
i
s
c,i
1LT

(
�
2

i51

[F
i
(s

c,i
dc

i
)

1C
i
a
i
(s

y
dv)]2 (s

f
df)2DF

)
, (A1)

where

Z5 �
2

i51

dc2i 1 dvTdv1 dfTdf , (A2)

the clear or cloud fraction change is dCi, atmospheric and

surface property change is dV, and irradiance residual that

is not taken out from this adjustment is dF. Elements of

these vectors are normalized by the respective uncertainty s

so that

dC
i
5 dc

i
s
c,i
, (A3)

dV
k
5 dy

k
s
y,k

, (A4)

and

dF
j
5 df

j
s
f ,j
, (A5)

where subscript i indicates clear and all-sky (i# 2), k is

the number of variables (k # n, n 5 9 ) such as tem-

perature, water vapor amount, and cloud properties

and j is TOA and surface shortwave and longwave

irradiances (j# 6). In Eq. (A1),LT5 [l1, l2, . . . , l6], Fi

contains computed TOA and surface shortwave and

longwave irradiances, the 6 3 n matrix ai contains the

partial derivatives of TOA and up and downward

surface irradiances with respect to cloud and atmo-

spheric properties, l represents Lagrange multipliers,

s is an n 3 n matrix of which diagonal terms are sy,k,

and dv and df are, respectively, n- and 6-element

vectors. Note that sizes of dv, df, and the s matrix

are different from those used in Kato et al. (2013).

Clear-sky irradiance constraint is similar to all-sky but

i 5 1 (clear-sky only) and there is no dCi.We rewrite

Eq. (A1) as
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Unknowns are dci, dyk, dfj, and Lagrangemultipliers.We

take a derivative of Y with respect to dci, dyk, dfj, and

with respect to Lagrange multipliers:
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We then set Eqs. (A7)–(A11) equal to 0 and solve for

unknowns dci, dyk, dfj, and Lagrange multipliers.

Multiplying Eq. (A7) by sc,i leads to
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i
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Substituting Eq. (A8) for yk and Eq. (A9) for fj into Eq.

(A11) leads to
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Rearranging Eq. (A13) leads to
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Eq. (A14) sets up a matrix equation
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The diagonal element of G is
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and the off-diagonal element is
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Once lx is known, summing up Eq. (A12) for all m and

using
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leads to
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which can be solved for l0. Once all ls are known,

one can solve for dci, dyk, and dfj using Eqs. (A7)–

(A9).
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